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Comments about this draft

This is a set of course notes hoping to someday be a book.

Unfortunately, there is a huge difference between course notes and a
book. This is why I need everyone’s help. If there are parts that you
think are unclear – please let me know. If there are errors — please let
me know (even if they are small and subtle). If the figures are unclear
— please let me know. If there are mistakes in grammar — please let
mek now.
... and one has yet informed me that there was a typo in the previ-

ous sentence. So you are obviously not doing your job! Get with the
program!
If you don’t get the jokes... well, that is your problem. Seriously

though, I need help if this is eventually going to arrive at the Nirvana
that is bookdom. Give me feedback please. It will be good for your
Karma. ⌣̈





Some thoughts about this book

This book originated as part of a lecture course given at Oxford in the
fall of 2016 and then again in 2017, 2018, . . . and this kept going until I
finished the book, which seemed like forever.
The idea of this book is to give a general introduction to topological

quantum ideas. This includes topological quantum field theories, topo-
logical quantum memories, topological quantum computing, topological
matter and topological order — with emphasis given to the examples of
toric code, loop gases, string nets, and particularly quantum Hall effects.
The book is aimed at a physics audience (i.e., we avoid the language of
category theory like the plague!), although some mathematicians may
also find the perspectives presented here to be useful.

How to read this book

The book was originally written to be read roughly sequentially. How-
ever, you may be able to jump around quite a bit depending on your
interests. When the toric code is introduced, it is quite independent of
the prior chapters on the general structure of TQFTs.
I should also mention that chapter 28 introduces some basic mathe-

matics that many people may know but I thought should be included
for completeness.
There are often small hitches and caveats that are swept under the

rug in the name of simplifying the discussion. I try to footnote these
caveats when they occur.
In a margin note of my previous book, I said that my next book (i.e.,

this one) would be about two dimensional electron systems. This topic
is covered in the section on fractional quantum Hall effect1.

1I also suggested that I might write a
thriller about physicists defeating drug
smugglers. For those who are inter-
ested, I’m still working on it, but I dis-
covered that writing a novel is pretty
hard.

A list of useful references is given etc.
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Introduction: History of
Topology, Knots, Peter Tait and
Lord Kelvin 1
The field of quantum topology inhabits a beautiful nexus between math-
ematics, computer science, and physics. Within the field of physics, it
has been fundamental to a number of subfields. On the one hand, topol-
ogy and topological matter are key concepts of modern condensed matter
physics1. Similarly, in the field of quantum information and quantum 1The 2016 Nobel Prize was awarded

to Kosterlitz, Thouless, and Haldane
for the introduction of topological ideas
into condensed matter physics. The
topic of this book is a great-grand-
daughter of some of those ideas. In
chapters 24 and 23 we will discuss some
of the key works that this Nobel Prize
honored.

computation, topological ideas are extremely prominent2. At the same

2We will see this starting in chapter 20
below.

time much of our modern study of topological matter is rooted in ideas of
topological quantum field theories that developed from the high energy
physics, quantum gravity3, and string theory community starting in the

3See chapter 6.

1980s. These earlier works have even earlier precedents in physics and
mathematics. Indeed, the historical roots of topology in physics date all
the way back to the 1800s which is where we will begin our story.

Fig. 1.1 A smoke ring or vortex loop
is an invisible ring in space where the
fluid flows around the invisible ring as
shown by the arrows. The whole thing
moves out of the plane of the page at
you as the fluid circulates.

In 1867 Lord Kelvin4 and his close friend Peter Tait were interested
in a phenomenon of fluid flow known as a smoke ring5, configurations of

5Even in 1867, a talented smoker could
produce a smoke ring from their mouth.

fluid flow where lines of vorticity form closed loops as shown in Fig. 1.1.
Peter Tait built a machine that could produce smoke rings, and showed
it to Kelvin who had several simultaneous epiphanies. First, he realized
that there should be a theorem (now known as Kelvin’s circulation theo-
rem) stating that in a perfectly dissipationless fluid, lines of vorticity are
conserved quantities, and the vortex loop configurations should persist
for all time. Unfortunately, few dissipationless fluids exist — and the
ones we know of now, such as superfluid helium at very low tempera-
tures, were not discovered until the next century6. However, at the time,

6In fact Helium was not even discov-
ered yet in 1867!

scientists incorrectly believed that the entire universe was filled with a
perfect dissipationless fluid, known as Luminiferous Aether, and Kelvin
wondered whether one could have vortex loops in the Aether.
At the same time, one of the biggest mysteries in all of science was

the discreteness and immutability of the chemical elements. Inspired by
Tait’s smoke ring demonstration, Kelvin proposed that different atoms
corresponded to different knotting configurations of vortex lines in the
Aether. This theory of vortex atoms was appealing in that it gave a

4Actually, in 1867 he was just William Thomson, but he would later be elevated to
the peerage and take the name Lord Kelvin after the River Kelvin that flowed by his
laboratory.
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reason why atoms are discrete and immutable — on the one hand there
are only so many different knots that one can make. (See for example,
the list of the simplest few knots you can form from one piece of string
shown in Fig. 1.2.) On the other hand, by Kelvin’s circulation theorem,
the knotting of the vortices in a dissipationless fluid (the Aether) should
be conserved for all time. Thus, the particular knot could correspond to
a particular chemical element, and this element should never change to
another one. Hence the atoms should be discrete and immutable!

Fig. 1.2 The simplest few knots made
from one strand of string. The top
knot, a simple loop, is known as the
“unknot”, and corresponds to the sim-
ple smoke ring in Fig. 1.1. The second
knot from the top, known as the trefoil,
is not the same as its mirror image (see
exercise 2.1)

For several years the vortex theory of the atom was quite popular,
attracting the interest of other great scientists such as Maxwell, Kirch-
hoff, and J. J. Thomson (no relation). However after further research
and failed attempts to extract predictions from this theory, the idea of
the vortex atom lost popularity.
Although initially quite skeptical of the idea, Tait eventually came

to believe that by building a table of all possible knots (knotted con-
figuration of strands such that there are no loose ends) he would gain
some insight into the periodic table of the elements, and in a remarkable
series of papers he built a catalogue of all knots with up to 7 crossings
(the first few entries of the table being shown in Fig. 1.2). From his
studies of knots, Tait is viewed as the father of the mathematical theory
of knots, which has been quite a rich field of study since that time (and
particularly during the last fifty years).
During his attempt to build his “periodic table of knots”, Tait posed

what has become perhaps the fundamental question in mathematical
knot theory: how do you know if two pictures of knots are topologically
identical or topologically different. In other words, can two knots be
smoothly deformed into each other without cutting any of the strands.
Although this is still considered to be a difficult mathematical problem,
a powerful tool that helps answer this question is the idea of a knot
invariant which we will study in the next chapter. Shortly, it will become
clear how this idea is related to physics.
Although Tait invented a huge amount of mathematics of the theory

of knots7 and developed a very extensive table of knots, he got no closer
to understanding anything about the periodic table of the atoms. In
his later life he became quite frustrated with his lack of progress in this
direction and he began to realize that understanding atoms was probably
unrelated to understanding knots. Tait died8 in 1901 not realizing that
his work on the theory of knots would be important in physics, albeit
for entirely different reasons.

7Some of his conjectures were way ahead of their time — some being proven only in
the 1980s or later! See Stoimenow [2008] for a review of the Tait conjectures proven
after 1985.
8Peter Tait was also a huge fan of golf and wrote some beautiful papers on the
trajectory of golf balls. His son, Freddie Tait, was a champion amateur golfer, being
the top amateur finisher in the British Open six times and placing as high as third
overall twice. Freddie died very young, at age 30, in the Boer wars in 1900. This
tragedy sent Peter into a deep depression from which he never recovered.
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Further Reading

• Daniel S. Silver, “Knot Theory’s Odd Origins”, American Scien-
tist, Volume 94, 2006.





Kauffman Bracket Invariant and
Relation to Physics 2
The purpose of this chapter is to introduce you to a few of the key ideas
and get you interested in the subject!

2.1 The idea of a knot invariant

Topological equivalence. We say two knots are topologically equiva-
lent if they can be deformed smoothly into each other without cutting1.
For example, the picture of a knot (or more properly, the picture of the
link of two strings) on the left of Fig. 2.1 is topologically equivalent to
the picture on the right of Fig. 2.1.

=

Fig. 2.1 Topological equivalence of
two knots. The knot on the left can be
deformed continuously into the knot on
the right without cutting any strands.It may appear easy to determine whether two simple knots are topo-

logically equivalent and when they are not. However, for complicated
knots, it becomes extremely difficult to determine whether two knots are
equivalent or inequivalent. It is thus useful to introduce a mathematical
tool known as a knot invariant that can help us establish when two knots
are topologically inequivalent.
A Knot Invariant is a mapping from a knot (or a picture of a knot)

to an output via a set of rules which are cooked up in such a way that
two topologically equivalent knots must give the same output. (See
Fig. 2.2.) So if we put two knots into the set of rules and we get two
different outputs, we know immediately that the two knots cannot be
continuously deformed into each other without cutting. ❄

Rules

Such that
topologically
equivalent
knots give the
same output

Output

Knot

Fig. 2.2 Schematic description of a
knot invariant as a set of rules taking an
input knot to some mathematical out-
put such that topologically equivalent
knots give the same output.

To demonstrate how knot invariants work, we will use the example of
the Kauffman bracket invariant2,3 (See Kauffman [1987]). The Kauff-

3The term “bracket” is due to a com-
mon notation where one draws a pic-
ture of a knot inside brackets to indi-
cate that one is supposed to evaluate
this invariant. We will not draw these
brackets.

1A few pieces of fine print here. (1) I am not precise about knot versus link. Strictly
speaking a knot is a single strand, and a link is more generally made of multiple
strands. Physicists call them all knots. In either case no dangling ends are al-
lowed. A knot can be defined as a particular embedding of a circle (S1) into a
three dimensional reference manifold such as R3 (regular 3-dimensional space) with
no self-intersections. A link is an embedding of several circles into the three dimen-
sional manifold with no intersections. (2) When I say “topologically equivalent” here
I mean the concept of regular isotopy (See section 2.2.1 and 28.4) . This asks the
question of whether there is a continuous smooth family of curves from the initial
knot to the final knot — however to be more precise, as we will see below in section
2.2.1, we should think of the curves as being thickened to ribbons
2Be warned: there are multiple things named after Kauffman. The particular nor-
malization of the bracket invariant that we use has been named the topological bracket
by Kauffman. The more common definition of the bracket is our definition divided
by d.



6 Kauffman Bracket Invariant and Relation to Physics

man bracket invariant was essentially invented by Vaughn Jones who
won the Fields medal for his work on knot theory[Jones, 1985]. Kauff-
man’s important contribution to this story (among his many other con-
tributions in the field of knot theory) was to explain Jones’ work in very
simple terms.
To define the Kauffman Bracket Invariant, we start with a scalar

variable A. For now, leave it just a variable, although later we may
give it a value. There are then just two rules to the Kauffman bracket
invariant. First, a simple loop of string (with nothing going through it)
can be removed from the diagram and replaced with the number44We will eventually see that d stands

for “dimension”.

d = −A2 −A−2
. (2.1)

The second rule replaces a diagram that has a crossing of strings by a
sum of two diagrams where these strings don’t cross — where the two
possible uncrossings are weighted by A and A−1 respectively as shown
in Fig. 2.3. This type of replacement rule is known as a skein rule.5

5The word “skein” is an infrequently
used English word meaning loosely
coiled yarn, or sometimes meaning an
element that forms part of a compli-
cated whole (probably both of these are
implied for our mathematical usage).
“Skein” also means geese in flight, but
I suspect this is unrelated.

= −A2 − A−2 = d

= A + A−1

= A + A−1

Fig. 2.3 Rules for evaluating the Kauffman bracket invariant. The
third line is exactly the same as the middle line except that all the
diagrams are rotated by 90 degrees, so it is not an independent rule.
However, it is convenient to draw the rule twice to make it easier to
compare to other diagrams.

The general scheme is to use the second (and third) rule of Fig. 2.3
to remove all crossings of a diagram. In so doing, one generates a sum
of many diagrams with various coefficients. Then once all crossings are
removed, one is just left with simple loops, and each loop can just be
replaced by a factor of d.
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= A + A−1

= A





A + A−1





+ A−1





A + A−1





= A2d2 + d + d3 + A−2d2

−d3

= d

Fig. 2.4 Example of evaluation of the Kauffman bracket invariant for the simple twisted loop in the
upper left. The light dotted red circle is meant to draw attention to where we apply the Kauffman
crossing rule (the middle line in Fig. 2.3) to get the two diagrams on the right hand side. After
applying the Kauffman rules again (the final line in Fig. 2.3), we have removed all crossings and we
are left only with simple loops, which each get the value d. In the penultimate line we have used
the definition of d to replace A2 + A−2 = −d. The fact that we get d in the end of the calculation
is expected since we know that the original knot is just a simple loop (the so-called “unknot”) and
the Kauffman rules tell us that a loop gets a value d.
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To give an example of how these rules work we show evaluation of
the Kauffman bracket invariant for the simple knot in the upper left of
Fig. 2.4. The output of the calculation is that the Kauffman invariant
of this knot comes out to be d. This result is expected since we know
that the original knot (in the upper left of the figure) is just a simple
loop (the so-called “unknot”) and the Kauffman rules tell us that a loop
gets a value d. We could have folded over this knot many many times66To a mathematician the Kauffman in-

variant is an invariant of regular isotopy
— see Section 2.2.1 below.

and still the outcome of the Kauffman evaluation would be d.
The idea of a knot invariant seems like a great tool for distinguishing

knots from each other. If you have two complicated knots and you do
not know if they are topologically equivalent, you just plug them into
the Kauffman machinery and if they don’t give the same output then
you know immediately that they cannot be deformed into each other
without cutting7. However, a bit of thought indicates that things still

7The converse is not true. If two knots
give the same output, they are not nec-
essarily topologically equivalent. It is
an open question whether there are any
knots besides the simple unknot (a sim-
ple loop) which has Kauffman invariant
d. It is also an open challenge to find
out whether any combinatoric knot in-
variants similar to Kauffman can dis-
tinguish all topologically inequivalent
knots from each other.

get rapidly difficult for complicated knots. In the example of Fig. 2.4 we
have two crossings, and we ended up with 4 diagrams. If we had a knot
with N crossings we would have gotten 2N diagrams, which can be huge!
While it is very easy to draw a knot with 100 crossings, even the world’s
largest computer would not be able to evaluate the Kauffman bracket
invariant of this knot! So one might then think that this Kauffman
bracket invariant is actually not so useful for complicated knots. We
will return to this issue later in Section 2.4.

2.2 Relation to Physics

There is a fascinating relationship between knot invariants and quantum
physics. For certain types of so-called “topological quantum systems”
the amplitudes of space-time processes can be directly calculated via
knot invariants such as the Kauffman bracket invariant.
We should first comment that most of what we will discuss in this

book corresponds to 2 dimensional systems plus 1 dimension of time.
There are topological systems in 3+1 dimension (and higher dimensions
as well!) but more is known about 2+1 D and we will focus on that at
least for now.8

8There is also some discussion of “topo-
logical” systems in 1+1 D later in sec-
tion ***.

Figure 2.5 shows a particular space-time process of particle world lines.
At the bottom of the figure is shown the shaded 2 dimensional system
(a disk). At some early time there is a pair creation event — a particle-
antiparticle appear from the vacuum, then another pair creation event;
then one particle walks around another, and the pairs come back to-
gether to try to reannihilate. At the end of the process, it is possible
that the particles do reannihilate to the vacuum (as shown in the di-
agram), but it is also possible that (with some probability amplitude)
the particle-antiparticle pairs form bound states that do not annihilate
back to the vacuum.

ti
m
e

Fig. 2.5 A space-time process show-
ing world lines of particles for a
2+1 dimensional system (shown as the
shaded disk at the bottom). The X’s
mark the points in space-time where
particles-anti-particle pairs are either
pair-created or pair-annihilated.

In a topological theory, the quantum amplitude for these processes
depends on the topology of the world lines, and not on the detailed
geometry (I.e., the probability that the particles reannihilate versus form
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bound states). In other words, as long as the topology of the world lines
looks like two linked rings, it will have the same quantum amplitude as
that shown in Fig. 2.5. It should surprise us that systems exist where
amplitudes depend only on topology, as we are used to the idea that
amplitudes depend on details of things, like details of the Hamiltonian,
how fast the particles move, and how close they come together. But in
a topological theory, none of these things matter. What matters is the
topology of the space-time paths.
What should be obvious here is that the quantum amplitude of a

process is a knot invariant. It is a mapping from a knot (made by the
world lines) to an output (the amplitude) which depends only on the
topology of the knot. This connection between quantum systems and
knot invariants was made famously by Ed Witten, one of the world’s
leading string theorists [Witten, 1989]. He won the Fields medal along
with Vaughan Jones for this work.
Such topological theories were first considered as an abstract possi-

bility, mainly coming from researchers in quantum gravity (see chapter
6). However, now several systems are known in condensed matter which
actually behave like this. While not all topological theories are related
to the Kauffman bracket invariant, many of them are (There are other
knot invariants that occur in physical systems as well — including the
so-called HOMFLY invariant[Freyd et al., 1985]. See exercise ***). A
brief table of some of the physical systems that are believed to be related
to nontrivial knot invariants is given in Table 2.1.
In addition there are a host of complicated systems that could in

principle be engineered but are much too hard for current technology to
contemplate. There are also other many other quantum hall states that
are also topological, but have corresponding knot invariants are fairly
trivial, as we will later see in chapter ***.
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(1) SU(2)2 class. For these, the Kauffman bracket invariant
gives the quantum amplitude of a process by using the
value A = ie−iπ/(2(2+2)) = i3/4. This is also known as
“Ising” anyons9. Possibly physical realizations include

• ν = 5/2 Fractional Quantum Hall Effect (2D elec-
trons at low temperature in high magnetic field). See
chapters ***.

• 2D p-wave superconductors.

• 2D Films of 3HeA superfluid10.

• A host of “engineered” structures that are designed
to have these interesting topological properties. Typ-
ically these have a combination of spin-orbit coupling,
superconductivity, and magnetism of some sort. Re-
cent experiments have been quite promising. See
chapter ***?

(2) SU(2)3 class. For this, the Kauffman bracket invariant
gives the quantum amplitude of a process by using the
value A = ie−iπ/(2(2+3)) = i4/5. The only physical system
known in this class is the ν = 12/5 fractional quantum hall
effect.

(3) SU(2)4 class. For this, the Kauffman bracket invariant
gives the quantum amplitude of a process by using the
value A = ie−iπ/(2(2+4)) = i5/6. It is possible that ν =
2 + 2/3 Fractional quantum hall effect is in this class.

(4) SU(2)1 class Also known as semions. These are proposed
to be realized in rotating boson fractional quantum Hall
effect (See comments in chapter 27). This corresponds to
a fairly trivial knot invariant as we will see later in section
***.

(5) SU(3)2 class. This corresponds to a case of the HOMFLY
knot invariant rather than the Kauffman bracket invariant.
It is possible that the unpolarized ν = 4/7 fractional quan-
tum hall effect is in this class.

9The Ising conformal field theory, de-
scribes the critical point of the 2D
classical Ising model. We will dis-
cuss the relationship between confor-
mal field theory and topological theo-
ries in chapter 27.

10Two Nobel Prizes have been given for
work on Helium-3 superfluidity.

Table 2.1 Table of some interesting topological systems related to knot invariants.
Note that these are closely related to, but not precisely the same as SU(2)k Chern-
Simons theory (which we discuss in chapter 5). The slight differences are related to
extra phases that appear in braiding. See also chapter ****. See end of chapter for
references ***
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2.2.1 Twist and Spin-Statistics

Before moving on, let us do some more careful examination of the Kauff-
man bracket invariant. To this end, let us examine a small loop in a piece
of string (as shown in Fig. 2.6) and try to evaluate its Kauffman bracket
invariant.

+A−1= A

=

(
A [−A2 − A−2] + A−1

)
= −A3

Fig. 2.6 Evaluation of a twist loop in a string. The dotted lines
going off the top and bottom of the diagrams mean that the string
will be connected up with itself, but we are not concerned with any
part of the knot except for piece shown. The result of this calculation
is that removal of the little twist in the loop incurs a factor of −A3.

We see from the calculation, that the little loop in the string has value
of −A3 compared to a straight string. But this seems to contradict what
we said earlier! We claimed earlier that any two knots that can be de-
formed into each other without cutting should have the same Kauffman
bracket invariant, but they don’t!
The issue here is that the unlooped string on the right and the looped

string on the left are, in fact, not topologically equivalent11. To see this

11In mathematics we say they are am-
bient isotopic but not regular isotopic!
(See section 28.4)

we should think of the string as not being infinitely thin, but instead
having some width, like a garden hose, or a “ribbon”12. If we imagine

12We should thus think of our knots as
not just being a simple embedding of a
circle S1 into a three manifold R3, but
rather an embedding of a ribbon. This
is equivalent to specifying an orthog-
onal vector at each point along knot
which gives the orientation of the rib-
bon cross section at each point. When
one draws an knot as a line, one must
have a convention as to what this means
for the orientation of the ribbon. See
comment on blackboard framing at the
end of this section.

straightening a thick string (not an infinitely thin string) we realize that
pulling it straight gives a twisted string (see fig 2.7) — anyone who has
tried to straighten a garden hose will realize this!13

13If you have not had this experience
with a garden hose, you are not paying
enough attention to your garden!

So the looped string is equivalent to a string with a self-twist, and this
is then related to a straight string by the factor of −A3. In fact, this is a
result we should expect in quantum theory. The string with a self-twist
represents a particle that stays in place but rotates around an axis. In
quantum theory, if a particle has a spin, it should accumulate a phase
when it does a 2π rotation, and indeed this factor of −A3 is precisely
such a phase in any well defined quantum theory.
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pull tight
= −A3

Fig. 2.7 Pulling straight a small loop introduces a twist in the

string. This twist can be replaced with a factor of −A3.

In fact, Fig. 2.7 is a very slick proof of the famous spin statistics the-
orem. In the left picture with the loop, we have two identical particles
that change places. When we pull this straight, we have a single particle
that rotates around its own axis. In quantum theory, the phases accu-
mulated by these two processes must be identical. As we will see below
in chapter 3, in 2+1 D this phase can be arbitrary (not just +1, or -1),
but the exchange phase (statistical phase) and the twist phase (the spin
phase) must be the same14.

14In the most interesting case of non-
abelian statistics, there may be mul-
tiple possible exchange phases for two
particles, although this does not effect
the equivalence of diagrams stated here.
We will discuss this more in chapter 3.

As a side comment, one can easily construct a knot invariant that
treats the looped string on the left of Fig. 2.6 as being the same as
the straight piece of string. One just calculates the Kauffman bracket
invariant and removes a factor of −A3 for each self twist that occurs15.15To properly count the self twists,

one calculates the so-called “writhe”
of the knot (See section 28.5). Give
the string an orientation (a direction
to walk along the string) and count
+1 for each positive crossing and -1 for
each negative crossing where a positive
crossing is when, traveling in the direc-
tion of the string that crosses over, one
would have to turn left to switch to the
string that crosses under. If we orient
the twisted string on the left of Fig. 2.6
as up-going it then has a negative cross-
ing by this definition.

This gives the famed Jones Polynomial knot invariant. See exercise 28.2.

Blackboard Framing

Since it is important to specify when a strand of string has a self-twist
(as in the middle of Fig. 2.7) it is a useful convention to use so-called
blackboard framing. With this convention we always imagine that the
string really represents a ribbon and the ribbon always lies in the plane
of the blackboard. An example of this is shown in Fig. 2.8. If we intend
a strand to have a self twist, we draw it as a loop as in the left of Fig. 2.7
or the left of Fig. 2.6.

⇒

Fig. 2.8 Blackboard framing. The knot drawn on the left represents the ribbon on
the right, where the ribbon always lies flat in the plane of the page (i.e., the plane of
the blackboard).
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2.3 Bras and Kets

For many topological theories (the so-called nonabelian theories) the
physical systems have an interesting, and very unusual property. Imag-
ine we start in a the ground state (or vacuum) state of some systems
and create two particle-hole pairs, and imagine we tell you everything
that you can locally measure about these particles (their positions, if
their spin, etc etc). For most gapped systems (insulators, superconduc-
tors, charge density waves) once you know all of the locally measurable
quantities, you know the full wavefunction of the system. But this is
not true for topological systems. As an example, see Fig. 2.9.

|1〉 =|0〉 =

ti
m
e

Fig. 2.9 Two linearly independent quantum states that look iden-
tical locally but have different space-time history. The horizontal
plane is a space-time slice at fixed time, and the diagrams are all
oriented so time runs vertically.

〈1| =〈0| = ti
m
e

Fig. 2.10 Kets are turned into bras by reversing time.

To demonstrate that these two different space-time histories are lin-
early independent quantum states, we simply take inner products as
shown in Fig. 2.11 by gluing together a ket with a bra. Since 〈0|0〉 =
〈1|1〉 = d2 but 〈0|1〉 = d, we see that |0〉 and |1〉 must be linearly in-
dependent, at least for |d| 6= 1. (We also see that the kets here are
not properly normalized, we should multiply each bra and ket by 1/d in
order that we have normalized states.)
We can think of the |0〉 and |1〉 states as being particular operators

that produce particle-hole pairs from the vacuum, and (up to the issue
of having properly normalized states) the inner product produced by
graphical gluing a bra to a ket is precisely the inner product of these
two resulting states. So for example, the inner product 〈0|1〉 as shown in
the bottom of Fig. 2.11 can be reinterpreted as starting from the vacuum,
time evolving with the operator that gives |0〉 then time evolving with
the inverse of the operator that produces |1〉 to return us to the vacuum.
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〈0|0〉 = = = d2

〈1|1〉 = = = d2

〈0|1〉 = = = d

Fig. 2.11 Showing that the kets |0〉 and |1〉 are linearly indepen-
dent. For |d| 6= 1 the inner products show they must be linearly
independent quantities.

Suppose now we insert a braid between the bra and the ket as shown in
Fig. 2.12. The braid makes a unitary operation on the two dimensional
vector space spanned by |0〉 and |1〉. We can once again evaluate this
matrix element by calculating the Kauffman bracket invariant of the
resulting knot.

|0〉 =

〈0| =

= 〈0|Braid|0〉

Fig. 2.12 Inserting a braid between the bra and the ket. The braid
performs a unitary operation on the two dimensional vector space
spanned by |0〉 and |1〉
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2.4 Quantum Computation with Knots

Why do we care so much about topological systems and knot invariants?
A hint is from the fact that we wrote states above as |0〉 and |1〉. This
notation suggests the idea of qubits16, and indeed this is one very good 16One of my favorite quotes is “Any id-

iot with a two state system thinks they
have a quantum computer.” The objec-
tive here is to show that we are not
just any idiot — that quantum com-
puting this way is actually a good idea!
We will discuss quantum computation
more in chapter ***

reason to be interested.
It turns out that many topological quantum systems can compute

quanitites efficiently that classical computers cannot. To prove this,
suppose you wanted to calculate the Kauffman invariant of a very com-
plicated knot, say with 100 crossings. As mentioned above, a classical
computer would have to evaluate 2100 diagrams, which is so enormous,
that it could never be done. However, suppose you have a topological
system of Kauffman type in your laboratory. You could actually ar-
range to physically measure the Kauffman bracket invariant17. The way
we do this is to start with a system in the vacuum state, arrange to
“pull” particle-hole (particle-antiparticle) pairs out of the vacuum, then
drag the particles around in order to form the desired knot, and bring
them back together to reannihilate. Some of the particles will reanni-
hilate, and others will refuse to go back to the vacuum (forming bound
states instead). The probability that they all reannihilate is (up to a
normalization18) given by the absolute square of the Kauffman bracket

18If we pull a single particle-hole pair
from the vacuum and immediately
bring them back together, the proba-
bility that they reannihilate is 1. How-
ever, the spacetime diagram of this is a
single loop, and the Kauffman bracket
invariant is d. The proper normaliza-
tion is that each pair pulled from the
vacuum and then returned to the vac-
uum introduces a 1/

√
d factor in front

of the Kauffman bracket invariant.

invariant of the knot (since amplitudes are the Kauffman bracket invari-
ant, the square of the Kauffman bracket invaraint is the probability).
Even estimation of the Kauffman bracket invariant of a large knot is
essentially impossible for a classical computer, for almost all values of
A. However, this is an easy task if you happen to have a topological
quantum system in your lab!19 Thus the topological quantum system

19The details of this are a bit subtle
and are discussed by Aharonov et al.
[2009]; Aharonov and Arad [2011]; Ku-
perberg [2015].

has computational ability beyond that of a classical computer.
It turns out that the ability to calculate Kauffman bracket invariant

is sufficient to be able to do any quantum computation. One can use
this so-called topological quantum computer to run algoritms such
as Shor’s famous factoring (i.e., code breaking) algorithm20. The idea

20See Nielsen and Chuang [2000], for
example, for more detail about quan-
tum computation in general.

of using topological systems for quantum computation is due to Michael
Freedman and Alexei Kitaev21.

21Freedman is another Fields medalist,
for his work on the Poincare conjecture
in 4D. Alexei Kitaev is one of the most
influential scientists alive, a MacArthur
winner, Milnor Prize winner, etc. Both
smart people. Freedman is also a cham-
pion rock climber.

So it turns out that these topological systems can do quantum com-
putation. Why is this a good way to do quantum computation?16. First
we must ask about why quantum computing is hard in the first place.
In the conventional picture of a quantum computer, we imagine a bunch
of two state systems, say spins, which act as our qubits. Now during
our computation, if some noise, say a photon, or a phonon, enters the

17Perhaps the first statements ever made about a quantum computer were made by the Russian mathematician Yuri Manin,
in 1980. He pointed out that doing any calculation about some complicated quantum system with 100 interacting particles
is virtually impossible for a classical computer. Say for 100 spins you would have to find the eigenvalues and eigenvectors of
a 2100 dimensional matrix. But if you had the physical system in your lab, you could just measure its dynamics and answer
certain questions. So in that sense the physical quantum system is able to compute certain quantities, i.e., its own equations
of motion, that a classical computer cannot. In the following year Feynman starting thinking along the same lines and asked
the question of whether one quantum system can compute the dynamics of another quantum system — which starts getting
close to the ideas of modern quantum computation.
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system and interacts with a qubit, it can cause an error or decoherence,
which can then ruin your computation. And while it is possible to pro-
tect quantum systems from errors (we will see in section *** below how
you do this) it is very hard.
Now consider what happens when noise hits a topological quantum

computer. In this case, the noise may shake around a particle, as shown
in Fig. 2.13. However, as long as the noise does not change the topology
of the knot, then no error is introduced. Thus the topological quan-
tum computer is inherently protected from errors. (of course sufficiently
strong noise can change the topology of the knot and still cause errors.)

noise

⇒

Fig. 2.13 The effect of noise on a topological quantum computa-
tion. As long as the noise does not change the topology of the knot,
then no error is introduced.

2.5 Some quick comments about Fractional
Quantum Hall Effect

There will be chapters later about Fractional Quantum Hall Effect (FQHE).
But it is worth saying a few words about FQHE as a topological system
now.
FQHE occurs in two dimensional electronic systems22 in high mag-

22Electronic systems can be made two
dimensional in several ways. See com-
ments in chapter ??. netic field at low temperature (typically below 1K). There are many

FQHE states which are labeled by their so called filling fraction ν = p/q
with p and q small integers. The filling fraction can be changed in exper-
iment by, for example, varying the applied magnetic field (we will discuss
this later in chapter ??). The FQHE state emerges at low temperature
and is topological23.

23A comment in comparing this
paradigm to the common paradigm of
high energy physics: In high energy
there is generally the idea that there
is some grand unified theory (GUT)
at very high energy scale and it is
extremely symmetric, but then when
the universe cools to low temperature,
symmetry breaks (such as electro-weak
symmetry) and we obtain the physics
of the world around us. The paradigm
is opposite here. The electrons in
magnetic field at high temperature
have no special symmetry. However,
as we cool down to lower temperature,
a huge symmetry emerges. The topo-
logical theory is symmetric under all
diffeomorphisms (smooth distortions)
of space and time.

How do we know that the system is topological? There are not a
whole lot of experiments that are easy to do on quantum Hall systems,
since they are very low temperature and complicated experiments to do.
However, one type of experiment is fairly straightforward — a simple
electrical resistance measurement, as shown in Figs. 2.14 and 2.15. In ,
Fig. 2.14 the so-called longitudinal resistance is measured — where the
current runs roughly parallel to the voltage. In this case the measured
voltage is zero — like a superconductor. This shows that this state of
matter has no dissipation, no friction.
The measurement in the Fig. 2.15 is more interesting. In this case,

the Hall voltage is precisely quantized as V = (h/e2)(1/ν)I where I is
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V

I

2D electron sample

in B-field

V = 0

Dissipationless Flow

Fig. 2.14 Measurement of longitudinal resistance in FQHE experiment.

V

I

2D electron sample

in B-field

V = (h/e2)(1/ν)I

Quantized Resistance

Fig. 2.15 Measurement of Hall resistance in FQHE experiment.

the current, h is Plank’s constant, e the electron charge and ν = p/q is a
ratio of small integers. This quantization of V/I is extremely precise —
to within about a part in 1010. This is like measuring the distance from
London to Los Angeles to within a millimeter. What is most surprising is
that the measured voltage does not depend on details, such as the shape
of the sample, whether there is disorder in the sample, or where you put
the voltage leads or how you attach them as long as the current and
voltage leads are topologically crossed, as they are in the Fig. 2.15, but
not in Fig. 2.14. We should emphasize that this is extremely unusual. If
you were to measure the resistance of a bar of copper, the voltage would
depend entirely on how far apart you put the leads and the shape of the
sample. This extremely unusual independence of all details is a strong
hint that we have something robust and topological happening here.
Finally we can ask about what the particles are that we want to braid

around each other in the FQHE case. These so-called quasiparticles are
like the point-vortices of the FQHE superfluid. As we might expect for a
dissipationless fluid, the vortices are persistent — they will last forever
unless annihilated by antivortices.
So in fact, Kelvin was almost right (See chapter 1). He was thinking

about vortices knotting in the dissipationless aether. Here we are think-
ing about point vortices in the dissipationless FQHE fluid, but we move
the vortices around in time to form space-time knots!
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Chapter Summary

• Knot invariants, such as the Kauffman bracket invariant, help dis-
tinguish knots from each other.

• The quantum dynamics of certain particles are determined by cer-
tain knot invariants.

• Computation of certain knot invariants is computationally “hard”
on a classical computer, but not hard using particles whose dy-
namics is given by knot invariants.

• Computation by braiding these particles is equivalent to any other
quantum computer.

• Physical systems which have these particles include fractional
quantum Hall effect.

Further Reading

• The book by Kauffman [2001] is a delightful introduction to knot
theory and connections to physics. This was the book that got
me interested in the subject back when I was in grad school and
changed the course of my life.

• I wrote another easy reading introduction (: Simon [2010]) con-
necting knots to anyons.

• Some nice introductory books on knots include Adams [1994], and
Sossinsky [2002].

Exercises

Exercise 2.1 Trefoil Knot and the Kauffman Bracket (Jones) Invari-
ant

Using the Kauffman rules, calculate the Kauffman bracket invariant of the
right and left handed trefoil knots. Conclude these two knots are topologically
inequivalent. While this statement appears obvious on sight, it was not proved
mathematically until 1914 (by Max Dehn). It is trivial using this technique!

Exercise 2.2 Abelian Kauffman Anyons
Anyons described by the Kauffman bracket invariant with certain special

values of the constant A are abelian anyons – meaning that an exchange
introduces only a simple phase.
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Fig. 2.16 Left and Right Handed Trefoil Knots (on the left and right respectively)

= eiθ

(a) For A = ±eiπ/3 (and the complex conjugates of these values), show that
the anyons are bosons or fermions respectively (i.e., eiθ = ±1).

(b) For A = ±eiπ/6 (and the complex conjugates of these values) show the
anyons are semions (i.e., eiθ = ±i). In fact these are precisely the anyons that
arise for the ν = 1/2 fractional quantum Hall effect of bosons (We will discuss
this later in the term. While it is still controversial whether this particular
phase of quantum Hall matter has been produced experimentally as of now,
it is almost certain that it will be produced experimentally and convincingly
within a few years.)

HINT: Aim to show first in the two respective cases that

= ±

If you can’t figure it out, try evaluating the Kauffman bracket invariant for
a few knots with these values of A and see how the result arises.

Exercise 2.3 Add an exercise on HOMFLY?





Part I

Anyons and Topological Quan-
tum Field Theories





Particle Quantum Statistics 3
In chapter 2 we discussed braiding particles around each other, or ex-
changing their positions. This is often what we call particle statistics
(or quantum statistics, or exchange statistics). What we mean by this
is “what happens to the many particle wavefunction when particles are
exchanged in a certain way.”
We are familiar with bosons and fermions1,2. If we exchange two 1Bose cooked up the current picture of

Bose statistics in 1924 in the context of
photons and communicated it to Ein-
stein who helped him get it published.
Einstein realized the same ideas could
be applied to non-photon particles as
well.
2Based on ideas by Pauli, Fermi-Dirac
statistics were actually invented by Jor-
dan in 1925. Jordan submitted a paper
to a journal, where Max Born was the
referee. Born stuck the manuscript in
his suitcase and forgot about it for over
a year. During that time both Fermi
and Dirac published their results. Jor-
dan could have won a Nobel Prize (po-
tentially with Born) for his contribu-
tions to quantum physics, but he be-
came a serious Nazi and no one really
liked him much after that.

bosons the wavefunction is unchanged, if we exchange two fermions the
wavefunction accumulates a minus sign. Various arguments have been
given as to why these are the only possibilities. The argument usually
given in introductory books is as follows:

If you exchange a pair of particles then exchange them again, you
get back where you started. So the square of the exchange operator
should be the identity, or one. There are two square roots of one:
+1 and -1, so these are the only two possibilities for the exchange
operator.

In the modern era this argument is considered to be incorrect (or
at least not really sufficient). To really understand the possibilities in
exchange statistics, it is very useful to think about quantum physics
from the Feynman path integral point of view.3

3If you are familiar with path integrals
you can certainly skip down to section
3.2. If you are not familiar with path
integrals, please do not expect this to
be a thorough introduction! What is
given here is a minimal introduction to
give us what we need to know for our
purposes and nothing more! See the
Further Reading for this chapter for a
better introduction.

3.1 Single Particle Path Integral

Consider a space-time trajectory of a single non-relativistic particle. We
say that we have x moving in RD where D is the dimension of space, so
we can write x(t) where t is time.
Given that we start at position xi at the initial time ti we can define a

so-called propagator which gives the amplitude of ending up at position
xf at the final time tf . This can be written as

〈xf |Û(tf , ti)|xi〉

where Û is the (unitary) time evolution operator.
The propagator can be used to propagate forward in time some arbi-

trary wavefunction ψ(x) = 〈x|ψ〉 from ti to tf as follows

〈xf |ψ(tf )〉 =
∫
dxi 〈xf |Û(tf , ti)|xi〉 〈xi|ψ(ti)〉

If we are trying to figure out the propagator from some microscopic
calculation, there are two very fundamental properties it must obey.
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First, it must be unitary — meaning no amplitude is lost along the
way (normalized wavefunctions stay normalized). Secondly it must obey
composition: propagating from ti to tm and then from tm to tf must be
the same as propagating from ti to tf . We can express the composition
law as

〈xf |Û(tf , ti)|xi〉 =
∫
dxm 〈xf |Û(tf , tm)|xm〉 〈xm|Û(tm, ti)|xi〉

The integration over xm allows the particle to be at any position at
the intermediate time (and it must be at some position). Another way
of seeing this statement is to realize that the integral over xm is just
insertion of a complete set of states at some intermediate time

1 =

∫
dxm|xm〉〈xm|.

Feynman’s genius was to realize that you can subdivide time into
infinitesimally small pieces, and you end up doing lots of integrals over
all possible intermediate positions. In order to get the final result, you
must sum over all values of all possible intermediate positions, or all
possible functions x(t). Feynman’s final result is that the propagator
can be written as

〈xf |Û(tf , ti)|xi〉 = N
∑

paths x(t) from
(xi, ti) to (xf , tf )

eiS[x(t)]/~ (3.1)

where N is some normalization constant. Here S[x(t)] is the (classical!)
action of the path

S =

∫ tf

ti

dt L[x(t), ẋ(t), t]

with L the Lagrangian.
The sum over paths in Eq. 3.1 is often well defined as a limit of dividing

the path into discrete time steps and integrating over x at each time.
We often rewrite this sum over paths figuratively as a so-called path
integral

〈xf |Û(tf , ti)|xi〉 = N
∫ (xf ,tf )

(xi,ti)

Dx(t) eiS[x(t)]/~ (3.2)

Analogous to when we evaluate regular integrals of things that look
like

∫
dx eiS[x]/~, we can approximate the value of this integral in the

small ~, or classical, limit by saddle point approximation. We do this
by looking for a minimum of S with respect to its argument — this
is where the exponent oscillates least, and it becomes the term which
dominates the result of the integral. Similarly, with the path integral,
the piece that dominates in the small ~ limit is the piece where S[x(t)]
is extremized — the function x(t) which extremizes the action. This is
just the classical principle of least action!
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3.2 Two Identical Particles

We would now like to generalize the idea of a path integral to systems
with multiple identical particles, starting with the case of two particles.
If the particles are identical there is no meaning to saying that particle
one is at position x1 and particle two is at position x2. This would be the
same as saying that they are the other way around. Instead, we can only
say that there are particles at both positions x1 and x2. To avoid the
appearance of two different states expressed as |x1,x2〉 versus |x2,x1〉
(which are actually the same physical state!4), it is then useful to simply

4Often books define |x1,x2〉 =
−|x2,x1〉 for fermions. The two kets
describe the same state in the Hilbert
space only with a different phase
prefactor. We should contrast this to
the case of two states that have no
overlap.

agree on some convention for which coordinate we will always write first
— for example, maybe we always write the leftmost particle first5. For

5This ordering scheme works in one
dimension. In two dimensions we
would perhaps say, the particle with the
smaller x coordinate is written first, but
in case of two particles with the same
value of x, the particle with smaller y
coordinate is written first.

simplicity, we can assume that x1 6= x2, i.e., the particles have hard cores
and cannot overlap6. For these indistinguishable particles, the Hilbert

6It is sometimes even more convenient
to declare |x1 − x2| > ǫ.

space is then cut in half compared to the case of two distinguishable
particles where |x1,x2〉 and |x2,x1〉 mean physically different things.
We call the space of all states the configuration space C. To construct

a path integral, we want to think about all possible paths through this
configuration space. The key realization is that the space of all paths
through the configuration space C divides up into topologically inequiv-
alent pieces. I.e., certain paths cannot be deformed into other paths by
a series of small deformations.
What do these topologically disconnected pieces of our space of paths

look like? For example, we might consider the two paths as shown in
Fig. 3.1. Here we mean that time runs vertically. It is not possible
to continuously deform the path on the left into the path on the right
assuming the end points are fixed.

No Exchange Exchange

TYPE 1 TYPE -1

versus

Fig. 3.1 Two possible sets of paths
(paths in configuration space) from the
same two starting positions to the same
two ending positions (we are implying
that time runs vertically). We call the
non-exchange path TYPE 1, and the
exchange path TYPE -1. Here we mean
that time runs vertically. The two sets
of paths cannot be continuously de-
formed into each other assuming the
end points are fixed. Note that we
may be able to further refine our clas-
sification of paths — for example, we
may distinguish over and undercross-
ings, but for now we will only be con-
cerned with exchanges (TYPE -1) and
non-exchanges (TYPE 1)

We will call the non-exchange path TYPE 1 (left in Fig. 3.1), and the
exchange path TYPE -1 (right in Fig. 3.1). The two sets of paths cannot
be continuously deformed into each other assuming the end points are
fixed. Note that we may be able to further refine our classification of
paths — for example, we may distinguish over- and under-crossings,
but for now we will only be concerned with exchanges (TYPE -1) and
non-exchanges (TYPE 1).
Paths can be composed with each other. In other words, we can follow

one path first, then follow the second. We can write a multiplication
table for such composition of paths (the path types form a group, see
Section 28.2)

TYPE 1 Followed by TYPE 1 = TYPE 1
TYPE 1 Followed by TYPE -1 = TYPE -1
TYPE -1 Followed by TYPE 1 = TYPE -1
TYPE -1 Followed by TYPE -1 = TYPE 1

(3.3)

So for example, an exchange path (which switches the two particles)
followed by another exchange path (which switches again) results in a
net path that does not switch the two particles.
Now let us try to construct a path integral, or sum over all possible
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paths. It is useful to think about breaking up the sum over paths into
separate sums over the two different classes of paths.

〈x1fx2f |Û(tf , ti)|x1ix2i〉 = N
∑

paths
i→f

eiS[path]/~ =

N




∑

TYPE 1 paths
i→f

eiS[path]/~ +
∑

TYPE -1 paths
i→f

eiS[path]/~




This second line is simply a rewriting of the first having broken the
sum into the two different classes of paths.
It turns out however, that it is completely consistent to try something

different. Let us instead write

〈x1fx2f |Û(tf , ti)|x1ix2i〉 = (3.4)

N




∑

TYPE 1 paths
i→f

eiS[path]/~ −
∑

TYPE -1 paths
i→f

eiS[path]/~




Notice the change of sign for the TYPE -1 paths.
The reason this change is allowed is because it obeys the composition

law. To see this, let us check to see if the composition law is still obeyed.
Again, we break the time propagation at some intermediate time

〈x1fx2f |Û(tf , ti)|x1ix2i〉 =
∫
dx1mdx2m 〈x1fx2f |Û(tf , tm)|x1mx2m〉 〈x1mx2m|Û(tm, ti)|x1ix2i〉

∼
∫
dx1mdx2m




∑

TYPE 1
m→f

−
∑

TYPE -1
m→f







∑

TYPE 1
i→m

−
∑

TYPE -1
i→m


 eiS[path]/~

where in the last line we have substituted in Eq. 3.4 for each of the two
propagators on the right, and we have used a bit of shorthand in writing
the result.
Now, when we compose together subpaths from i→ m with those from

m→ f to get the overall path, the sub-path types multiply according to
our above multiplication table Eq. 3.3. For the full path, there are two
ways to obtain a TYPE 1 path: (1) both sub-paths are TYPE 1 or (2)
both sub-paths are TYPE -1. In either case, note that the net prefactor
of the overall TYPE 1 path is +1. (In the case where both subpaths are
of TYPE -1, the two prefactors of −1 cancel each other). Similarly, we
can consider full paths with overall TYPE -1. In this case, exactly one
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of the two sub-paths must be of TYPE -1, in which case, the overall sign
ends up being -1. Thus, for the full path, we obtain exactly the intended
form written in Eq. 3.4. I.e., under composition of paths, we preserve
the rule that TYPE 1 paths get a +1 sign and TYPE -1 paths get a -1
sign. Thus this is consistent for quantum mechanics, and indeed, this is
exactly what happens in the case of fermions.

3.3 Many Identical Particles

Generalizing this idea, to figure out what is consistent in quantum me-
chanics, we must do two things:

(a) Characterize the space of paths through configuration space
(b) Insist on consistency under composition.

Our configuration space for the set of N identical particles in D di-
mensions can then be written as7. 7This might be unfamiliar notation

since SN is not a subgroup of (RND −
∆), but rather acts on (RND − ∆) by
permuting coordinates.

C = (RND −∆)/SN

Here RND is a set of N coordinates in D dimensions, ∆ is the space of
“coincidences” where more than one particle occupy the same position
(we are eliminating this possibility for simplicity). Here SN is the group
of permutations, and we are “modding” out by this group action We said
a bit about the permutation group in the mathematical section (28.2.1)
on group theory, but this modding out by SN is just a fancy way to say
that we specify N coordinates, but we do not order these points (or as
described above, we choose some convention for the order, like always
writing the left-most first). In the case of 2 particles above, this reduced
the Hilbert space by a factor of 2. More generally this should reduce the
Hilbert space by a factor of N !. This is the same indistinguishability
factor which is familiar from the Gibbs paradox of statistical mechanics.
We would now like to consider all possible paths through this con-

figuration space C. In other words we want to consider how these N
different points move in time. We can think of this as a set of coor-
dinates moving through time {x1(t), . . .xN (t)} but we must be careful
that the particles are indistinguishable, so the order in which we write
the coordinates doesn’t matter. We can think of this as N directed
curves moving in ND+ 1 dimensional space8. Since we want to add up

8The curves are directed because we do
not allow them to double-back in time
as shown in Fig. 3.2, that would rep-
resent particle-hole creation or annhi-
lation, which we do not yet consider.

all of these possible paths in a path integral it is useful to try to better
understand what the structure is of this space of paths.

ti
m
e

Fig. 3.2 A double-back in time is not
allowed in our considerations here (and
not allowed in the braid group) as it
corresponds to creation and annihila-
tion of particles at the turning around
points.

Again, the key realization is that the space of all paths through the
configuration space C divides up into topologically inequivalent pieces.
I.e., certain paths cannot be deformed into other paths by a series of
small deformations assuming the endpoints are fixed. To the mathe-
matician we are looking at the group of paths through C, known as the
first homotopy group Π1(C) or fundamental group9 (See section 28.3).

9In fact what we really want is the fun-

damental groupoid which allows for the
fact that the initial and final positions
of particles may not be the same. How-
ever, for illustration, the fundamental
group will be sufficient.The reason this is a group is that it comes with a natural operation, or
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multiplication of elements — which is the composition of paths: follow
one path, then follow another path.

3.3.1 Paths in 2+1 D, the Braid Group

A path through the configuration space of particles in 2 dimensions is
known as a braid. An example of a braid is shown in Fig.3.3.

ti
m
e

Fig. 3.3 A path through configuration
space for 3 Particles in 2 dimensions
(i.e, world lines in 2+1 D) is a braid
with three strands.

A few notes about braids:

(1) Fixing the endpoints, the braids can be deformed continuously,
and so long as we do not cut one string through another, it still
represents the same topological class, or the same element of the
braid group.

(2) We cannot allow the strings to double-back in time as in Fig. 3.2.
This would be pair creation or annihilation, which we will consider
later, but not now.

The set of braids have mathematical group structure (See section
28.2): multiplication of two braids is defined by stacking the two braids
on top of each other – first do one then do another. It is easy to see that
braids can be decomposed into elementary pieces which involve either
clockwise or counterclockwise exchange of one strand with its neighbor.
These elementary pieces involving single exchanges are known as gener-
ators.
The braid group on N strands is typically notated as BN . The gener-

ators of the braid group on 4 strands are shown in Fig. 3.4. Any braid

σ1 = σ2 = σ3 =

σ−1
1 = σ−1

2 = σ−1
3 =

Fig. 3.4 The three generating elements σ1, σ2, σ3 of the braid group on 4 strands,

B4, and their inverses σ−1
1 , σ−1

2 , σ−1
3 . Any braid on four strands (any element of

B4) can be written as a product of the braid generators and their inverses by simply
stacking these generators together (See Fig. 3.5 for examples).

can be written as a product of the braid generators and their inverses10.10The identity element 1 of the braid
group is everything that is topologically
equivalent to the non-braid, i.e., parti-
cles that do not change their position
in space at all. It is easy to see that
σiσ

−1
i = 1.

The “multiplication” of the generators is achieved simply by stacking
the generators on top of each other. An expression representing a braid,
such as σ1σ2σ

−1
3 σ1 is known as a “braid word.” Typically we read the

braid word from right to left (do the operation listed right-most first),
although sometimes people use the opposite convention! The important
thing is to fix a convention and stick with it!
Note that many different braid words can represent the same braid.

An example of this is shown for B4 in Fig. 3.5. Although a braid can be
written in many different ways, it is possible to define invariants of the
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σ1 σ
−1
2 σ−1

1 =

third second first

= σ−1
2 σ1 σ2=

.

Fig. 3.5 Two braid words in B4 that represent the same braid. The figure on the
left can be continuously deformed to the one on the right, keeping endpoints fixed.
The braidwords are read from right to left indicating stacking the generators from
bottom to top. (The observant reader will see the similarity here to Reidermeister
moves of type-III discussed in section 28.4. Similarly σiσ

−1
i = 1 is a type-II move.)

braid which do not change under deformation of the braid — so long as
the braid is topologically unchanged. One very useful braid invariant is
given by the so-called winding number

W = Winding Number

= (# of overcrossings) − (# of undercrossings)

where an overcrossing is a σ and an undercrossing is a σ−1. As can be
checked in Fig. 3.5, the winding number is independent of the particular
way we represent the braid. As long as we do not cut one strand through
another or move the endpoints (or double-back strands) the winding
number, a braid invariant, remains the same.

3.3.2 Paths in 3+1 D, the Permutation Group

In one dimension:

Two objects cannot cross

In two dimensions:

Two objects can go around each other

Fig. 3.6 Top: In one dimension,
two points cannot cross through each
other without hitting each other. Bot-
tom: But if we allow the points to
move in two dimensions they can get
around each other without touching.
This is supposed to show you that one-
dimensional world-lines cannot form
knots in four-dimensional space.

We now turn to consider physics in 3+1 dimensions. A key fact is that it
is not possible to knot a one-dimensional world-line that lives in a four-
dimensional space. If this is not obvious consider the following lower
dimensional analogue,11 shown in Fig. 3.6. In one dimension, two points
cannot cross through each other without hitting each other. But if we
allow the points to move in 2D they can move around each other without
touching each other. Analogously we can consider strings forming knots
or braids in 3D space. When we try to push these strings through each
other, they bump into each other and get entangled. However, if we allow
the strings to move into the fourth dimension, we can move one string
a bit off into the fourth dimension so that it can move past the other
string, and we discover that the strings can get by each other without
ever touching each other! Hence there are no knots of one dimensional
objects embedded in four dimensions.
Given that in 3+1 D world-lines cannot form knots, the only thing

that is important in determining the topological classes of paths is where
the strings start and where they end. In other words, we can draw things
that look a bit like braid-diagrams but now there is no meaning to an over
or under-crossing. If the world line lives in 3+1 dimensions, everything
can be unentangled without cutting any of the world lines until the
diagram looks like Fig. 3.7: indicating only where lines start and end.
This is precisely describing the permutation group, or symmetric group

11It would be very convenient to be able to draw a diagram in four dimensions!



30 Particle Quantum Statistics

SN (see section 28.2.1). Note that in the symmetric group an exchange

1 2 3 4

1 2 3 4

Fig. 3.7 Paths in 3+1 D are elements
of the permutation group (or symmet-
ric group) SN (See section 28.2.1).
Shown here is an element of S4.

squared does give the identity. However, in the braid group this is not
so — the braid σ2

i is not the identity since it creates a nontrivial braid!

3.3.3 Building a Path Integral

We now return to the issue of building a path integral. We will follow
the intuition we gained in the two particle case, but now we will include
the information we have discovered about the group of paths through
configuration space.
Using the notation {x} to denote all of the N particle coordinates, we

construct the path integral as

〈{x}f |Û(tf , ti)|{x}i〉 = N
∑

g ∈ G

ρ(g)
∑

paths ∈ g
i→f

eiS[path]/~ (3.5)

Here G is the group of paths (the fundamental group — or the set of
classes of topologically different paths). This is the symmetric group
SN for 3+1 dimensions and is the braid group BN for 2+1 dimensions.
Here we have split the sum over paths into the different classes — the
outer sum being a sum over the classes g and the inner sum being the
sum over all paths of type g, i.e., a set of paths that can be continuously
deformed into each other. We have also introduced12 a factor of ρ(g) out

12In the nonabelian case discussed in
section 3.5 below the ket |{x}〉 is given
an additional index to become |n, {x}〉
with n = 1 . . .M . This then implies
a basis choice for the M -dimensional
space, and this basis choice for one set
of positions {x} can be chosen indepen-
dently of the basis choice for a differ-
ent set of positions. When the initial
and final positions are not the same we
can make two independent basis choices
and changing these choices simply pre-
or post- multiplies the representation ρ
by the appropriate basis changing uni-
taries. This caution is related to note 9
above.

front where ρ is a unitary representation of the group G. (See section
28.2.4 on group theory).
To show that Eq. 3.5 is allowed by the laws of quantum mechanics,

we need only check that it obeys the composition law – we should be
able to construct all paths from i to f in terms of all paths from i to m
and all paths from m to f .

〈{x}f |Û(tf , ti)|{x}i〉 =

=

∫
d{x}m 〈{x}f |Û(tf , tm)|{x}m〉 〈{x}m|Û(tm, ti)|{x}i〉

∼
∫
d{x}m



∑

g1 ∈ G

ρ(g1)
∑

paths ∈ g1
m→f






∑

g2 ∈ G

ρ(g2)
∑

paths ∈ g2
i→m


 eiS[path]/~

So we have constructed all possible paths from i to f and split them
into class g2 in the region i to m and then class g1 in the region m
to f . When we compose these paths we will get a path of type g1g2.
The prefactors of the paths ρ(g1) and ρ(g2) then multiply and we get
ρ(g1)ρ(g2) = ρ(g1g2) since ρ is a representation (the preservation of
multiplication is the definition of being a representation! See section
28.2.4). So the prefactor of a given path from i to f is correctly given
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by ρ(g) where g is the topological class of the path. In other words, the
form shown in Eq. 3.5 is properly preserved under composition, which
is what is required in quantum mechanics!

3.4 Abelian Examples

Let us consider the case where the representation ρ of our group G of
paths through configuration space is one dimensional — in other words
it is a mapping from g to a complex phase.13 13We call these cases abelian since the

group G is commutative.This case seems to be most applicable in the quantum mechanics
we know, because this representation is acting on the wavefunction of
our system — and we are quite familiar with the idea of wavefunctions
accumulating a complex phase.

3.4.1 3+1 Dimensions

In 3+1 D, the group G of paths through configuration space is the sym-
metric group SN . It turns out that there are only two possible14 one- 14See exercise 3.2. This is a fairly short

proof!dimensional representations of SN :

• Trivial rep: In this case ρ(g) = 1 for all g. This corresponds to
bosons, The path integral is just a simple sum over all possible
paths with no factors inserted.

• Alternating (or sign) rep: In this case ρ(g) = +1 or −1 depend-
ing on whether g represents an even or odd number of exchanges.
In this case the sum over all paths gets a positive sign for an even
number of exchanges and a negative sign for an odd number. This
is obviously fermions and is the generalization of the two particle
example we considered above in section 3.2 where the exchange
was assigned a −1.

3.4.2 2+1 Dimensions

In 2+1 D, the group G of paths through configuration space is the braid
groupBN . We can describe the possible one-dimensional representations
by a single parameter θ. We write the representation

ρ(g) = eiθW (g)

where W is the winding number of the braid g. In otherwords, a clock-
wise exchange accumulates a phase of eiθ whereas a counterclockwise
exchange accumulates a phase of e−iθ.

• For θ = 0 there is no phase, and we simply recover bosons.

• For θ = π we accumulate a phase of −1 for each exchange no
matter the direction of the exchange (since eiπ = e−iπ). This is
fermions.
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• Any other value of θ is also allowed. This is known as Anyons, or
fractional statistics. They are also known as abelian anyons
in contrast with the nonabelian case which we will discuss in a
moment.

The fact that this fractional statistics is consistent in quantum me-
chanics was first point out by Leinaas and Myrheim [1977]15, and pop-

15There is no reason why this should
not have been discovered in the 1930s,
but no one bothered to think about it.
It is a lucky coincidence that an exper-
imental system of anyons was discov-
ered so soon after the theoretical pro-
posal (fractional quantum Hall effect,
discovered by Tsui, Stormer, and Gos-
sard [1982], see chapter ***), since the
original theoretical work was entirely
abstract, and they were not thinking
about any particular experiment.

ularized by Wilczek [1982]16. Soon thereafter, Halperin [1984] and then

16Among other things, Wilczek coined
the term anyon. (He also won a Nobel
Prize for asymptotic freedom.)

Arovas, Schrieffer, and Wilczek [1984] showed theoretically that anyons
really occur in fractional quantum Hall systems. We will examine these
physical systems in detail starting in chapter ??.

3.5 Nonabelian Case

Can we do something more interesting and exotic by using a higher di-
mensional representation of the group G = BN of paths in configuration
space? Generally in quantum mechanics, higher dimensional represen-
tations correspond to degeneracies, and indeed this is what is necessary.
Suppose we have a system with N particles at a set of positions {x}.

Even once we fix the positions (as well as the values of any local quan-
tum numbers, like any “color” or “flavor” or ”spin” degree of freedom
associated with the particle), suppose there still remains an M -fold de-
generacy of the state of the system. We might describe the M states as
|n; {x}〉 for n = 1 . . .M . An arbitrary wavefunction of the system can
then be expressed as

|ψ{x}〉 =
M∑

n=1

An|n; {x}〉 (3.6)

with the An’s being some complex coefficients.17 Given the N positions

17If we want |ψ〉 normalized then there
is a normalization condition on the
An coefficients. For example, if the
|n; {x}〉’s are orthonormal then we need
∑

n |An|2 = 1 in order that |ψ〉 is nor-
malized.

{x}, a general wavefunction should be thought of as a vector in M
dimensional complex space. Now that we have a vector, we can use an
M -dimensional representation of the braid group in our path integral!
We thus identify that ρ(g) in Eq. 3.5 is an M by M unitary matrix

ρ(g) → [U(g)]n,n′

which is a representation of G and must also be unitary so as to assure
that probability is conserved. The propagator in Eq. 3.5 should now

A
(i)
n

A
(f)
n

Fig. 3.8 An initial state is described

by a vector A
(i)
n multiplying the basis

states |n; {x}i〉 as in Eq. 3.6. The par-
ticles are braided around each other in
a braid g and brought back to the same
positions. The final state is again de-
scribed again in terms of the same basis

vectors but now with coefficients A
(f)
n

which are obtained from the initial vec-
tor by application of the unitary matrix
U(g) as shown in Eq. 3.7. Here U(g) is
a representation of the braid group.

be thought of as a propagator between the initial ket |n′; {x}i〉 and the
final bra 〈n; {x}f |. The unitary matrix U(g) will act on the coefficients
An (which is a vector) in Eq. 3.6.
Let us now consider the process shown in Fig. 3.8. Here an initial

wavefunction is represented as shown in Eq. 3.6 as a vector A
(i)
n multi-

plying basis states |n; {x}〉 as in Eq. 3.6. We braid the particles around
each other in some braid g and bring them back to the same positions.
After braidng the wavefunction should still be composed of the same
basis states |n; {x}〉 since the particles are at the same positions and
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thus can be written in the form of Eq. 3.6 with a vector A
(f)
n . The final

vector is obtained from the initial vector simply by multiplying by the
unitary operator which is the representation of our braid group element
g

A(f)
n = [U(g)]n,n′A

(i)
n′ (3.7)

A particle that obeys this type of braiding statistics is known as a non-
abelian anyon, or nonabelion.18 The word “nonabelian” means non- 18The idea of nonabelian anyons was

explored first in the 1980s and early 90s
by several authors in different contexts.
Bais [1980] in the context of gauge theo-
ries; Fröhlich and Gabbiani [1990] and
Fredenhagen et al. [1989] in very ab-
stract sense; Witten [1989]; Chen et al.
[1989] in the language of topological
quantum field theories; and Moore and
Read [1991] in the context of quantum
Hall effect.

commutative, and the term is used since generically matrices (in this
case the U matrices) don’t commute.
In general the Hilbert space dimension M will be exponentially large

in the number of particles N . We define a quantity d, known as the
quantum dimension such that

M ∼ d
N (3.8)

where the ∼ means that it scales this way in the limit of large N . We
will see a lot more of this quantity d later. It is not coincidence that
we used the symbol d previously in the context of Kauffman anyons!
(See Eq. 2.1) We will see in chapter 12 that (up to a possible sign) this
quantum dimension d is actually the value d of the unknot19. 19Because of the possible sign, we dis-

tinguish the two quantities by using a
different typeface

Some Quick Comments on Quantum Computing:

Quantum Computing is nothing more than the controlled application
of unitary operations to a Hilbert space20. Unitary operations is ex- 20And initialization and measurement.

actly what we can do by braiding nonabelions around each other! I.e.,
we are multiplying a vector by a unitary matrix. Thus we see how
braiding of particles, as discussed in chapter 2 can implement quantum
computation.21

21The observant reader will notice that
for quantum computation we are no
longer summing over all possible braids,
but we are specifying a particular braid
that the particles should take in order
to implement a particular unitary op-
eration. To do this we must control
the paths of the particles, by say, hold-
ing them in traps that we move. In
principle all paths are still included in
the path integral, but only the ones we
specify contribute significantly.

3.5.1 Parastatistics in 3+1 Dimensions

Is it possible to have exotic nonabelian statistics in 3+1 dimensions?
Indeed, there do exist higher dimensional representations of the sym-
metric group, so one can think about particles that obey more compli-
cated statistics even in 3+1 dimensions. However, it turns out that,
subject to some “additional constraints”, it is essentially not possible to
get anything fundamentally new — all we get is bosons and fermions
and possibly some internal additional degrees of freedom. The proof of
this statement is due to Doplicher et al. [1971, 1974] and took some 200
pages when it was first proven22. 22A more concise derivation of the key

portion of this result was given using
modern category theory techniques by
Müger [2007]. While this shorter proof
is only 40 pages long, in order to under-
stand the 40 pages you need to read a
400 page book on category theory first!

However, we should realize that in making statements like this, the fine
print is important. As I mentioned in the previous paragraph we want
to add some “additional constraints” and these are what really limit us
to just bosons and fermions. What are these additional constraints?

(1) We want to be able to pair create and annihilate. This means we
are not just considering the braid group, but rather a more com-
plicated structure that allows not just braiding particles around



34 Particle Quantum Statistics

each other, but also creating and annhiliating. This structure is
given by category theory, some parts of which we will encounter
later.

(2) We also want some degree of locality. If we do an experiment on
Earth, while off on Jupiter someone creates a particle-antiparticle
pair, we would not want the particles on Jupiter to effect the result
of our experiment on earth at all.

These two restrictions are crucial to reducing the 3+1 D case to only
bosons and fermions. We will not go through the full details of how
this happens. However, once we see the full structure of anyons in 2+1
dimensions, it ends up being fairly clear why 3+1 dimensions will be so
restrictive. We return to this issue in section 17.6 where we will give
further discussion of the issue.
We should note that despite this important result, 3+1 D is certainly

not boring — but in order to get “interesting” examples, we have to
relax some of our constraints. For example, if we relax the condition
that “particles” are pointlike, but consider string-like objects instead,
then we can have exotic statistics that describe what happens when
one loop of string moves through another (or when a point-like particle
moves through a loop of string). We would then need to consider the
topology of the world-sheets describing loops moving through time.

Chapter Summary

• The path integral formulation of quantum mechanics requires us
to add up all possible paths in space time.

• We can add all of these paths in any way that preserves the com-
position law and the different possibilities allow for different types
of particle statistics.

• The topologically different paths of N particles in space-time form
a group structure (the fundamental group of the configuration
space) which is the permutation group SN in 3+1 dimensions, but
is the braid group BN in 2+1 dimensions.

• Particle braiding statistics must be a representation of this group.

• In 3+1 dimensions we can only have bosons and fermions, but in
2+1 dimensions we can have nontrivial braiding statistics which
may be abelian (or “fractional”) or nonabelian.

• Quantum computation can be performed by braiding with certain
nonabelian representations.

Further Reading

• For more discussion of particle statistics, a nice albeit somewhat
dated book is Wilczek [1990].
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• A good review discussing many aspects of exotic statistics is Nayak
et al. [2008].

For a basic primer on path integrals see

• R. MacKenzie, Path Integral Methods and Applications,
https://arxiv.org/abs/quant-ph/0004090

• The classic reference on the subject is Feynman and Hibbs [1965].

Exercises

Exercise 3.1 About the Braid Group (a) Convince yourself geometrically
that the defining relations of the braid group on M particles BM are:

σi σi+1 σi = σi+1 σi σi+1 1 ≤ i ≤M − 2 (3.9)

σi σj = σj σi for |i− j| > 1, 1 ≤ i, j ≤M − 1 (3.10)

(b) Instead of thinking about particles on a plane, let us think about par-
ticles on the surface of a sphere. In this case, the braid group of M strands
on the sphere is written as BM (S2). To think about braids on a sphere, it
is useful to think of time as being the radial direction of the sphere, so that
braids are drawn as in Fig. 3.9. The braid generators on the sphere still obey

Fig. 3.9 An element of the braid
group B3(S2). The braid shown here
is σ1σ

−1
2

Eqns. 3.9 and 3.10, but they also obey one additional identity

σ1σ2 . . . σM−2σM−1σM−1σM−2 . . . σ2σ1 = I (3.11)

where I is the identity (or trivial) braid. What does this additional identity
mean geometrically?

[In fact, for understanding the properties of anyons on a sphere, Eq. 3.11
is not quite enough. We will try to figure out below why this is so by using
Ising Anyons as an example.]

Exercise 3.2 About the Symmetric Group
Show that Eqs. 3.9 and 3.10 also hold for the generators of the symmet-

ric group SM on M particles, where σi exchanges particle i and i + 1. In
the symmetric group we have the additional condition that σ2

i = 1. Prove
the statement used in section 3.4.1 that there are only two one-dimensional
representations of the symmetric group. Hint: The proof is just a few lines.

Exercise 3.3 Ising Anyons and Majorana Fermions
The most commonly discussed type of nonabelian anyon is the Ising anyon

(we will discuss this in more depth later). Ising anyons occurs in the Moore-
Read quantum Hall state (ν = 5/2), as well as in any chiral p-wave supercon-
ductor and in recently experimentally relevant so called “Majorana” systems.

The nonabelian statistics of these anyons may be described in terms of
Majorana fermions by attaching a Majorana operator to each anyon. The
Hamiltonian for these Majoranas is zero – they are completely noninteracting.

In case you haven’t seen them before, Majorana Fermions γj satisfy the
anticommutation relation

{γi, γj} ≡ γiγj + γjγi = 2δij (3.12)
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as well as being self conjugate γ†
i = γi.

(a) Show that the ground state degeneracy of a system with 2N Majoranas
is 2N if the Hamiltonian is zero. Thus conclude that each pair of Ising anyons
is a two-state system. Hint: Construct a regular (Dirac) fermion operator
from two Majorana fermion operators. For example,

c† =
1

2
(γ1 + iγ2)

will then satisfy the usual fermion anti-commutation {c, c†} = cc† + c†c = 1.
(If you haven’t run into fermion creation operators yet, you might want to
read up on this first!) There is more discussion of this transformation in a
later problem *** (Ising F matrix)

(b) When anyon i is exchanged clockwise with anyon j, the unitary trans-
formation that occurs on the ground state is

Uij =
eiα√
2
[1 + γiγj ] i < j. (3.13)

for some real value of α. Show that these unitary operators form a represen-
tation of the braid group. (Refer back to the previous problem, “About the
Braid Group”). In other words we must show that replacing σi with Ui,i+1

in Eqns. 3.9 and 3.10 yields equalities. This representation is 2N dimensional
since the ground state degeneracy is 2N .

(c) Consider the operator

γFIVE = (i)Nγ1γ2 . . . γ2N (3.14)

(the notation FIVE is in analogy with the γ5 of the Dirac gamma matrices).
Show that the eigenvalues of γFIVE are ±1. Further show that this eigenvalue
remains unchanged under any braid operation. Conclude that we actually have
two 2N−1 dimensional representations of the braid group. We will assume that
any particular system of Ising anyons is in one of these two representations.

(d) Thus, 4 Ising anyons on a sphere comprise a single 2-state system, or a
qubit. Show that by only braiding these four Ising anyons one cannot obtain
all possible unitary operation on this qubit. Indeed, braiding Ising anyons is
not sufficient to build a quantum computer. [Part (d) is not required to solve
parts (e) and (f)]

(e) [bit harder] Now consider 2N Ising anyons on a sphere (See above prob-
lem ”About the braid group” for information about the braid group on a
sphere). Show that in order for either one of the 2N−1 dimensional represen-
tations of the braid group to satisfy the sphere relation, Eqn. 3.11, one must
choose the right abelian phase α in Eq. 3.13. Determine this phase.

(f) [a bit harder] The value you just determined is not quite right. It should
look a bit unnatural as the abelian phase associated with a braid depends
on the number of anyons in the system. Go back to Eqn. 3.11 and insert
an additional abelian phase on the right hand side which will make the final
result of part (e) independent of the number of anyons in the system. In fact,
there should be such an additional factor — to figure out where it comes from,
go back and look again at the geometric “proof” of Eqn. 3.11. Note that the
proof involves a self-twist of one of the anyon world lines. The additional
phase you added is associated with one particle twisting around itself. The
relation between self-rotation of a single particle and exchange of two particles
is a generalized spin-statistics theorem.
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Exercise 3.4 Small Numbers of Anyons on a Sphere
On the plane, the braid group of two particles is an infinite group (the group

of integers describing the number of twists!). However, this is not true on a
sphere

First review the problem “About the Braid Group” about braiding on a
sphere.

(a) Now consider the case of two particles on a sphere. Determine the full
structure of the braid group. Show it is a well known finite discrete group.
What group is it?

(b) [Harder] Now consider three particles on a sphere. Determine the full
structure of the braid group. Show that it is a finite discrete group. [Even
Harder] What group is it? It is “well known” only to people who know a lot
of group theory. But you can google to find information about it on the web
with some work. It may be useful to list all the subgroups of the group and
the multiplication table of the group elements.

(c) Suppose we have two (or three) anyons on a sphere. Suppose the ground
state is two-fold degenerate. If the braid group is discrete, conclude that no
possible type of anyon statistics will allow us to do arbitrary SU(2) rotations
on this degenerate ground state by braiding.





Aharanov-Bohm Effect and
Charge-Flux Composites 4
This chapter introduces a simple model of how fractional statistics anyons
can arise. After reviewing Aharanov-Bohm effect, we describe these ex-
otic particles as charge-flux composites and explore some of their prop-
erties. Finally we see how this fits into the framework of abelian Chern-
Simons theory and briefly discuss its nonabelian generalization.
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Fig. 4.1 The Young two slit experi-
ment (not to scale).

4.1 Review of Aharanov-Bohm Effect
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Fig. 4.2 Adding a magnetic field in-
side the middle box in the Young two
slit experiment. Here the circular re-
gion includes a constant magnetic field.
No magnetic field leaks out of the box.
Nonetheless, if the particle being sent
into the interferometer is charged, the
interference pattern is changed com-
pared to the above figure.

Let us consider the two slit interference experiment shown in Fig. 4.1.
We all know the result of the two slit experiment but let us rewrite the
calculation in the language of a path integral. We can write

∑

paths

eiS/~ =
∑

paths, slit 1

eiS/~ +
∑

paths, slit 2

eiS/~

∼ eikL1 + eikL2

where L1 and L2 are the path lengths through the two respective slits
to whichever point is being measured on the output screen, and k is the
wavevector of the incoming wave. In other words, we get the usual two
slit calculation pioneered by Thomas Young in the early 1800s.
Now let us change the experiment to that shown in Fig. 4.2. Here

we assume the particle being sent into the interferometer is a charged
particle, such as an electron. In this case a magnetic field is added inside
the middle box between the two paths. No magnetic field is allowed to
leak out of the box, so the particle never experiences the magnetic field.
Further the magnetic field is kept constant so the particle does not feel
a Faraday effect either. The surprising result is that the presence of
the magnetic field nonetheless changes the interference pattern obtained
on the observation screen! This effect, named the Aharanov-Bohm ef-
fect, was predicted by Ehrenberg and Siday [1949], then re-predicted
independently by Aharonov and Bohm [1959]1.

1Possibly the reason it is named after the later authors is that they realized the
importance of the effect, whereas the earlier authors pointed it out, but did not
emphasize as much how strange it is! The first experimental observation of the effect
was by Chambers [1960], although many more careful experiments have been done
since.



40 Aharanov-Bohm Effect and Charge-Flux Composites

So why does this strange effect occur? There are several ways to
understand it, but for our purpose it will be best to stay with the idea
of path integrals and consider the Lagrangian description of particle
motion.
We must recall how a charged particle couples to an electromagnetic

field in the Lagrangian description of mechanics. We write the magnetic
field and electric field in terms of a vector potential

B = ∇×A

E = −∇A0 − dA/dt

where A0 is the electrostatic potential. We can then write the particle
Lagrangian as

L =
1

2m
ẋ2 + q(A(x) · ẋ−A0) (4.1)

where q is the particle charge. It is an easy exercise to check that the
Euler-Lagrange equations of motion that result from this Lagrangian
correctly gives motion under the Lorentz force as we should expect for
a charged particle in an electromagnetic field.22Here are the steps: Start with the

Euler-Lagrange equations

d

dt

∂L

∂ẋk
=

∂L

∂xk .

This gives us

d

dt
(mẋk + qAk)

= mẍk + q
d

dt
Ak + qẋj

∂

∂xj
Ak

= q(ẋj
∂

∂xk
Aj −

∂

∂xk
A0)

So that

mẍk = q(E+ ẋ×B)k .

We are interested in a situation where we add a static magnetic field
to the system. Thus, we need only include qA(x) · ẋ in the Lagrangian.
The action then gets changed by

S → S0 + q

∫
dt ẋ ·A = S0 + q

∫
dl ·A (4.2)

where S0 is the action in the absence of the magnetic field and the
integral on the far right is a line integral along the path taken by the
particle.
Returning now to the two slit experiment. The amplitude of the

process in the presence of the vector potential can be now rewritten as
∑

paths, slit 1

eiS0/~+iq/~
∫
dl·A +

∑

paths, slit 2

eiS0/~+iq/~
∫
dl·A

where S0 is again the action of the path in the absence of the vector
potential.
The physically important quantity is the difference in accumulated

phases between the two paths. This difference is given by

exp

[
iq

~

∫

slit 1
dl ·A− iq

~

∫

slit 2
dl ·A

]
= exp

[
iq

~

∮
dl ·A

]
(4.3)

where the integral on the right is around a loop that goes forward
through slit 1 and then backwards through slit 2.
Using Stokes’ theorem, we have

iq

~

∮
dl ·A =

iq

~

∫

enclosed

dS · (∇×A) =
iq

~
Φenclosed

where Φenclosed is the flux enclosed in the loop. Thus there is a mea-
surable relative phase shift between the two paths given by iq

~
Φenclosed.
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This results in a shift of the interference pattern measured on the obser-
vation screen. Note that although the original Lagrangian Eq. 4.1 did
not look particularly gauge invariant, the end result (once we integrate
around the full path) is indeed gauge independent.
A few notes about this effect:

(1) If Φ is an integer multiple of the elementary flux quantum

Φ0 = 2π~/q,

then the phase shift is an integer multiple of 2π and is hence equiv-
alent to no phase shift.

(2) We would get the same phase shift if we were to move flux around
a charge.

(3) More generally for particles moving in space-time one wants to
calculate the relativistically invariant quantity

iq

~

∮
dlµA

µ

Φ

q

Fig. 4.3 Abelian anyons represented
as charges bound to flux tubes through
the plane. The charge of each particle
is q, the flux of each tube is Φ. Drag-
ging one particle around another incurs
a phase both because charge is moving
around a flux, but also because flux is
moving around a charge.

4.2 Anyons as Charge-Flux Composites

We will now consider a simple model of abelian anyons as charge-flux
composites. Imagine we have a two dimensional system with charges q in
them, where each charge is bound to an infinitely thin flux tube through
the plane, with each tube having flux Φ as shown in Fig. 4.3. We will
notate this charge-flux composite object as a (q,Φ) particle. If we drag
one such particle around another, we then accumulate a phase due to the
Aharanov-Bohm effect. The phase from the charge of particle 1 going
around the flux of particle 2 is eiqΦ/~, whereas the phase for dragging
the flux of 1 around the charge of 2 is also eiqΦ/~, thus the total phase
for dragging 1 around 2 is given by

(Phase of charge-flux composite 1 encircling 2) = e2iqΦ/~

Thus we have (as shown in Fig. 4.4)

Φ

q

Fig. 4.4 An exchange. Two exchanges
is the same as dragging one particle all
the way around the other as shown in
Fig. 4.3.

(Phase for exchange of two charge-flux composites) = eiqΦ/~

and we correspondingly call these particles θ-anyons, with θ = qΦ/~.
Obviously θ = 0 is bosons, θ = π is fermions, but other values of θ are
also allowed, giving us abelian anyons as discussed in chapter 3.
Note that the same type of calculation would show us that taking

a composite particle with charge q1 and flux Φ1 all the way around a
composite particle with charge q2 and flux Φ2 would accumulate a phase
of eiϕ with ϕ = (q1Φ2 + q2Φ1)/~.
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Spin of an anyon

Let us see if we can determine the spin of these anyons. Spin refers to
properties of the rotation operator, so we need to physically rotate the
anyon on its axis. To do this we must think about how the flux is tied
to the charge — we must have some microscopic description of exactly
where the flux is and where the charge is. It is easiest to put the charge
and flux at very slightly different positions as shown in Fig. 4.53. In this

3Almost any prescription for attach-
ing flux to charge (for example, break
the flux into four pieces and attach one
piece on each of four side of the charge)
will give the same result. However, if
we try to put the flux and charge at ex-
actly the same position, we get infini-
ties that we don’t know how to handle!

case, when we rotate the anyon around its axis we move the charge and
flux around each other and we obtain a new phase of

eiqΦ/~ = eiθ

This fits very nicely with the spin statistics theorem — the phase ob-
tained by exchanging two identical particles should be the same as the
phase obtained by rotating one around its own axis. (See the discussion
of Fig. 2.7).

Φ

q

Fig. 4.5 Tying flux to charge. We put
the flux and the charge at slightly dif-
ferent positions. As a result, when we
rotate the particle around its own axis
a phase is accumulated as the charge
and flux go around each other.

4.2.1 Fusion of Anyons

We can consider pushing two anyons together to try to form a new par-
ticle. We expect that the fluxes will add and the charges will add. This
makes some sense as the total charge and total flux in a region should
be conserved (this is an important principle that we will encounter fre-
quently!). We sometimes will draw a “fusion diagram” as in Fig. 4.6 to
show that two anyons have come together to form a composite particle.
A simple example of this is pushing together two particles both having

the same charge and flux (q,Φ). In this case we will obtain a single
particle with charge and flux (2q, 2Φ). Note that the phase of exchanging
two such double particles is now θ = 4qΦ/~ (since the factor of 2 in
charge multiplies the factor of 2 in flux!).

(q1,Φ1) (q2,Φ2)

(q1 + q2,Φ1 + Φ2)

Fig. 4.6 Fusing two anyons to get an
anyon of a different type which has the
sum of fluxes and the sum of charges.

(q,Φ) (−q,−Φ)

I = (0, 0)

=

(q,Φ)

Fig. 4.7 Fusing an anyon and an an-
tianyon to get the vacuum (I) drawn
as dotted line. Note that the antianyon
moving forward in time is drawn as a
downpointing arrow — which looks like
an anyon moving backwards in time.

4.2.2 Anti-Anyons and the Vacuum Particle

We now introduce the concept of an anti-anyon. This is a charge-flux
composite which instead of having charge and flux (q,Φ) has charge
and flux (−q,−Φ). Fusing an anyon with its anti-anyon results in pair
annihilation — the two particles come together to form the vacuum
(which we sometimes4 refer to as the identity I) which has zero total

4The vacuum or identity particle can
be denoted e, or I or 0 or 1 depend-
ing on the context. This nomenclatural
problem stems from a similar problem
in group theory, see section 28.2.

charge and zero total flux, as shown in Fig. 4.7. It may seem a bit odd
to call the absence of any charge or any flux a “particle”. However, this
is often convenient since it allows us to think of pair annihilation (as in
the left of Fig. 4.7) in the language of fusion.
In the right of Fig. 4.7 we show that it is sometimes convenient not

to indicate the vacuum particle. In this case, we have written the anti-
anyon moving forward in time as an anyon moving backwards in time.
If the phase of dragging an anyon clockwise around an anyon is 2θ,

then the phase of dragging an anti-anyon clockwise around an anti-anyon
is also 2θ. (The two minus signs on the two anyons cancel — negative
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flux multiplies negative charge!). However, the phase of dragging an
anyon clockwise around an anti-anyon is −2θ.

4.3 Anyon Vacuum on a Torus and Quantum
Memory

A rather remarkable feature of topological models is that the ground
state somehow “knows” what kind of anyons exist in the model (i.e,
those that could be created), even when they are not actually present.
To see this, consider the ground state of an anyon model on torus (the
surface of a doughnut5.

5See note 1 in chapter 28.

C1
C2

= C2

C1

Fig. 4.8 Drawing a torus as a rectan-
gle with opposite edges identified. The
two noncontractable cycles around the
torus can be considered to be the edges
of the square, labeled C1 and C2 here.

We can draw the torus as a square with opposite edges identified as
shown in Fig. 4.8. The two cycles around the torus are marked as C1

and C2.
Let us now construct operators that do the following complicated

operations:

T1 is the operator that creates a particle-antiparticle pair, moves
the two in opposite directions around the C1 cycle of the torus
until they meet on the opposite side of the torus and reannihilate.

T2 is the operator that creates a particle-antiparticle pair, moves
the two in opposite directions around the C2 cycle of the torus
until they meet on the opposite side of the torus and reannihilate.

Both of these operators are unitary because they can be implemented
(in principle) with some time-dependent Hamiltonian6. However, the 6For example, we could insert charges

+Q and -Q near to each other which
are strong enough to pull a particle-
antiparticle pair out of the vacuum, the
-Q trapping the +(q,Φ) and the +Q
trapping the (−q,−Φ). Then we can
drag the ± Q charges around the han-
dle of the torus, dragging the anyons
with them.

two operators do not commute. To see this let us consider the operator
T−1
2 T−1

1 T2T1 where we read time from right to left. This can be inter-
preted as as two particles being created, braiding around each other,
and then reannihilating. This procedure is shown in Fig. 4.9.
So what we have now is two operators T1 and T2 which do not commute

with each other. Indeed, we have7

7At least this relation should be true
acting on the ground state space. If
some particles are already present, then
we have to consider the braiding of the
the particles we create with those al-
ready present, which will be more com-
plicated.

T2T1 = e−2iθT1T2

But both T1 and T2 commute with the Hamiltonian (since they start
and end with states of exactly the same energy8). Whenever you have

8Strictly speaking this means they
commute with the Hamiltonian within
the ground state space, or equivalently
the commutators [T1,H] and [T2, H]
both annihilate the ground state space.

two operators that don’t commute with each other but do commute with
the Hamiltonian, it means you have degenerate eigenstates. Let us see
how this happens.
Since T1 is unitary, its eigenvalues must have unit modulus (i.e., they

are just a complex phase). Considering the space of possible ground
states, let us write a ground state eigenstate of T1 as

T1|α〉 = eiα|α〉.
Note that we are labeling the ket |α〉 by its eigenvalue under the ap-
plication of T1. Now we will generate a new eigenstate with a different
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ti
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= = e−2iθ

Fig. 4.9 The torus is drawn as a horizontal rectangle with opposite ends identified.
Time runs vertically. First create a particle-antiparticle pair at the center of the
rectangle and move them in opposite directions, right and left, until they meet at the
edges of the rectangle to reannhiliate. Note that a particle moving to the right or an
antiparticle moving to the left are both drawn as a rightpointed arrow. Next create
a particle-antiparticle pair in the center of the torus and move them to the front
and back walls (which are the same point) to reannihilate. Then the two processes
are reversed to give T−1

2 T−1
1 T2T1. This procedure can be reduced to one particle

wrapping around another which gives a phase of e−2iθ. Note that to make the figure
on the left look like the linked rings, we should not quite annihilate the particles at
the end of the first and second step (turning the dotted lines into solid lines). This is
allowed since bringing a particle-anti-particle pair close together looks like they have
fused together to the vacuum if we view it from far away.

eigenvalue of T1. Consider the state T2|α〉. This must also be in the
ground state space since T2 commutes with the Hamiltonian. But now

T1(T2|α〉) = e2iθT2T1|α〉 = e2iθeiα(T2|α〉)

This new ground state T2|α〉 has eigenvalue eiα+2iθ under application
of T1. We thus call this new ground state |α + 2θ〉 = T2|α〉. We have
now generated a new ground state and we can continue the procedure
to generate more!
Let us suppose we have a system where the anyons have statistical

phase angle
θ = πp/m

where p and m are relatively prime integers (i.e., p/m is an irreducible
fraction). Starting with the ground state |α we can generate a series of
ground states by successive application of T2,

|α〉, |α+2πp/m〉, |α+4πp/m〉, . . . , |α+2π(m−1)/m〉

When we try to generate yet another state, we get the phase α+2π which
is equivalent to α since it is describing a complex phase, so we are back
to the original state. So we now have m independent ground states.9

9There could be even more degeneracy
which would be non-generic. What we
have proven is there must be a degen-
eracy which is m times some integer,
where one generally expects that inte-
ger to be 1 but there could be additional
accidental degeneracy.

Note in particular that the ground state degeneracy of the system with
no anyons in it is related to the statistical angle θ of the anyons if they
were to be created.
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4.3.1 Quantum Memory and Higher Genus

The degenerate ground state on the torus can be thought of as a quan-
tum memory. If there are m different ground states, the most general
wavefunction we can have is some linear superposition of the multiple
ground states

|Ψ〉 =
m−1∑

n=0

An|α+ 2πnp/m〉

where the coefficients An form an arbitrary (but normalized) complex
vector. We can initialize the system in some particular superposition
(i.e, some vector An) and we can expect that the system remains in this
superposition. The only way that this superposition can change is if
a T1 or T2 operation is performed, or some combination thereof — i.e,
if a pair of anyons appears from the vacuum moves around the handle
of the torus and then reannihilates. Such a process can be extremely
unlikely when the energy gap for creating excitations is large10. Hence

10Strictly speaking, at any finite tem-
perature for any size system there is a
finite time for this process to occur, al-
though it might be very long.

the quantum superposition is “topologically protected”.
In fact, one does not even need to have a system on a torus in order to

have a degenerate ground state. It is often sufficient to have an annulus
geometry (a disk with a big hole in the middle as shown in Fig. 4.10).
In this case, T1 could correspond to moving an anyon around the loop
of the annulus and T2 could correspond to moving an anyon from the
inside to the outside edge.11

11In this case it is often not precisely
true that the ground states are entirely
degenerate (since there is a non-zero
net result of having moved a particle
from inside to outside, and therefore
one is not necessarily in the precise
ground state) but under certain condi-
tions it can be extremely close to degen-
erate nonetheless. A classic example of
this is discussed by Gefen and Thouless
[1993].

Fig. 4.10 An annulus.One can consider more complicated geometries, such as a torus with
multiple handles, or a disk with multiple holes cut in the middle. For a
theory of abelian anyons (fractional statistics) the ground state degen-
eracy for a surface with genus g (meaning g handles, or g holes) is mg

(See Exercise 4.1). Thus by using high genus one can obtain very very
large Hilbert spaces in which to store quantum information.

4.3.2 Number of Species of Anyons

Having established multiple vacuum states on a torus, let us now return
to study the anyons that we could create in such a system. Again let us
consider anyons of statistical angle θ = πp/m with p and m relatively
prime. We can describe such anyons12 with a charge-flux composite

12By this time I’m sick of writing ~ and
I’m going to set it equal to 1.

(q,Φ) = (πp/m, 1). Fusion of n of these elementary anyons will have
charge and flux given by13 13It is only a slight abuse of notation to

write the ket |“n′′〉 to mean a cluster of
n elementary anyons.Fusion of n elementary anyons = |“n”〉 = (nq, nΦ)

= (nπp/m, n)

Something special happens when we have a cluster of m of these ele-
mentary anyons:

|“m”〉 = (πp,m)

If we braid an arbitrary cluster |“n”〉 = (nπp/m, n) around one of these
|“m”〉 = (πp,m) clusters, we obtain a net phase14 of 2nπp which is

14As mentioned at the beginning of sec-
tion 4.2 the total phase is given by
q1Φ2 + q2Φ1 = (nπp/m)m + (πp)n.

equivalent to no phase at all! Thus we conclude that the cluster of
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m elementary anyons is equivalent to the vacuum in the sense that all
particles get trivial phase if they braid all the way around |“m”〉.
We might be tempted to conclude that there are exactly m differ-

ent anyon species in the system. Indeed, this conclusion is often true.
However, there is an exception. If both p and m are odd, one ob-
tains a nontrivial sign for exchanging (half braiding, as in Fig. 4.4) a
|“m”〉 = (πp,m) particle with another |“m”〉 = (πp,m) particle. To
see this note that exchange gives a phase πpm since it is half of the
2πpm phase for wrapping one particle all the way around the other (as
in Fig. 4.3). This means the |“m”〉 particle is a fermion. In fact, this
case of p and m both odd is a bit of an anomolous case and in some
sense is a poorly behaved theory15.15Whenever we have a fermion parti-

cle that braids trivially with all other
particles, the theory is poorly behaved.
Later on we will call this kind of theory
“non-modular.” See section ***.

Neglecting this more complicated case with fermions, we are correct
to conclude that we have exactly m different species of anyons – and also
m different ground states on the torus as calculated above. This con-
nection will occur in any well behaved topological theory — the number
of ground states on the torus will match the number of different species
of particles.

Chapter Summary

• The Charge-Flux composite model describes abelian anyons —
with the braiding phase coming from Aharonov-Bohm effect.

• We introduced idea of fusion, antiparticles, and spin

• The vacuum for a system of anyons is nontrivial and can be a
quantum memory.

Further Reading

A good reference for the charge-flux composite model is John Preskill’s
lecture notes (Preskill [2004]).

Exercises

Exercise 4.1 Abelian Anyon Vacuum on a Two-Handle Torus
Using similar technique as in section 4.3, show that the ground state vac-

uum degeneracy on a two handle torus is m2 for a system of abelian anyons
with statistical angle θ = πp/m for integers p and m relatively prime. Hint:
Consider what the independent cycles are on a two-handled torus and deter-
mine the commutation relations for operators Ti that take anyon-antianyon
pairs around these cycles.



Chern-Simons Theory Basics 5
5.1 Abelian Chern-Simons Theory

It is useful to see how charge-flux binding occurs in a microscopic field
theory description of a physical system. The type of field theory we will
study, so-called “Chern-Simons” field theory1, is the main paradigm for 1S. S. Chern was one of the most im-

portant mathematicians of the 20th
century. Jim Simons was a promi-
nent mathematician who wrote the key
first paper on what became known as
Chern-Simons theory in 1974. Simons
was the head of the math department
at Stonybrook university at the time.
In 1982, he decided to change careers
and start a hedge fund. His fund, Re-
naissance Technologies, became one of
the most successful hedge funds in the
world. Simons’ wealth is now estimated
at over 20 billion dollars (as of 2018).
More recently he has become a promi-
nent philanthropist, and has donated
huge amounts of money to physics and
mathematics — now being one of the
major sources of funds for the best sci-
entists in the world.

topological quantum field theories.
In the current section we will consider the simplest type of Chern-

Simons theory which is the abelian type (i.e., it generates abelian anyons,
or simple fractional statistics particles). We start by imagining a gauge
field aα, known as the Chern-Simons vector potential, analogous to the
vector potential Aα we know from regular electromagnetism. Here we
should realize that aα is not the real electromagnetic vector potential
because it lives only in our 2-dimensional plane. We should think of it in-
stead as some emergent effective quantity for whatever two dimensional
system we are working with.
Let us write the Lagrangian of our system

L = L0 +

∫
d2x L

Here we have written L0 to be the Lagrangian of our particles without
considering the coupling to the (Chern-Simons) vector potential. This
might be nothing more than the Lagrangian for free particles — although
we could put other things into this part too, such as inter-particle inter-
action, if we like.
The second term is the integral of a Lagrangian density — and this

will be the term that is relevant for the flux-binding and the exchange
statistics of the particles. The form of the Lagrangian density is

L =
µ

2
ǫαβγaα∂βaγ − jαaα (5.1)

where jα is the particle current, µ is some coupling constant, and ǫ is
the antisymmetric tensor2. The indices α, β, γ take values 0, 1, 2 where 2The antisymmetric tensor is given by

ǫ012 = ǫ120 = ǫ201 = 1 and ǫ210 =
ǫ102 = ǫ021 = −1.

0 indicates the time direction and 1, 2 are the space directions (and j0

is the particle density).
The first term in Eq. 5.1 is the Lagrangian density of the Chern-

Simons vector potential itself. (It is sometimes known as the “Chern-
Simons term”). The second term in Eq. 5.1 couples the Chern-Simons
vector potential to the particles in the system. Its form, jαaα, may look
unfamiliar but it is actually just the expected coupling of the charged
particles to a vector potential analogous to what we used when we dis-
cussed Aharonov-Bohm effect in section 4.1. To see this, let us carefully
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define the particle current jα. If we have N particles then the current is

j0(x) =

N∑

n=1

qnδ(x− xn)

j(x) =

N∑

n=1

qnẋn δ(x− xn)

The j0 component, the charge density3, is just a delta function peak at3Again not the real electromagnetic
charge, but rather the charge that cou-
ples to the Chern-Simons vector poten-
tial aα. Later in this chapter we will set
q = 1 along with ~ = 1 for simplicity of
notation.

the position of each particle with value given by the particle charge q.
The 1 and 2 component, j is a delta function at the position of each
particle with prefactor given by the velocity of the particle times its
charge. Now when −jαaα is integrated over all of space we get

N∑

n=1

qn [a(xn) · ẋn − a0(xn)] (5.2)

exactly as in Eq. 4.1. So this is nothing more than the regular coupling
of a system of charged particles to a vector potential.
As is usual for a gauge theory, the coupling of the particles to the

gauge field is gauge invariant once one integrates the particle motion
over some closed path (one measures only the flux enclosed, as with
the Aharonov-Bohm effect). The Chern-Simons term (the first term in
Eq. 5.1) is also gauge invariant, at least on a closed manifold if we can
integrate by parts. To see this, make an arbitrary gauge transformation

aµ → aµ + ∂µχ (5.3)

for any function χ. Then integating the Chern-Simons term (by parts
if necessary) all terms can be brought to the form ǫαβγχ∂α∂βaγ which
vanishes by antisymmetry. Note that this gauge invariance holds for any
closed manifold, although for a manifold with boundaries, we have to be
careful when we integrate by parts as we can get a physically important
boundary term. (We will discuss these later in section *** but for now,
let us just think about closed space-time manifolds).
To determine what the Chern-Simons term does we need to look at

the Euler-Lagrange equations of motion. We have

∂L
∂aα

= ∂β

(
∂L

∂(∂βaα)

)
(5.4)

which generates the equations of motion4

4It may look like the right result would
have µ/2 on the right hand side, given
that it is µ/2 in Eq. 5.1. However, note
that when we differentiate with respect
to aα on the left hand side of Eq. 5.4,
we also generate an identical factor of
µ/2 and these two add up.

jα = µǫαβγ∂βaγ (5.5)

This equation of motion demonstrates flux binding. To see this, let us
look at the 0th component of this equation. We have

j0 =
N∑

n=1

qnδ(x − xn) = µ(∇× a) = µb (5.6)
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where we have defined a “Chern-Simons” magnetic field b to be the curl
of the the Chern-Simons vector potential. In other words this equation
attaches a delta function (infinitely thin) flux tube with flux qn/µ at the
position of each charge qn. So we have achieved charge-flux binding!
For simplicity, let us now assume all particles are identical with the

same charge qn = q. We might expect that the phase obtained by
exchanging two such identical charges would be given by the charge
times the flux or θ = q2/µ analogous to section 4.2. Actually, this is not
right! The correct answer is that the statistical phase is

θ = q2/(2µ).

To see why this is the right answer, we can multiply our equation of
motion Eq. 5.5 by aα and then plug it back into5 the Lagrangian 5.1. 5One might worry about whether we

are actually allowed to plug the equa-
tions of motion back into the La-
grangian when we do a full path inte-
gral, as in Eq. 5.7, where we are sup-
posed to integrate over all field configu-
rations, not just those that satisfy equa-
tions of motion. While generally in field
theory one should not plug equations
of motion back into the Lagrangian, it
is actually allowed in this case because
the Lagrangian is linear in each aµ. For
example, classically we can think of a0
as being a Lagrange multiplier which
enforces Eq. 5.6. Similarly in the func-
tional integral when we integrate out a0
it enforces that equation of motion as a
strict constraint.

We then end up with

L = −1

2
jαaα

In other words, the Lagrangian of the Chern-Simons vector potential
itself cancels exactly half of the Lagrangian density, and hence will cancel
half of the accumulated phase when we exchange two particles with each
other!
If we are interested in calculating a propagator for our particles we

can write ∑

paths {x(t)}

∑

all aµ(x,t)

ei(S0+SCS+Scoupling)/~ (5.7)

Here the first sum is the usual sum over particle paths that we have
discussed before. The second sum is the sum over all possible configu-
rations of the field aµ(x, t). Note that this means we should sum over
all configurations in space and time so it is effectively a path integral
for a field. (This is potentially everything you ever need to know about
field theory!). Often the sum over field configurations is written as a
functional integral ∑

all aµ(x,t)

→
∫

Daµ(x)

Formally when we write a functional integral we mean6 that we should 6Making strict mathematical sense of
this type of integral is not always so
easy!

divide space and time into little boxes and within each box integrate
over all possible values of aµ. Fortunately, we will not need to do this
procedure explicitly.
At least formally we can thus rewrite Eq. 5.7 as

∑

paths {x(t)}
eiS0/~

∫
Daµ(x) eiSCS/~ ei(q/~)

∫
paths

dlαaα (5.8)

where S0 is the action of the particles following the path but not in-
teracting with the gauge field, SCS is the action of the Chern-Simons
gauge field alone (from the first term in Eq. 5.1). The final exponential
in Eq. 5.8 represents the coupling (from the second term of Eq. 5.1) of
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the gauge field to the path of the particles — it is an integral that fol-
lows the path of the particles and integrates the vector potential along
the path (see also Eq. 5.2). This is precisely the phase accumulated
by a particle in the vector potential. It is an example of a Wilson-line
operator, which we will see again shortly in section 5.2.
Once the integration over the Chern-Simons field is done, we obtain

∑

paths {x(t)}
eiS0/~+iθW (path)

whereW is the winding number of the path and θ is the anyon statistical
angle. In other words, integrating out the Chern-Simons gauge field
implements fractional statistics for the particles in the system, inserting
a phase e±iθ for each exchange!

Vacuum Abelian Chern-Simons Theory

Something we have pointed out above in section 4.3 is that the vacuum
of an anyon theory knows about the statistics of the particles, even
when the particles are not present (i.e., the ground state degeneracy on
a torus matches the number of particle species). Thus, in the absence
of particles, we will be interested in

Z(M) =

∫

M
Daµ(x) eiSCS/~

where M is the space-time manifold we are considering7.

7Some space time manifolds we might
consider, such as any 2D manifold Σ
cross time (such that M = Σ × R),
seem very natural. However, as we
will see in much detail in chapter 7,
we will want to be much more gen-
eral about the types of manifolds we
consider. We should even allow three
dimensional manifolds where the two-
dimensional topology of a fixed time
slice changes as time evolves! See also
the discussion in chapter 6 and Fig. 6.1.

If we are consider a three dimensional manifold of the form M =
Σ × S1 for a 2D manifold Σ and S1 represents time (compactified8)

8Compactification of time from R to

S1 is something that might be famil-
iar from statistical physics where this
procedure is used for representing finite
temperatures.

this integral gives exactly the ground state degeneracy of the system.
As we might expect, this quantity will be a topological invariant of
the space-time manifold. That is, smooth deformations of M do not
change its value. (See chapter appendix, particularly section 5.3.2). This
quantity Z(M), often known as the partition function of the theory for
the manifold M, will be of crucial importance as we learn more about
topological theories in general in Chapter 7 below.

5.2 Nonabelian Chern-Simons theory: The

paradigm of TQFT

Among 2+1 dimensional topological quantum systems, pretty much ev-
erything of interest is somehow related to Chern-Simon theory — how-
ever, we don’t generally have the luxury of working with abelian theory
as we have been doing so far.
We can generalize abelian Chern-Simons theory by promoting the

gauge field aα to be not just a vector of numbers, but rather a vector of
matrices.9 More precisely, to construct a nonabelian Chern-Simons the-

9If you have studied Yang-Mills theory,
you already know about nonabelian
vector potentials.

ory, we consider a vector potential that takes values in a Lie algebra10.

10See the introduction to Lie groups
and Lie algebras in section 28.2.3. In
brief: A Lie group is a group which
is also a continuous manifold, for ex-
ample. A Lie algebra is the algebra of
infinitesimal changes in this group. A
prime example is the Lie group SU(2)
with algebra generated by iσj with σj ’s
being the Pauli operators. We write
group elements as exponentials of the
algebra g = eiσ·n. For example, if we choose to work with the Lie algebra of SU(2) in the
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fundamental representation we can write a general element of this al-
gebra as a sum of the three generators iσx/2, iσy/2, iσz so that our Lie
algebra valued gauge field is then11

11For general Lie algebras, we want to
write aµ = aaµTa where Ta are the an-
tihermitian generators of the Lie alge-
bra with Ta = −T †

a . This means that
[Ta, Tb] = fabcTc with f the so-called
structure constants of the Lie group,
and Tr[TaTb] ≡ − 1

2
δab. In case of

SU(2) in the fundamental representa-
tion we have Ta = −iσa/2 with fabc =
ǫabc. Be warned that other normaliza-
tion conventions do exist, and changing
conventions will insert seemingly ran-
dom factors of 2 or i or worse.

aµ(x) = aaµ(x)
(σa
2i

)
(5.9)

where σa are the Pauli matrices. Now that aµ is matrix valued it becomes
noncommutative and we have to be very careful about the order in which
we write factors of aµ.
The fundamental quantity that we need to think about is the Wilson

loop operators12
12These are named for Ken Wilson,
who won a Nobel Prize for his work
on the renormalization group and crit-
ical phenomena. There is a legend that
Wilson had very very few publications
when he came up for tenure as a profes-
sor at Cornell. Only due to the strong
recommendation of his senior colleague
Hans Bethe (already a Nobel Laureate
at the time) did he manage to keep
his job. Bethe knew what Wilson had
been working on, and vouched that it
would be extremely important. His
ground-breaking work on renormaliza-
tion group was published the next year.
Everything worked out for him in the
end, but the strategy of not publish-
ing is not recommended for young aca-
demics trying to get tenure.

WL = Tr

[
P exp

(∮

L

dlµaµ

)]
(5.10)

where here the integral follows some closed path L. This object, being
the exponential of an integral of a vector potential, is essentially the
nonabelian analogue13 of the Aharonov-Bohm phase of Eq. 4.3). In

13The factor of i we usually have in
the exponential of the Aharonov-Bohm
phase (Eq. 4.3) is missing because it has
been absorbed into aµ in Eq. 5.9 (See
comment in note 11). The factors of q
and ~ are missing because we have set
them to one as every theorist should do.

Eq. 5.10, the P symbol indicates path ordering — analogous to the usual
time ordering of quantum mechanics. The complication here is that
aµ(x) is a matrix, so when we try to do the integral and exponentiate,
we have a problem that aµ(x) and aµ(x

′) do not commute. The proper
interpretation of the path orderered integral is then to divide the path
into tiny pieces of length dl. We then have

P exp(

∮

L

dlµaµ) = (5.11)

[1 + aµ(x1)dl
µ(x1)] [1 + aµ(x2)dl

µ(x2)] [1 + aµ(x3)dl
µ(x3)] . . .

where x1, x2, x3, . . . are the small steps along the path.
The proper gauge transformation in the case of a nonabelian gauge

field is given by
aµ → U−1aµU + U−1∂µU (5.12)

Where U(x) is a matrix (which is a function of position and time) which
acts on the matrix part of aµ. Note that this is just the nonabelian
analogue14 of the gauge transformation in Eq. 5.3. To see that this 14Here take U = eiχ and note that a

factor of i is absorbed into the vector
potential as mentioned in note 13.

gauge transformation leaves the Wilson loop operators invariant (and
hence is the right way to define a gauge transformation!) see section
5.3.1.
With aµ a matrix valued quantity, the Chern-Simons action is now

written as

SCS =
k

4π

∫

M
d3x ǫαβγ Tr

[
aα∂βaγ +

2

3
aαaβaγ

]
(5.13)

Note that the second term in the brackets would be zero if the aα were
commutative. (In the abelian case above, we have no such term! See
Eq. 5.1).
The Chern-Simons action is metric independent, which we show ex-

plicitly in the chapter appendix section 5.3.2. This means that space
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and time can be deformed continuously and the value of the action does
not change. While this may not be obvious from looking at the form of
the action, a large hint is that the action is written without any reference
to the usual usual space-time metric gµν .
Since Chern-Simons theory is also gauge theory, we would like the

action to be gauge invariant. It turns out that the action is almost
gauge invariant, as we will discuss momentarily. At any rate it is close
enough to gauge invariant to be of use for us!
It turns out that the Chern-Simons action is actually unique in being

both metric independent and also (at least almost) gauge invariant. In
2+1 dimensions, no other action can be written down which involves
only one gauge field and has these two properties: topological invariance
and gauge invariance. This is what makes Chern-Simons theory such a
crucial paradigm for topological theories in 2+1 dimensions.
Let us now return to this issue of how the Chern-Simons action is only

almost gauge invariant. First of all, if the manifold has a boundary, we
will run into non-gauge invariant terms as mentioned below Eq. 5.3. For
now, let us just assume that our manifold has no boundaries.
More crucially there is another issue with gauge invariance. Under

gauge transformation (at least on a closed manifold) as in Eq. 5.12 the
Chern-Simons action transforms to (See exercise 5.2)

SCS → SCS + 2πνk (5.14)

where

ν =
1

24π2

∫

M
d3x ǫαβγ Tr

[
(U−1∂αU)(U−1∂βU)(U−1∂γU)

]
(5.15)

Surprisingly the complicated expression in Eq. 5.15 (sometimes known
as the Pontryagin index) is always an integer (See section 5.3.3 for more
detail). The integer ν gives the winding number of the map U(x) from
the manifold into the gauge group15.

15In the case of the gauge group being
SU(2), as mentioned in section 28.2.3,
the gauge group is isomorphic to the
manifold S3. So if the manifold hap-
pens to be S3 then we are looking
at mappings from S3 (space) into S3

(group). A mathematician would say
that Π3(S3) = Z, meaning one can
wrap S3 around S3 any integer num-
ber of times. The case of zero winding
number is anything that can be con-
tinuously deformed to U = 1 every-
where. However, we also can consider
the identity mapping that S3 (space)
maps into S3 (group) in the obvious
way (every point goes to itself) which
gives an n = 1 mapping (a 1-to-1 map-
ping). One can also construct 2-to-1
mappings which have winding n = 2
etc. (See exercise 5.3)

It may now look problematic that our Chern-Simons action is not a
true gauge invariant (Eq. 5.14), but we note that the only thing enter-
ing our functional integral is eiSCS , not the Chern-Simons action itself.
Thus, so long as we choose k, the so-called “level”, as an integer (and
since the winding number ν is also an integer), then we have a well
defined functional integral of the form

Z(M) =

∫

M
Daµ(x) eiSCS

where the result Z(M) turns out to be a manifold invariant (see chapter
appendix, section 5.3.2), meaning that smooth deformations of space and
time do not change its value.

M3

L1

L2

Fig. 5.1 A cartoon of a 3 manifold
with a link made of two strands em-
bedded in it. The insertion of the Wilson loop operator into the path integral gives

a knot invariant of the link L that the Wilson loop follows. The fact that
the result should be a topological invariant should not be surprising given
the fact that the Chern-Simons action itself is metric independent and
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therefore independent under deformations of space and time16. Often
16The observant reader will note that
we have not specified the “framing” of
the knot — i.e, if we are to think of
the world-line as being a ribbon not
a line, we have not specified how the
ribbon twists around itself. (See sec-
tion 28.4.) In field theory language this
enters the calculation by how a point-
splitting regularization is implemented.

we will think about our link as being embedded in a simple manifold like
the three sphere, which we denote as S3 (see section 28.1.1 for definition
of S3).
So for example, to find the link invariant corresponding to the two

linked strings in Fig. 5.1, we have

Knot Invariant =
Z(S3, L1, L2)

Z(S3)
=

∫
S3 Daµ(x) WL1WL2 eiSCS∫

S3 Daµ(x) eiSCS

with WL being the Wilson loop operators as in Eq. 5.10. Indeed, if we
choose to work with the gauge group SU(2) at level k (working with the
spin 1/2 representation of the group, i.e, with Pauli matrices) we obtain
the Kauffman invariant of the knot with A = −(−i)(k+1)/(k+2).
If we keep the same gauge group, but work with a different represen-

tation (for example, spin 1, rather than spin 1/2 in Eq. 5.9), we will
obtain different “particle types” of the theory.
One can also choose to work with different gauge groups. Using

SU(N) and choosing a level k one obtains the two parameter HOMFLY
knot polynomial (the two parameters here being N and k). Similarly,
using SO(N) at level k gives a two parameter Kauffman polynomial (not
to be confused with the Kauffman bracket).

5.3 Appendix: Odds and Ends about Chern

Simons Theory

5.3.1 Gauge Transforms with Nonabelian Gauge
Fields

Let us define a Wilson-line operator, similar to the Wilson loop but not
forming a closed loop, i.e., going along a curve C from space-time point
x to point y.

WC(x, y) = Tr

[
P exp

(∫

C

dlµaµ

)]

Under a gauge transformation function U(x) we intend that the Wilson
line operator transform as

WC(x, y) → U(x)−1 WC(x, y) U(y) (5.16)

Clearly this obeys composition of paths, and will correctly give a gauge
invariant result for a closed Wilson loop. Now let us see what is required
for the gauge field aµ such that Eq. 5.16 holds. We consider

WC(x, x+ dx) = 1 + aµdx
µ (5.17)

and its transformation should be

WC(x, x+ dx) → U(x)−1WC(x, x+ dx)U(x + dx)
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= U(x)−1[1 + aµdx
µ]U(x+ dx)

= U(x)−1[1 + aµdx
µ][U(x) + dxµ∂µU(x)]

= 1 + [U−1aµU + U−1∂µU ]dxµ (5.18)

By comparing Eq. 5.17 and Eq. 5.18 we see that the gauge transform
rule Eq. 5.12 correctly gives a gauge invariant Wilson loop operator.

5.3.2 Chern Simons Action is Metric Independent

You will often see books state that you don’t see the metric gµν written
anywhere in Eq. 5.13, therefore it must be metric independent. But that
kind of misses the point!
A differential geometer would see that one can write the Chern-Simons

action in differential form notation

SCS =
k

4π

∫
(a ∧ da+ 2

3
a ∧ a ∧ a)

which then makes it “obvious” that this is metric independent being the
integral of a 3-form.
In more detail however, we must first declare how the gauge field

transforms under changes of metric. It is a “1-form” meaning it is meant
to be integrated along a line to give a reparameterization invariant result,
such as in the Wilson loops. In other words, we are allowed to bend and
stretch the space-time manifold, but the flux through a loop should stay
constant. Under reparametrization of coordinates we have

∫
da =

∫
dxµaµ(x) =

∫
dx′µ

∂xν

∂x′µ
aν(x

′)

This means that under reparameterization x′(x) we have

aµ(x) =
∂xν

∂x′µ
aν(x

′)

such that the line integral remains invariant under a reparameterization
of the space.
Now, if we make this change on all of the a’s in the the Chern-Simons

action we obtain

ǫαβγ Tr

[
aα∂βaγ −

2i

3
aαaβaγ

]
→

ǫα
′β′γ′ ∂xα

∂x′α′
∂xβ

∂x′β′
∂xγ

∂x′γ′ Tr

[
aα∂βaγ −

2i

3
aαaβaγ

]

But notice that the prefactor, including the ǫ, is precisely the Jacobian
determinant and can be rewritten as

ǫα
′β′γ′

det[∂x/∂x′]

Thus the three-dimensional Chern-Simons action integral can be changed
to the dx′ variables and the form of the integral is completely unchanged
and thus depends only on the topological properties of the manifold.
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In fact, this feature of the Chern-Simons Lagrangian is fairly unique.
Given that we have a single gauge field aµ(x) this is the only (3-form)
gauge invariant Lagrangian density we can write down which will give a
topological invariant!

5.3.3 Winding Number: The Pontryagin Index

We would like to show that the integral in Eq. 5.15 is indeed always
an integer. While doing this rigorously is difficult, it is not too hard to
see roughly how it must be done. First, we note that, like the Chern-
Simons action, it is the integral of a three form so it does not care
about the metric on the manifold (this is not surprising being that this
winding number arose from the Chern-Simons action). One can then
reparameterize the manifold in terms of coordinates within the group,
and convert the integral over space into an integral over the group. The
only thing that is left unclear is then in the mapping U(x) : M → G
how many times the group is covered in this mapping. We then have
immediately that the given definition of the winding number must be an
integer times some constant. By construction of a few examples, one can
see that the constant is indeed unity (See exercise ??). A more detailed
discussion of this issue is given in Vandoren and van Nieuwenhuizen
[2008] and Rajaraman [1982].

5.3.4 Framing of the Manifold — or doubling the
theory

There is a bit of a glitch in Chern-Simons theory. We want the Chern-
Simons functional Z(M) to be a function of the topology of M only.
This is almost true — it is true up to a phase. In order to get the
phase, you need to specify one more piece of information which can
be provided in several ways (often called a 2-framing). This additional
piece of information is most easily described by saying that you need
to specify a bit of information about the topology of the 4-manifold
N that M bounds M = ∂N . It is a fact that all orientable closed
3-manifolds are the boundary of some 4-manifold — in fact, of many
possible 4-manifolds. The phase of Z(M) is sensitive only to the so-
called “signature” of the 4-manifold N . (Consult a book on 4 manifold
topology if you are interested!)
The fact that the Chern-Simons theory should depend on some infor-

mation about the 4-manifold that M bounds may sound a bit strange.
It is in fact a sign that the Chern-Simons theory is “anomolous”. That
is, it is not really well defined in 3-dimensions. If you try to make sense
of the functional integral

∫
Daµ, you discover that there is no well de-

fined limit by which you can break up space-time into little boxes and
integrate over aµ in each of these boxes. However, if you extend the
theory into 4-dimensions, then the theory becomes well behaved. This
is not unusual. We are familiar with lots of cases of this sort. Perhaps
the most famous example is the fermion doubling problem. You cannot
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write down a time reversal invariant theory for a single chirality fermion
in d dimensions without somehow getting the other chirality. However,
you can think of a system extended into d + 1 dimensions where one
chirality ends up on one of the d-dimensional boundaries and the other
chirality ends up on the other d dimensional boundary17. So to make17This is precisely what happens on the

surface of materials known as “Topo-
logical Insulators” (or TIs) in three di-
mensions. The bulk of the system is a
gapped insulator, but the surface of the
system has a single Dirac fermion (or an
odd number of Dirac fermions) and this
is impossible to have in a purely two-
dimensional system. See chapter ***.

Chern-Simons theory well-defined, you must either extend into 4d, or
you can “cancel” the anomoly in 3d by, for example, considering two, op-
posite chirality Chern-Simons theories coupled together (so-called “dou-
bled” Chern-Simons theory). The corresponding manifold invariant of
a doubled theory gets Z(M) from the righthanded theory and its com-
plex conjugate from the left handed theory, thus giving an end result of
|Z(M)|2 which obviously won’t care about the phase anyway!

5.3.5 Chern Simons Theory as Boundary of a Four
Dimensional Topological Theory

5.3.6 Chern Simons Canonical Quantization for the
Abelian Case

One can consider the Chern-Simons theory as a quantum mechanical
theory with wavefunctions and operators (i.e., not in path integral lan-
guage). To do this, we need to find the commutation relations. Working
in the gauge a0 = 0, in the Chern-Simons Lagrangian terms like ∂0ay
multiply ax and vice versa18. This means that ay(x) is the momen-18Note that for nonabelian Chern-

Simons theories working in the a0 = 0
gauge makes the a3 term of the action
vanish!

tum conjugate to ax(x) and vice versa. We thus have the commutation
relations

[ax(~x), ay(~x
′)] =

i~

µ
δ(~x− ~x′)

The arguments ~x here live in 2 dimensions. Consider now the Wilson
loop operators around the two different handles of a torus

Wj = exp

(
i(q/~)

∮

Lj

~dl · ~a
)

where here j indicates we have a loop around either cycle 1 (L1) or cycle
2 (L2) of our torus. The two paths must intersect at one point and
therefore, due to the above commutations, do not commute with each
other. We can use the identity that

eAeB = eBeAe[A,B]

which holds when [A,B] is a number not an operator. This then gives
us

W1W2 = eiq
2/µ~W2W1 = eiθW2W1

where θ is the statistical angle of the theory. Thus the Wilson loop
operators act just like operators T1 and T2 in section 4.3 which created
particle-hole pairs and moved them around the handle then reannihi-
lated. So even without discussing particles, the ground state wavefunc-
tion of the Chern-Simons theory is degenerate!
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Chapter Summary

• The Charge-Flux model can be realized in an abelian Chern-
Simons theory.

• We introduced some ideas of general nonabelian Chern-Simons the-
ory, including manifold invariants and turning Wilson loop opera-
tors into knot invariants.

A good reference for abelian Chern-Simons theory is

• F. Wilczek, ed. Fractional Statistics and Anyon Superconductivity,
World Scientific, (1990).

Some good references on nonabelian Chern-Simons theory are

• E.Witten, Quantum Field Theory and the Jones PolynomialComm.
Math. Phys. Volume 121, Number 3 (1989), 351-399; available on-
line here https://projecteuclid.org/euclid.cmp/1104178138. This
is the paper that won a Fields’ medal!

• Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman,
Sankar Das Sarma, Non-Abelian Anyons and Topological Quan-

tum Computation, Rev. Mod. Phys. 80, 1083 (2008). Also avail-
able online at https://arxiv.org/abs/0707.1889. This has a short
discussion of Chern-Simons theory meant to be easily digested.

• Louis Kauffman, Knots and Physics, World Scientific, (2001), 3ed.
The section on Chern-Simons theory is heuristic, but very useful.

• Current Algebras and Anomolies, by S. Treiman, R. Jackiw, B. Zu-
mino, and E. Witten (World Scientific) 1985. See particularly the
chapters by R. Jackiw.

• G. Dunne, Aspects of Chern-Simons Theory in Topological as-
pects of low dimensional systems. Les Houches - Ecole dEte de
Physique Theorique, vol 69. Springer, Berlin, Heidelberg, eds A.
Cometet, T, Jolicoeur and S. Ouvry. Also available as arXiv:hep-
th/9902115.

Exercises

Exercise 5.1 Polyakov Representation of the Linking Number
Consider a link made of two strands, L1 and L2. Consider the double line

integral

Φ(L1, L2) =
ǫijk
4π

∮

L1

dxi
∮

dxj
xk − yk

|x− y|3
(a) Show that Φ is equal to the phase accumulated by letting a unit of flux

run along one strand, and moving a unit charged particle along the path of
the other strand.
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(b) Show that the resulting phase is the topological invariant known as the
linking number — the number of times one strand wraps around the other,
see section 28.5.

This integral representation of linking was known to Gauss.

Exercise 5.2 Gauge Transforming the Chern-Simons Action
Make the gauge transform Eq. 5.12 on the Chern-Simons action 5.8 and

show that it results in the change 5.14. Note that there will be an additional
term that shows up which it a total derivative and will therefore vanish when
integrated over the whole manifold M.

Exercise 5.3 Winding Numbers of Groups in Manifolds
Consider the mapping of U(x) ∈ SU(2) → S3. Construct an example of a

map with winding number n for arbitrary n. I.e., find a representative of each
group element of Π3(SU(2)) (See note 15).

Exercise 5.4 Let us consider the manifold S3 which we consider as R
3 plus

a point at infinity. Consider the gauge transform function defined

U(x) = exp

(

iπNx · σ
√

|x|2 +R2

)

where x is a point in R
3, and σ represents the Pauli matrices with R an

arbitrary length scale. Show the winding number Eq. 5.15 gives the integer
N . Why does N need to be an integer here?



Short Digression on Quantum
Gravity 6
6.0.1 Why this is hard

Little is known about quantum gravity with any certainty at all. What
we do know for sure is the value of some of the fundamental constants
that must come into play: the gravitational constantG, the speed of light
c and of course Planck’s constant ~. From these we can put together an
energy scale, known as the Planck Scale

EPlanck =

√
~c5

G
≈ 1028 eV.

The temperature of the world around us is about 0.03 eV. Chemistry,
visible light, and biology occur on the scale of 1 eV. The LHC accelera-
tor probes physics on the scale of roughly 1013 eV. This means trying to
guess anything about the Planck scale is trying to guess physics on an
energy scale 15 orders of magnitude beyond what any accelerator1 exper- 1Cosmic ray observations have been

made at several orders of magnitude
higher still — but very little can be de-
duced from these extremely rare and
uncontrolled events. A famous event
known as the “Oh my God particle”
was apparently 1020 eV, still 8 orders of
magnitude away from the Planck scale.

iment has ever probed. We must surely accept the possibility that any
physical principle we hold dear from all of our experiments on low energy
scales could no longer hold true at the Planck scale! The only thing that
is really required is that the effective low energy theory matches that
which we can see at the low energies in the world around us.

6.0.2 Which Approach?

There are several approaches to quantum gravity. While I will not
make any statement about which approaches is promising, and which
approaches are crazy and overpublicized2, I am comfortable stating that 2For some basic information on the

wars between some of the different ap-
proaches to quantum gravity, see the
books “The Trouble With Physics” by
Lee Smolin or “Not Even Wrong” by
Peter Woit. Or see responses to these,
such as the article by J. Polchinski in
the American Scientist, or (with appro-
priate warning that it a bit of a rant)
the online response by Lubos Motl.

many of these investigations have led to incredibly interesting and im-
portant things being discovered. While in some cases (maybe in most
cases) the discoveries may be more about math than about physics, they
are nonetheless worthwhile investigations that I am enthusiastic about.

6.1 Some general principles?

We have to choose general principles that we believe will always hold,
despite the fact that we are considering scales of energy and length
15 orders of magnitude away from anything we have ever observed or
measured. Much of the community feels that the most fundamental
thing to hold onto is the Feynman picture of quantum mechanics —
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that all space-time histories must be allowed. We might write a quantum
partition function of the form

Z =
∑

All universes

eiS/~ (6.1)

where the sum is now over everything that could happen in all pos-
sible histories of the universe — it is the ultimate sum over histories!
Obviously such a thing is hard to even contemplate. Several key simpli-
fications will make contemplation easier:

(1) Let us ignore matter. Let us (at least to begin with) try to model
only universes which are completely devoid of substance and only
contain vacuum.

Thus the universe contains only the space-time metric. Doing this, the
Einstein-Hilbert action3 for gravity takes the form3Written down first by Hilbert in 1915.

SEinstein ∼
∫

M
dx R

√−g

where the integration is over the entire space-time manifold M, where
here g is the space-time metric and R is the Ricci scalar. One might
imagine that we could construct a theory of quantum gravity by plugging
the Einstein-Hilbert action into the path integral form of Eq. 6.1. We
obtain

Z =

∫
Dg eiSEinstein[g]/~ . (6.2)

Even without matter in the universe, the model is very nontrivial be-
cause the space-time metric can fluctuate — these fluctuations are just
gravity waves4. Even in this limit no one has fully made sense of this4Observation of gravity waves by the

LIGO experiment won the 2017 Nobel
Prize. Long before this we had very
strong indirect observation of gravity
waves from observation of the Hulse-
Taylor binary pulsar which earned a
Nobel Prize in 1993.

type of path integral without many additional assumptions.

(2) Let us simplify even more by considering a 2+1 dimensional uni-
verse.

We are used to the idea that many things simplify when we go to lower
dimension. Indeed, that is what happens here. In 2+1 dimension, there
is an enormous simplification that there are no gravity waves! Why
not? In short, there are just not enough degrees of freedom in a 2+1
dimensional metric to allow for gravity waves. (For more information
on this fact see the appendix to this chapter, section 6.2.) As a result,
the only classical solution of the Einstein equations in the vacuum is
that R = 0 and that is all! I.e., the universe is flat and there are no
fluctuations. (One can also have a cosmological constant Λ in which case
R = 2Λg is the solution).
One might think that this means that gravity in 2+1D is completely

trivial. However, it is not. The space-time manifold, although every-
where curvature free, still has the possibility of having a nontrivial topol-
ogy. Thus what we are interested in is actually the different topologies
that our space-time manifold might have!
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We thus rewrite Eq. 6.1 as

Z =
∑

manifoldsM

∫

M
Dg eiS[g]/~

=
∑

manifoldsM
Z(M)

where S[g] is the Einstein-Hilbert action for a flat universe with metric
g, the sum is over all different topologies of manifolds the universe might
have, and the integration Dg is an integration over all metrics subject
to the condition that the manifold’s topology is fixed to be M.
Why would we be interested in such a quantity? In short, suppose

we know what the topology is of our (d-dimensional universe) at a fixed
time t. We want to know the amplitudes that the topology changes as
t develops. I.e., is the space-time manifold of our universe of the form
M = Σ× time or does the space-time manifold split analogous to that
shown in Fig. 6.1.

ti
m
e

Fig. 6.1 A manifold where the topol-
ogy of a space-like slice (slice at fixed
time) changes as time progresses.

Here is the surprise: the function Z(M) is precisely the Chern-Simons
partition function discussed above in section 5.2 for an appropriately
chosen gauge group!5 This connection is very roughly sketched in the 5 This was first noted by Achúcarro

and Townsend [1986] and then was de-
veloped further by Witten [1988] and
many others.

chapter appendix section 6.3.

6.1.1 Further Comments on Connections to
Quantum Gravity

In the “this is not string-theory” school of thought for quantum gravity,
evaluation of Eq. 6.2 is the main goal. Crucially one needs some vari-
ables to describe the metric of the universe. Several different approaches
to this seem to converge on some similar structures. One interesting ap-
proach, known as loop quantum gravity, uses Wilson loop operators as
the elementary variables of the theory (once one has reformulated grav-
ity to look like a gauge theory). Another approach discretizes space-time
and sums over the different possible discretizations6. With certain as-

6Indeed at length scales as small as the

Planck length lPlanck =
√

~G/c3 =
~c/EPlanck ≈ 1.6× 10−35m, there is no
reason to believe space-time resembles
our macroscopic idea of a smooth man-
ifold. Roughly the ratio of the radius
of the sun to the radius of an atom is
the same as the ratio of the radius of
an atom to the Planck length!

sumptions these approaches appear to be very closely related! In section
16.3 we will return to the issue of discretizing space-time and how this
can result in topological gravity.
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6.2 Appendix: No Gravity Waves in 2+1 D

Why are there no gravity waves in 2+1 dimension? The short argument
for this is as follows (taken from Carlip [2005])

In n dimensions, the phase space of general relativity is
parametrized by a spatial metric at constant time, which has
n(n− 1)/2 components, and its conjugate momentum, which adds
another n(n− 1)/2 components. But n of the Einstein field equa-
tions are constraints rather than dynamical equations, and n more
degrees of freedom can be eliminated by coordinate choices. We
are thus left with n(n − 1) − 2n = n(n − 3) physical degrees of
freedom per spacetime point. In four dimensions, this gives the
usual four phase space degrees of freedom, two gravitational wave
polarizations and their conjugate momenta. If n = 3, there are no
local degrees of freedom.

Let us put a bit more detail on this argument. If we write the flat
metric as ηµ,ν = diag[−1, 1, 1, . . .] in any dimension, and we consider
small deviations from a flat universe g = η + h, we can construct the
trace-reversed

h̄µν = hµν −
1

2
ηµνη

ρσhρσ .

In any dimension, gravitational waves in vacuum take the form

h̄µν ,ν = 0

2005 and
�h̄µν = 0

where the comma notation indicates derivatives, and indices are raised
and lowered with η.
In any dimension we will have the gravitational wave of the form

h̄µν = ǫµνe
ikρxρ

where the polarization ǫµν is orthogonal to the lightlike propagation
wavevector, kµkµ = 0, meaning

ǫµνk
ν = 0. (6.3)

2005
However, one must also worry about gauge freedoms. We can redefine

our coordinates and change the form of the metric without changing any
of the spatial curvatures. In particular, making a coordinate transform
x→ x− ξ, we have

h̄µν → h̄µν − ξν,µ − ξµ,ν + ηµ,νξ
α
,α

Now here is the key: In 2+1 D for any matrix ǫ you choose, you can
always find a

ξµ = Aµe
ikρxρ
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such that
h̄µν = ǫµνe

ikρxρ = ξν,µ + ξµ,ν − ηµ,νξ
α
,α

This means that the wave is pure gauge, and the system remains per-
fectly flat! I.e., if you calculate the curvature with this form of h̄, you
will find zero curvature.
To be more precise, we find

ǫµ,ν = Aµkν −Aνkµ + ηµνA
σkσ

and any ǫ that satisfies Eq. 6.3 can be represented with some vector A.
It is easy to check this by counting degrees of freedom. ǫ has 6 degrees
of freedom in 2+1 D, but Eq. 6.3 is 3 constraints, and A has three
parameters, so we should always be able to solve the equation for A
given ǫ.

6.3 Appendix: Relation of 2+1D GR to

Chern-Simons Theory (In Brief)

.
Let us start with a Chern-Simons lagrangian for SU(2)k ⊗ SU(2)−k.

Here we will use a very shorthand notation

L =
k

4π

∫

M

(A+dA+ +
2

3
A3

+) +
−k
4π

∫

M

(A−dA− +
2

3
A3

−)

Making the transformation

ω=
1

2
(A+ +A−) e =

k

8π
(A+ −A−)

one obtains the Lagrangian (using differential form notation)

L =

∫
(e ∧R+

λ

3
e ∧ e ∧ e) (6.4)

Here e is interpreted as the dreibein of general relativity which is related
to the metric by (returning appropriate indices to vectors)

gµν = eaµe
a
νηab

with ηab the flat metric in 2+1 D, and ω is a spin connection which has
an equation of motion that dictates it is torsion free, and the remaining
Lagrangian Eq. 6.4 is precisely the 2+1D Einstein-Hilbert Lagrangian
in the so-called Palitini form. In that equation

λ = (4π/k)2

is the cosmological constant. The calculation here has been given for a
Euclidean form of gravity. For Lorenzian gravity one needs to work with
SO(2, 1) Chern-Simons theory which is a bit more complicated.
More details of the relationship between 2+1D GR and Chern-Simons

theory are provided in the further reading, listed below.



64 Short Digression on Quantum Gravity

Further Reading

• For a huge amount of information on 2+1 dimensional quantum
gravity, see Carlip [2005].

• The relationship of 2+1 D gravity to Chern-Simons theory was first
developed by Ana Achúcarro and Paul Townsend ([Achúcarro and
Townsend, 1986])

• The relationship was further developed by EdwardWitten (Witten
[1988])

• Years later, the question was revisited byWitten in arXiv:0706.3359,
where doubt is raised as to whether Chern-Simons theory is suffi-
cient to fully describe gravity in 2+1 dimensions.

• A (potentially biased) history of various approaches to quantum
gravity is given by Rovelli [2000].

• A Reviews of Loop Quantum Gravity are given by Rovelli [2008]
and Nicolai et al. [2005].

• Discussions of discretization approaches to quantum gravity are
given by Regge and Williams [2000] and Lorente [2006].

• The article by Nicolai and Peeters [2007] covers the connections
between the loop and discretization approach fairly clearly.



Topological Quantum Field
Theory 7
We already have a rough picture of a Topological Quantum Field Theory
(TQFT) as a quantum theory that depends on topological properties as
opposed to depending on geometric properties. For example, it matters
that particle 1 traveled around particle 2, but it doesn’t matter how far
apart they are.
We can formalize these ideas by saying that the theory should be

independent of small deformations of the space-time metric. We might
say that

δ

δgµν
〈any correlator〉 = 0.

This is a completely valid way to define a TQFT, but is often not very
useful.
Another way to define a (2+1 dimensional) TQFT is that it is a set of

rules that takes an input of a labeled link embedded in a three-manifold1 1Particularly condensed matter physi-
cists might start to wonder why we need
to start talking about arbitrary, and po-
tentially bizarre sounding, three dimen-
sional manifolds — what could they
possibly have to do with real physical
systems? However (besides just being
a beautiful digression) pursuing this di-
rection allows us to understand some
of the strong constraints on topological
models and their mathematical struc-
ture, and this turns out to be impor-
tant even for the analysis of even fairly
simple physical systems.

and gives an output of a complex number in a way that is invariant under
smooth deformations. This definition is quite analogous to our definition
of a knot invariant, with two key differences. First, we allow for the lines
to be labeled with a “particle type” (and our rules for evaluating the end
result will depend on the particular particle type labels). Secondly, the
link can be embedded in some arbitrarily complicated three-manifold2.

2We may also allow world lines of
anyons to fuse into other species as dis-
cussed in section 4.2.

This type of mapping (see Fig. 7.1) is precisely the sort of thing that one
gets as an output of Chern-Simons theory which we called Z(M, links) as
we discussed in section 5.2. The advantage of thinking in this language

M3

a

b −→ Z(M3, a, b)

Fig. 7.1 A (2+1) dimensional TQFT takes an input of a labeled link in a manifold
and produces an output of a complex number in a manner which is topologically
invariant.
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is that strictly speaking, the functional integrals of Chern-Simons theory
are often not well defined mathematically. Instead, here we bypass the
Chern-Simons field theory altogether and define a TQFT simply as a
mapping from a manifold with a link to an output.
A closely related but more formal definition of TQFTs is given by a

set of Axioms by Atiyah [1988]3 which are in some sense much more3Sir Michael Atiyah, a Fields medal-
ist, was one of the foremost mathemati-
cians of the 20th century. He special-
ized in geometry and topology — par-
ticularly at the interface between math-
ematics and physics.

informative.

7.1 Paraphrasing of Atiyah’s Axioms

Here I’m going to give a rough interpretation of Aityah’s axioms of
TQFT, suitable for physicists. To begin with, we will consider space-
time manifolds with no particles in them. As we have found above,
TQFTs are nontrivial even in the absence of any particles. Later on in
section 7.2 we will discuss adding particles and moving them around in
space-time too.
We will consider a D+ 1 dimensional space-time manifold4 which we4While it is possible to define certain

TQFTs on non-orientable manifolds it
is much easier to assume that all man-
ifolds will be orientable — excluding
things like Möbius strips and Klein bot-
tles. See section 28.1.

call M, and D dimensional oriented slice Σ — we can often think of this
slice as being the D-dimensional space at a fixed time. Almost always
we will be thinking of D = 2, although the axioms are quite general and
can be applied to any D.

AXIOM 1: A D-dimensional space Σ is associated with a Hilbert
space V (Σ) which depends only on the topology5 of Σ.5The phrases “depends only on the

topology...” is something that physi-
cists would say, but mathematicians
would not. To a mathematician, topol-
ogy describes things like whether sets
contain their limit points, whether
points are infinitely dense and so forth.
Perhaps it would be better to just say
that V (Σ) does not change under con-
tinuous deformation of Σ. This is
something mathematicians and physi-
cists would both agree on, and this is
what we actually mean here!

We call the space V , which stands for vector space, although some-
times people call it H for Hilbert space.
As an example of what we mean, we have seen that if Σ is a torus, there

is a nontrivial Hilbert space coming from the ground state degeneracy.
This degenerate space is the space V (Σ). The space V (Σ) will depend
on the particular anyon theory we are considering. For example in the
case of abelian anyons in section 4.3 we found a degeneracy of m for a
system on a torus with statistical angle θ = πp/m.
Note that when we add particles to the system (we will do this in

section 7.2), if the particles are nonabelian, then there will also be a
Hilbert space associated with the additional degeneracy that comes with
such nonabelian particles.

AXIOM 2: the disjoint union of two D-dimensional spaces Σ1 and
Σ2 will be associated with a Hilbert space which is the tensor product
of the Hilbert spaces associated with each space6. I.e.,6This may sound a bit abstract, but

it is exactly how the Hilbert spaces
of any two systems must combine to-
gether. For example, in the case of two
spins, the Hilbert space of the union of
the two spins is the tensor product of
the two Hilbert spaces.

V (Σ1 ∪ Σ2) = V (Σ1)⊗ V (Σ2)

In particular this means that the vector space associated with the null
or empty space ∅ must be just the complex numbers. Let us state this
mathematically.

Axiom 2 Implies:
V (∅) = C
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The reason this must be true is because ∅ ∪ Σ = Σ and C ⊗ V (Σ) =
V (Σ) so the result follows7. 7If this sounds confusing, remember the

space C is just the space of length 1
complex vectors, and tensoring a length
n vector with a length m vector gives
a size n by m matrix, so tensoring a
vector of length n with a length 1 vector
gives back a vector of length n.

AXIOM 3: IfM is a (d+1)-dimensional manifold withD-dimensional
boundary8 Σ = ∂M , then we associate a particular element of the vector

8We use the ∂ to denote boundary. See
section 28.1.4.

space V (Σ) with this manifold. We write

Z(M) ∈ V (∂M)

where the association (i.e., which particular state in the vector space is
chosen) again depends only on the topology of M.

Here we might think of ∂M as being the space-like slice of the system
at a fixed time, and V (∂M) as being the possible Hilbert space of ground
states. The rest of M (the interior, not the boundary) is the space-time
history of the system, and Z(M) is the particular wavefunction that is
picked out by this given space-time history (See Fig. 7.2).

ti
m
e M

∂M

or M

∂M

Fig. 7.2 Two depictions of a space-time manifold M with boundary ∂M. The left
depiction is problematic because the only boundary of the manifold is supposed to
be the red top surface ∂M (the black outline of M really should not be there, but
we can’t draw a closed three manifold!). The right depiction is more accurate in this
sense, although it depicts a 2D M and 1D ∂M.

The point of this axiom is to state that the particular wavefunction of
a system Z(M) which is chosen from the available vector space depends
on the space-time history of the system. We have seen this principle
before several times. For example, we know that if a particle-antiparticle
pair is taken around a handle, this changes which wavefunction we are
looking at — this process would be part of the space-time history.
Axiom 3 Implies: For M closed, we have ∂M = ∅, the empty space,

so

Z(M) ∈ C

i.e., the TQFT must assign a manifold a topological invariant which is
a complex number. This is exactly what we found from Chern-Simons
theory.
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∂M = Σ

M

∂M′ = Σ∗

M′

Z(M′) = 〈ψ′| ∈ V (Σ∗)

Z(M) = |ψ〉 ∈ V (Σ)

ti
m
e

ti
m
e

Fig. 7.3 In this picture M and M′ are meant to fit together since they have a
common boundary but with opposite orientation Σ = ∂M = ∂M′∗. Here 〈ψ′| =
Z(M′) ∈ V (Σ∗) lives in the dual space of |ψ〉 = Z(M) ∈ V (Σ). Note that the
normals are oppositely directed

.

AXIOM 4: Reversing Orientation

V (Σ∗) = V ∗(Σ)

where by Σ∗ we mean the same surface with reversed orientation, whereas
by V ∗ we mean the dual space — i.e., we turn kets into bras. It is a
useful convention to keep in mind that the orientiation of the normal of
∂M should be pointing out of M. See Fig. 7.3.
GLUING: If we have two manifolds M and M′ which have a com-

mon boundary ∂M = (∂M′)∗ we can glue these two manifolds together
by taking inner products of the corresponding states as shown in Fig. 7.4.
Here we have Σ = ∂M = (∂M′)∗ so we can glue together the two man-
ifolds along their common boundary to give9

9The notation M ∪Σ M′ means the
union of M and M′ glued together
along the common boundary Σ.

Z(M∪Σ M′) = 〈Z(M′)|Z(M)〉 (7.1)

COBORDISM: Two manifolds Σ1 and Σ2 are called “cobordant” if
their disjoint union is the boundary of a manifold M.

∂M = Σ1 ∪Σ2

We say that M is a cobordism between Σ1 and Σ2. See Fig. 7.5 for an
example.
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M

M′

Σ∗

Σ ⇒
M

M′

Z(M∪Σ M′) = 〈Z(M′)|Z(M)〉 = 〈ψ′|ψ〉
Fig. 7.4 Gluing two manifolds together by taking the inner product of the wave-
functions on their common, but oppositely oriented, boundaries.

We thus have Z(M) ∈ V (Σ∗
1)⊗ V (Σ2), so that we can write

Z(M) =
∑

αβ

Uαβ |ψΣ2,α〉 ⊗ 〈ψΣ1,β |

where |ψΣ2,α〉 is the basis of states for V (Σ2) and 〈ψΣ1,β| is the basis of
states for V (Σ∗

1). We can thus think of the cobordism M as being an
evolution10 similar to that shown in Fig. 7.5. 10This evolution may or may not be

unitary — indeed, the dimensions of
V (Σ1) and V (Σ2) may not even match
if Σ1 6= Σ2.

M

Σ1

Σ2

∂M = Σ∗
1 ∪ Σ2

Fig. 7.5 M is the cobordism between Σ∗
1 and Σ2. I.e., ∂M = Σ∗

1 ∪ Σ2. Note that
we have reversed orientation of Σ1 here.

IDENTITY COBORDISM: If we have M = Σ× I where I is the
one dimensional interval (We could call it the 1-disk, D1 also) then the
boundaries are Σ and Σ∗ (See Fig. 7.6), and the cobordism implements
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a map between V (Σ) and V (Σ). Since the interval can be topologically
contracted to nothing (or infinitesimal thickness”), we can take this map
to be the identity:

Z(Σ× I) =
∑

α

|ψΣ,α〉 ⊗ 〈ψΣ,α| = identity.

where the sum is over the entire basis of states of V (Σ).
Σ

Σ

M

M = Σ× I

∂M = Σ ∪ Σ∗

Fig. 7.6 A cobordism that can be
topologically contracted to nothing acts
as the identity on the Hilbert space
V (Σ).

Σ

M

M = Σ× S1

Fig. 7.7 Gluing the top of Σ × I to
the bottom we obtain M = Σ × S1.
An important fact is that Z(Σ× S1) is
just the ground state degeneracy of the
2-manifold Σ

We can now consider taking the top of the interval I and gluing it
to the bottom to construct a closed manifold M = Σ × S1, where S1

means the circle (or 1-sphere), as shown in Fig. 7.7. We then have

Z(Σ× S1) = Tr [Z(Σ× I)] = Dim[V (Σ)]. (7.2)

where Tr means trace. Thus we obtain the dimension of the Hilbert
space V (Σ), or in other words, the ground state degeneracy of the 2-
manifold Σ.
As we have discussed above in section 4.3, for the torus T 2 we have

Dim V (T 2) = number of particle species (7.3)

which we argued (at least for modular abelian anyon models) based on
non-commutativity of taking anyons around the handles of the torus, and
we will justify for nonabelian anyons as well in section 7.2.1. Similarly,
for a 2-sphere S2, we have

DimV (S2) = 1 (7.4)

since there are no noncontractable loops, and this will also hold for both
abelian and nonabelian theories. See section 4.3.1 for discussion of the
ground state degeneracy of abelian theories on higher genus surfaces.

7.2 Adding Particles

We now consider extending the ideas of TQFT to space-time manifolds
with particle world-lines in them.11

11For dimension D > 2+1 dimensional
TQFTs we could have world-sheets of
moving strings and other higher dimen-
sional objects as well.

Σ
b̄

ā

a

b

Fig. 7.8 A 2-manifold with particles
in it, which are marked and labeled
points. We now call the combination
(the manifold and the marked points)
Σ for brevity.

Let us imagine that there are different anyon types which we can
label as a, b, c, and so forth. The corresponding antianyons are labeled
with overbar ā, b̄ and so forth as in section 4.2.2. We now imagine a
2-manifold with some marked and labeled points as shown in Fig. 7.8.
We call the combination of the 2-manifold with the marked points Σ for
brevity. As with the case without particles (AXIOM 1, in section 7.1), Σ
is associated with a Hilbert space V (Σ). The dimension of this Hilbert
space depends on the number and type of particles in the manifold (We
expect for nonabelian particles, the dimension will grow exponentially
with the number of particles). We can span the space V (Σ) with some
basis states |ψα〉 which will get rotated into each other if we move the
marked points around within the manifold (i.e., if we braid the particles
around each other).
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a

c

b M

Σ = ∂Mb̄

ā

a

b

a

c

b M

Σ = ∂M

M′

Σ′ = ∂(M∪M′)b̄

ā

a
b

Fig. 7.9 Left: 3-manifold M with particles in it, which are marked and labeled lines
(the lines should be directed unless the particle is its own antiparticle). These world
lines may end on the boundary Σ = ∂M. The wavefunction on the boundary ∂M is
determined by the spacetime history given by M. Right: M′ evolves the positions
of the particles in time. Note that by M′ we mean not just the manifold, but the
manifold along with the world-lines in it. In this particular picture Σ = Σ′ being the
same surface with the same types of particles at the same positions.

Similarly a 3-manifold M is now supplemented with labeled links
indicating the world lines of the particles. The world-lines should be
directed unless the particles are their own antiparticles. The world lines
are allowed to end on the boundary of the manifold ∂M. See left of
Fig. 7.9. Analogously we may sometimes call the combination of the
manifold with its world lines M, although sometimes we will write this
as M;L where L indicates the “link” (or knot) of the world lines.
As in the above discussion of axiom 3, the spacetime history specifies

exactly which wavefunction

|ψ〉 = Z(M) ∈ V (∂M)

is realized on the boundary Σ = ∂M. If a basis of V (∂M) is given by
wavefunctions |ψa〉 the we can generally write the particular wavefunc-
tion |ψ〉 in this basis

|ψ〉 =
∑

α

cα|ψα〉.

We can now think about how we would braid particles around each
other. To do this we glue another manifold M′ to ∂M to continue the
time evolution, as shown in the right of Fig. 7.9. The final wavefunction
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is written as

|ψ′〉 = Z(M∪M′) ∈ V (Σ′)

If we put the positions of the particles in Σ′ at the same positions as the
particles in Σ, then the Hilbert spaces, V (Σ′) is the same as V (Σ), and
we can write |ψ′〉 in the same basis as |ψ〉

|ψ′〉 =
∑

α

c′α|ψα〉.

We can then think of Z(M′) as giving us a unitary transformation on
this Hilbert space — which is exactly what we think of as nonabelian
statistics. We can write explicitly the unitary transformation

Z(M′) =
∑

αβ

Uαβ |ψΣ′,α〉 ⊗ 〈ψΣ,β |

or equivalently

c′α =
∑

β

Uαβcβ.

Note that if the particles stay fixed in their positions (or move in
topologically trivial ways) then M′ can be contracted to infinitesimal
thickness and we can think of the unitary transformation as being the
identity. As with the identity cobordism discussed in section 7.1, we can
take such an identity transformation, glue the top to the bottom and
obtain

Z(Σ× S1) = Dim[V (Σ)] (7.5)

I.e., the partition function Z is just the dimension of the Hilbert space
of the wavefunction. This holds true even when Σ has marked points,
or particles, in it.

7.2.1 Particles or No-Particles

In the same way that the ground state of a topological system “knows”
about the types of anyons that can exist in the system, it is also the
case that the TQFT in the absence of particles actually carries the same
information as in the presence of particles12. To see this consider a12Up to here our discussion has been

applicable to TQFTs in any dimension.
From here on we specialize to the most
interesting case of D = 2, that is 2+1
dimensions.

manifold M with labeled and directed world-lines Li in them, as shown
in Fig. 7.10. Now consider removing the world lines along with a hollow
tubular neighborhood surrounding the paths that the world-lines follow
as shown in the figure. We now have a manifold with a solid torus
removed for each world-line loop. (Think of a worm having eaten a path
out of the manifold.) In this configuration, the boundary ∂M of the
manifold M now contains the surface of these empty tubes — i.e, the
surface of a torus T 2 for each world-line loop. Note that the empty tube
is topologically a solid torus D2 × S1 even if the world-line forms some
knot13. The statement that it forms a nontrivial knot is a statement

13D2 is the usual notation for a two

dimensional disk and S1 again is the
circle. about the embedding of the S1 loop in the manifold.
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M

⇒L1

L2
M

Fig. 7.10 Removing the world-lines on the left along with a thickened tube. Imagine
a worm burrowing along the path of the world lines and leaving a hollow hole (colored
red).

Note that the Hilbert space of the torus surface T 2 is in one-to-one
correspondence with the particle types that can be put around the han-
dle of the torus. Indeed, each possible state |ψa〉 of the torus surface
corresponds to a picture like that of Fig. 7.11, where a particle of type
a goes around the handle. We can think of this solid torus manifold
as being a space-time history where t = −∞ is the central core of the
solid torus (the circle that traces the central line of the jelly filling of the
donut) and the torus surface is the present time. Somewhere between
t = −∞ and the time on the surface of the torus, a particle of type
a has been dragged around the handle. Obviously, gluing such a solid
torus containing a particle world line (Fig. 7.11) back into the empty
solid-torus-shaped tube (right of Fig. 7.10) recovers the original picture
of labeled world lines following these paths (left of Fig. 7.10).

a

Fig. 7.11 The possible wavefunctions |ψa〉 that we can have on the
surface of the torus can be realized by having a world-line of a parti-
cle of type a going around the handle of the torus. We can call these
Z(solid torus with a running around handle) = |ψa〉

The partition function of the manifold with the tori excised from it
(the right of Fig. 7.10) contains all of the information necessary to de-
termine the partition function for the left of Fig. 7.10 for any particle
types that we choose to follow the given world lines. For the manifold
on the right there are two surfaces (the two surfaces on the inside of the
holes left where we excised the two tori), so we have

Z(M) =
∑

i,j

Z(M; i, j) 〈ψL1,i| ⊗ 〈ψL2,j |

where Z(M; i, j) is the partition function for the torus with two particle
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types i, j following the two world line loops L1 and L2, and the two
wavefunctions are the corresponding boundary condition. Thus, if we
want to extract Z(M; a, b), where the particle lines are labeled with a, b
we simply glue in the wavefunction |ψL1,a〉 ⊗ |ψL2,b〉 representing the
boundary condition on the two surfaces.

7.3 Building Simple 3-Manifolds

7.3.1 S3 and the modular S-matrix

We will now consider building up 3-manifolds from pieces by gluing
objects together using the gluing axiom from section 7.1. The simplest
3-manifold to assemble is the three sphere S3. Remember that S3 can be
thought of as R3 compactified with a single point at infinity (the same
way that S2 is a plane, closed up at infinity — think of stereographic
projection. See the discussion in section 28.1). Recall also that a solid
torus should be thought of as a disk crossed with a circle D2 × S1. I
claim that we can assemble S3 from two solid tori14

14If you are rusty on these elementary
topology manipulations, see the review
in section 28.1

S3 = (S1 ×D2) ∪T 2 (D2 × S1)

The notation here is that the two pieces S1×D2 and D2×S1 are joined
together on their common boundary which is T 2 (the torus surface).
There is a very elegant proof of this decomposition. Consider the

4-ball B4. Topologically we have15

15Topologically it is easiest to think
about the n-dimensional ball, Bn, as
being the interval I = B1 raised to the
nth power. The disk (or 2-ball), is topo-
logically a filled-in square D2 = B2 =
I×I. The usual 3-ball is topologically a
cube B3 = I×I×I. The 4-ball is topo-
logically a 4-cube B4 = I × I × I × I =
D2 ×D2.

B4 = D2 ×D2

Now applying the boundary operator ∂ and using the fact that the
boundary operator obeys the Leibniz rule (i.e., it distributes like a
derivative), we have

S3 = ∂B4 = ∂(D2 ×D2) = (∂D2 ×D2) ∪ (D2 × ∂D2)

= (S1 ×D2) ∪T 2 (D2 × S1)

where we have used the fact that the boundary of a disk is a circle,
∂D2 = S1. Note that the two solid tori differ in that they have the
oppositeD2 filled in. Note that the two solid tori here are glued together
along a common T 2 = S1 × S1 boundary. To see this note that

∂(S1 ×D2) = S1 × S1 = ∂(D2 × S1).

The two tori are glued together meridian-to-longitude and longitude-to-
meridian. (I.e., the contractable direction of one torus is glued to the
non-contractable direction of the other, and vice versa.) A sketch of
how the two solid tori are assembled together to make S3 is given in
Fig. 7.12.

a

Fig. 7.12 Assembling two solid tori to
make S3. The obviously drawn torus
D2 × S1 can be thought of as the red
disk D2 crossed with the blue circle
S1. The remainder of space outside of
this torus, including the point at infin-
ity is the other solid torus S1 × D2.
For this “outside” solid torus, the S1

can be thought of as the vertical green
line. This line becomes S1 by connect-
ing up with itself at the point at infin-
ity. The upper shaded disk is an exam-
ple of a contractable D2 which is con-
tained entirely within the outside solid
torus. Note that the entire outside solid
torus is S1 ×D2, the vertical green line
crossed with disks topologically equiv-
alent to this one. The green loop off to
the side (also contained within the out-
side torus), like the vertical green S1

loop is not contractable within the out-
side solid torus, but can be deformed
continuously to the vertical green loop.

Let us think about the partition function of these two solid tori which
are glued together on their boundaries to make up S3. We write the
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partition function as the overlap between wavefunctions on the outside
and inside tori:

Z(S3) = 〈Z(S1 ×D2)|Z(D2 × S1)〉 = 〈ψoutside|ψinside〉

where the ψ’s are the wavefunctions on the surface of the torus.
We can further consider including world lines around the noncon-

tractable loops of the solid torus, as in Fig. 7.11. There is a different
state on the surface of the torus for each particle type we have run-
ning around the handle. We then assemble S3 with these new solid tori
and get an S3 with two particle world lines linked together as shown in
Fig. 7.13. Gluing the two tori together we get

Z(S3; a loop linking b loop) = 〈Z(S1 ×D2; b)|Z(D2 × S1; a)〉 ≡ Sab
(7.6)

This quantity Sab is known as the modular S-matrix, and it is a very
important quantity in topological theories as we shall see in chapter 18
below.16

16Some comments on the S-matrix: (1)
since a linking b is topologically the
same as b linking a we should have
Sab = Sba. (2) Reversing the direction
of the world line takes a particle to its
anti-particle. This is topologically the
same as taking the mirror image of the
linking diagram in Fig. 7.13, thus we
have Sāb = [Sab]

∗ where ā is the an-
tiparticle of a.a

b

〈Z(S1 ×D2; b) | Z(D2 × S1; a)〉 =

a

b

=

Embedded in S3

= Z(S3, a link b) = Sab

Fig. 7.13 Here we assemble a partition function for S3 with world lines of a linking

b embedded in the S3. To do this we glue together two solid tori each with a world
line running around the handle. The green line marked b runs around the handle of
the “outside” torus. The end result is known as the modular S-matrix, and it gives a
basis transform converting between the two bases which both span the Hilbert space
of the torus surface where the two solid tori are glued together.

Note that the S-matrix is unitary, since it is simply a basis transfor-
mation between the two sets of wavefunction which both span the vector
space V (T 2) of the torus surface T 2 where the two solid tori are glued
together. Note also that the element S00, corresponding to the element
of the S-matrix where the vacuum particle (no particle at all!) is put
around both handles. (Here we are using 0 to mean the vacuum.) This
tells us that

Z(S3) = S00 ≤ 1
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and in fact, should be strictly less than one unless there are no nontrivial
particle types and S is a one-by-one dimensional matrix.
Another way of viewing the S matrix is as a simple link between two

strands, as shown in Fig. 7.13. As with the Kauffman bracket invariant,
we can construct a set of diagrammatic rules to give a value to knots.
Soon, in chapters 8-18 we will construct diagramatic rules to help us
“evaluate” knots like this. These rules will be somewhat similar to the
rules for the Kauffman bracket invariant, only now we need to keep track
of labels on world lines as well.

7.3.2 S2 × S1

a b

Sew these disks together along their boundaries to make S2

Fig. 7.14 Assembling two solid tori to make S2 × S1. Here the two contractable

disks D2 are sewed together along their boundaries to make S2.

There is another way we can put two solid tori together to make
a closed manifold17. Instead of attaching longitude-to-meridian and17In fact there are an infinite number

of ways two tori can be sewed together
to form a closed manifold. These are
discussed in detail in the appendix to
this chapter, section 7.4.

meridian-to-longitude, we instead attach meridian-to-meridian and long-
itude-to-longitude. (This is perhaps a simpler way to put together two
solid tori!) See Figure 7.14. Here we claim that18

18One should be warned that S2 × S1

cannot be embedded in usual three di-
mensional space, so visualizing it is very
hard!

S2 × S1 = (D2 × S1) ∪T 2 (D2 × S1)

The sewing together is again done along the common boundary T 2 =
S1×S1. The S1 factors in both solid tori are the same, and both of the
D2 have the same S1 boundary. Thus we are sewing togther two disks
D2 along their S1 boundaries to make a 2-sphere S2 (imagine cutting
a sphere in half along its equator and getting two disks which are the
north and south hemispheres).
As in the previous case, we can put world lines through the handles

of the solid tori if we want. If we do so we have1919It is worth considering how the world
lines, in the case where a = b, are posi-
tioned in the S2 × S1. The world line
around the handle of one torus enters
each S2 sphere through one hemisphere
and the world line around the handle
of the other torus exits each S2 sphere
through the other hemisphere. This fits
with the principle that a nonzero am-
plitude of two particles on the surface
of a sphere can only occur if the two
particles are a particle-antiparticle pair.
This is discussed in section 8.4.

〈
Z(D2 × S1; b) |Z(D2 × S1; a)

〉
= δab

The reason it is a delta function is that both the bra and ket are really
the same wavefunctions (we have not switched longitude to meridian).
So except for the conjugation we should expect that we are getting the
same basis of states for both tori.
In particular, we have the case where we put no particle (the vacuum)

around both handles, we have (i.e., a = b = I = 0)

〈Z(D2 × S1)|Z(D2 × S1)〉 = δab = 1
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So we have the result
Z(S2 × S1) = 1

Note that this agrees with two of our prior statements. On the one hand
Eq. 7.5 says that Z for any two dimensional manifold crossed with S1

should be the dimension of the Hilbert space for that manifold; and on
the other hand Eq. 7.4 states that the dimension of the Hilbert space on
a sphere is 1.

7.4 Appendix: Sewing two solid tori together

While this discussion is a bit outside the main train of thought (being
the development of TQFTs) it is interesting to think about the different
ways two solid tori may be sewed together to obtain a closed manifold.

Fig. 7.15 A line that wraps both the
longitude and meridian of the torus.

A solid torus is written as D2 × S1. We define the meridian m to
be the S1 boundary of any D2. I.e., the meridian is a loop on the
surface around the contractable direction of the solid torus. We define
the longitude l as being any loop around the surface of the solid torus
which intersects a meridian at one point. This definition unfortunately
has some (necessary) ambiguity. A line that loops around the meridian
n times as it goes around the noncontractable direction of the torus, is
just as good a definition of a longitude (an example of this is Fig. 7.15
which is n = 1). We call this line l + nm where n is the number of
times it goes around the meridian and l was the original definition of
the longitude that did not loop around the meridian. Redefining the
longitude this way is known as a “Dehn Twist”.
Let us choose a meridian m1 on the surface of one solid torus and

choose to sew it to the line −qm2 + pl2 of the second solid torus (that
is, the line that goes p times around the longitude and −q times around
meridian, we make −q negative so that the two tori surfaces are oppo-
site oriented for attaching them together. Once the two lines are glued
together this uniquely defines how the rest of the two torus surfaces
are glued together. The resulting object is known as the “Lens space”
L(q, p). In section 7.3.1 we showed that L(0, 1) = S3 and in section 7.3.2
we showed that L(1, 0) = S2 × S1. Note that due to the ambiguity of
definition of the longitude of the torus −qm2+pl2, under redefinition of
the longitude goes to (−q − np)m2 + pl2. Thus L(q + np, p) = L(q, p),
and in particular, L(1, 1) = S3 also.

Chapter Summary

• The Atiyah Axioms formalize the idea of a topological quantum
field theory.

Further Reading

For discussion on the Atiyah Axioms
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• M. F. Atiyah, Proceedings of 5th Gokova Geometry and Topology

Conference, Tr. J. Mathematics, 21, 1, (1997).
http://www.maths.ed.ac.uk/ aar/papers/atiyahinttqft.pdf

• M. F. Atiyah, Topological quantum field theory. Publications
Mathmatiques de l’IHS, 68 (1988), p. 175-186
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Part II

Hilbert Space and Planar Dia-
grammatic Algebra





Fusion and Structure of Hilbert
Space 8
As discussed in section 7.1, each two-dimensional surface (a slice of a
three-dimensional space-time manifold) has an associated Hilbert space.
In the case where there are particles in this surface, the dimension of
the Hilbert space will reflect the nature of the particles. We now seek to
understand the structure of this Hilbert space and how it depends on the
particles. At the same time we will building up a diagrammatic algebra
with the goal of constructing a mapping from world-lines of particles
to complex numbers (a definitions of a TQFT as given in Fig. 7.1).
We briefly introduced graphical notation in section 4.2.1 and we will
continue that development here.

8.1 Basics of Particles and Fusion — The

Abelian Case

Particle types:

There should be a finite set of labels which we call particle types. For
now, let us call them a, b, c, etc.

Fusion

World lines can merge which we call fusion, or do the reverse, which
we call splitting. If an a particle merges with b to give c, we write
a× b = b× a = c. This is shown diagrammatically in Fig. 8.1.

c

c

a b

a b
Fig. 8.1 Fusion and splitting diagrams
can be thought of as part of a space-
time history of the particles. If we
are describing two separated particles
a and b whose overall quantum number
is c, we would describe the ket for this
state using the right hand picture —
which we can think of as a space-time
description of how the current situation
(a on the left b on the right) came about
(with time going up). Details of the for-
mal meaning of these diagrams in terms
of as bras and kets is given in section
10.1.

It should be noted that we can think of two particles as fusing together
even if they are not close together. We need only draw a circle around
both particles and think about the “total” particle type inside the circle.
For example, we sometimes draw pictures like shown in Fig. 8.2.

a b

c

Fig. 8.2 Another notation to describe
the fusion of two particle types to make
a third a×b = c. The two particles need
not be close to each other. This figure
is equivalent to the right of Fig. 8.1.

In our abelian anyon model of charges and fluxes (see section 4.2), if
the statistical angle is θ = πp/m (p and m relatively prime and not both
odd) then we have m species a = (aq, aΦ) for a = 0 . . .m − 1, where
qΦ = πp/m. The fusion rules are simply addition modulo m. That is
a× b = (a+ b)modm.

Identity

Exactly one of the particles should be called the identity or vacuum. We
write this1 as 1 or 0 or I or e. The identity fuses trivially

1It is annoying that we have so many
different ways to express the identity,
but in different contexts different no-
tations seem natural. For example, if
our group of particles is fusing by addi-
tion (as we discussed in the charge-flux
model) the identity should be 0. But if
our group fuses by multiplication, iden-
tity is more naturally 1. See note 5 in
chapter 28
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a× I = a

for any particle type a. In the charge-flux model (section 4.2) we should
think of the identity as being no charge and no flux. Fusion with the
identity is depicted schematically in Fig. 8.3. Often we do not draw the
identity particle at all, being that it is equivalent to the absence of any
(nontrivial) particle.

a

I a

= I a

a

Fig. 8.3 Two depictions of fusion of
a particle with the identity a × I = a.
On the left, the dotted line indicates
the identity. On the right,the dotted
circle is supposed to indicate the iden-
tity. The circle surrounding both a and
I, has overall particle type a.

Antiparticles

Each particle a should have a unique antiparticle which we denote as
ā. The antiparticle is defined by a× ā = I. (There should only be one
particle which fuses with any a to give the identity!). A particle going
forward in time should be equivalent to an antiparticle going backwards
in time as shown in Fig. 8.4. Fusion to the identity can be thought of

a ā
=

Fig. 8.4 A particle going forward
should be equivalent to an antiparticle
going backwards.

as a particle turning around in space-time as shown in Fig. 8.5.

I

a ā

=

I

a a
Fig. 8.5 Fusion of an anyon with its
anti-anyon to form the identity can be
thought of as a particle turning around
in space-time.

A particle may be its own antiparticle, in which case we do not need
to draw arrows on its world lines. An example of this in our charge-flux
model from section 4.2 would be the “2” particle (fusion of 2 elementary
anyons, see section 4.3) in the case of θ = π/4. Also, the identity particle
I is always its own antiparticle.

8.2 Multiple Fusion Channels - the

Nonabelian Case

For the nonabelian theories as we have discussed above (for example in
Section 3.5), the dimension of the Hilbert space must increase with the
number of particles present. How does this occur? In nonabelian models
we have multiple possible orthogonal fusion channels

a× b = c+ d+ . . . (8.1)

meaning that a and b can come together to form either c or d or . . ., as
shown in Fig. 8.6. A theory is nonabelian if any two particles fuse in
such a way that there are multiple possible fusion channels (i.e., there is
more than one particle listed on the right hand side of Eq. 8.1). If there

a b

c or d or . . .

Fig. 8.6 Multiple possible fusion chan-
nels. Here we show that a and b can
fuse together to give either c or d or
other possible results.

are s possible fusion channels for a × b, then the two particles a and b
have an s dimensional Hilbert space (part of what we called V (Σ)).
What is this Hilbert space associated with multiple fusion channels?

A slightly imperfect analogy is that of angular momentum addition. We
know the rule for adding spin 1/2,

1

2
⊗ 1

2
= 0⊕ 1,

which tells us that two spin 1/2’s can fuse to form a singlet or a triplet.
As with the case of spins, we can think about the two particles being
in a wavefunction such that they fuse in one particular fusion channel
or the other — even if the two particles are not close together. The
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singlet or J = 0 state of angular momentum is the identity here: it has
no spin at all. The analogy with spins is not exact though — unlike the
case of spins, the individual particles have no internal degrees of freedom
(analogous to the 2-states of the spin 1/2), nor do any results of fusion
have an mz degree of freedom (like a triplet would).

Locality

The principle of locality is an predominant theme of anyon physics (if
not of physics altogether).
The quantum number (or “charge”) of a particle is locally conserved

in space. Consider, for example, Fig. 8.7. On the left, a particle a
propagates along and suddenly something complicated happens locally.
If only a single particle comes out of this region it must also be a particle
of type a. (If two particles come out of this region, we could have a split
into two other species as in the right of Fig. 8.1). We sometimes call
this the no transmutation principle. It allows us to conclude that
the complicated picture on the left of Fig. 8.7 must be equal to some
constant times the simple propagation of an a particle as shown on the
right.

a

s
r

d
c

a

b a∝

Fig. 8.7 If a particle a goes into
a spacetime region, then a net par-
ticle charge a must come out. This
is also sometimes called the “no-
transmutation” principle. From far
away, one can ignore any local processes
(up to an overall constant).

If two particles (maybe far away from each other) fuse together to
some overall particle type (in a case where multiple fusion channels are
available) it is not possible to determine this fusion channel by measuring
only one of the initial particles. In order to determine the fusion channel
of the two particles, you have to do an experiment that involves both
of the initial particles. For example, one can perform an interference
measurement that surrounds both of these particles. The fusion channel
is local to the pair.
Similarly, if we have some particles, b and c and they fuse to d (see

Fig. 8.8), no amount of braiding b around c will change this overall fusion
channel d. The fusion channel is local to the pair. If these two then fuse
with a to give an overall fusion channel f , no amount of braiding a,
b and c will change the overall fusion channel f . However, if a braids
with b and c, then the fusion of b and c might change, subject to the
constraint that the overall channel of all three particles remains f .
Locality gives another important way in which of anyons differs from

the fusion of spins. With spins, if you can measure two spins individually
you can (at least sometimes) determine the fusion channel of the spins.
For anyons you must be able to measure a loop that surrounds both
anyons in order to determine their collective fusion channel — measuring
each anyon individually does not tell you the fusion of the two!

c b
d

f

a

Fig. 8.8 In this picture b and c fuse to
d. Then this d fuses with a to give an
overall fusion channel of f . No amount
of braiding b around c will change the
fact that the two of them fuse to d.
However, if we braid a with b and c,
this can change the fusion of b with c
subject to the constraint that the fusion
of all three particles will give f .

Antiparticles in the Case of Multiple Fusion Channels

When we have multiple fusion channels (i.e., for nonabelian theories)
we define antiparticles via the principle that a particle can fuse with its
antiparticle to give the identity, although other fusion channels may be
possible.

a× ā = I + other fusion channels
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As in the abelian case we use the overbar notation to indicate an an-
tiparticle. It should be the case that for each particle a there is a unique
particle that can fuse with it to give the identity, and we call this par-
ticle ā. As in the abelian case, a particle may be its own antiparticle if
a× a = I +other fusion channels, in which case we do not put an arrow
on the line corresponding to the particle.

8.2.1 Example: Fibonacci Anyons

Perhaps the simplest nonabelian example is the anyon system known as
Fibonacci2 anyons. Something very close to this is thought to occur in

2Fibonacci, also known as Leonardo
of Pisa, was born around 1175 AD.
Perhaps his most important contribu-
tion to mathematics is that he brought
Arabic numerals (or Hindu-Arabic nu-
merals) to the western world. The
Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, . . .
is named after him, although it was
known in India hundreds of years ear-
lier!

the so-called ν = 12/5 quantum Hall state which we will study in more
depth in section 27. Fibonacci anyons are closely related to the SU(2)3
Chern-Simons theory3.

3Fibonacci anyons can be described ex-
actly by the G2 level 1 Chern-Simons
theory. This involves a messy Lie al-
gebra called G2. The SU(2)3 Chern-
Simons theory contains some additional
particles besides the Fibonacci parti-
cles, but ignoring these, it is the same
as Fibonacci.

In this example the particle set includes only two particles, the identity
I and a nontrivial particle which is often called τ .

Particle types = {I, τ}

The fusion rules are

I × I = I

I × τ = τ

τ × τ = I + τ

The first two of these rules hardly need to be written down (they are
implied by the required properties of the identity). It is the final rule that
is nontrivial. This final rule also implies that τ is its own antiparticle
τ = τ̄ which means we do not need to put arrows on world lines.
With two Fibonacci anyons the Hilbert space is two dimensional, since

the two particles can fuse to I or τ , as shown in Fig. 8.9.

τ

I

τ

=
τ τ

I

τ

τ

τ

=
τ τ

τ

Fig. 8.9 Two different notations for
the two different fusion channels of two
Fibonacci anyons

With three Fibonacci anyons the Hilbert space is 3 dimensional, as
shown in Fig. 8.10. The key thing to notice is that if the first two
particles fuse to τ , then this combination acts as being a single particle
of overall charge τ — it can fuse with the third τ in two ways.
There is a single state in the Hilbert space of three anyons with overall

fusion channel I. This state is labeled as4 |N〉. As mentioned above

4Here |N〉 stands for “noncomputa-
tional”, since it is not used in many
quantum computing protocols that use
Fibonacci anyons.

by Fig. 8.7, due to locality, no amount of braiding amongst the three
particles will change this overall fusion channel (although braiding may
introduce an overall phase).
There are two states in the Hilbert space of three anyons with overall

fusion channel τ . These are labeled |1〉 and |0〉 in Fig. 8.10. Again,
as mentioned above by Fig. 8.7, due to locality, no amount of braiding
amongst the three particles will change this overall fusion channel. Fur-
ther, since in these two basis states the first two particles furthest left
are in an eigenstate (either I in state |0〉 or τ in state |1〉) no amount
of braiding of the first two particles will change that eigenstate. How-
ever, as we will see below in section 17.2, if we braid the second particle
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with the third, we can then change the quantum number of the first two
particles and rotate between |0〉 and |1〉.

τ τ τ

τ

I

=
τ τ τ

τ I = |N〉

τ τ τ

I

τ

=
τ τ τ

I τ = |0〉

τ τ τ

τ

τ

=
τ τ τ

τ τ = |1〉
Fig. 8.10 Notations for the three different orthogonal fusion channels of three
Fibonacci anyons. The notation |N〉, |1〉 and |0〉 are common notations for those
interested in topological quantum computing with Fibonacci anyons!

For our Fibonacci system, with 2 particles the Hilbert space is 2 di-
mensional. With 3 particles the Hilbert space is 3 dimensional. It is easy
to see that with 4 particles the Hilbert space is 5 dimensional (fusing a
fourth anyon with |0〉 or |1〉 in figure 8.10 can give either I or τ , whereas
fusing a fourth anyon with |N〉 can only give τ , thus giving a space of
dimension 2+2+1). With five particles the space is 8 dimensional and
so forth. This pattern continues following the Fibonacci sequence (Try
to show this!), hence the name.
Since the N th element of the Fibonacci sequence for large N is ap-

proximately

Dim of N Anyons = FibN ∼
(
1 +

√
5

2

)N

.

(8.2)

We say that the quantum dimension of this particle is d = (1 +
√
5)/2,

the golden mean (See Eq. 3.8).

8.2.2 Example: Ising Anyons

The Ising5 anyon system is extremely closely related to SU(2)2 Chern-

5The name Ising is used here due to the
relationship with the Ising conformal
field theory which describes the Ising
model in 2D at its critical point.

Simons theory6, and this general class of anyon is believed to be realized

6The fusion rules of Ising and SU(2)2
are the same, but there are some
spin factors which differ, as well as a
Frobenius-Schur indicator — see sec-
tion ***.
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in the ν = 5/2 quantum Hall state (see section 27), topological super-
conductors, and other so-called Majorana systems (see section ***).
The Ising theory has three particle types7:7Another common notation is to use

ǫ instead of ψ in the Ising theory. In
SU(2)2 the particles I, σ, ψ may be
called 0, 1/2, 1 or 0, 1, 2.

Particle types = {I, σ, ψ}

The nontrivial fusion rules are

ψ × ψ = I

ψ × σ = σ

σ × σ = I + ψ

where we have not written the outcome of any fusion with the identity,
since the outcome is obvious. Again, each particle is its own antiparticle
ψ = ψ̄ and σ = σ̄ so we need not put arrows on any world-lines.
Fusion of anything with the ψ particle always gives a unique result on

the right hand side. We thus call ψ an abelian particle (despite the fact
that the full theory is nonabelian), or we say that ψ is a simple current.
Fusion of many ψ particles is therefore fairly trivial, since each pair fuses
to the identity in only one way.
Fusion of many σ particles, however, is nontrivial. The first two σ’s

can either fuse to I or ψ, but then when the third is included the overall
fusion channel must be σ (since fusing σ with either ψ or I gives σ).
Then adding a fourth σ to this cluster whose overall quantum number
is σ again gives two possible outcomes. Such a fusion tree is shown in
Fig 8.11. By counting possible trees, we find that the total number

σ σ σ σ σ σ σ

σI
or
ψ

σI
or
ψ

σI
or
ψ

Fig. 8.11 The fusion tree for many σ
particles in the Ising anyon theory.

of different fusion channels for N particles of type σ is 2N/2 (rounding
down if N/2 is not an integer). To see this in another way, we can group
σ particles together in pairs where each pair gives either ψ or I, so two
σ particles comprises a two state system, or a qubit. Then the I’s and
ψ’s fuse together in a unique way. Since the Hilbert space dimension is
(
√
2)N the quantum dimension of the σ particle is d =

√
2 (See Eq. 3.8).

8.3 Fusion and the N matrices

We are well on our way to fully defining an anyon theory. A theory
must have a finite set of particles, including a unique identity I, with
each particle having a unique antiparticle.
The general fusion rules can be written as

a× b =
∑

c

N c
ab c

where the N ’s are known as the fusion multiplicities. N c
ab is zero if a

and b cannot fuse to c. N c
ab is one if we have a× b = . . .+ c+ . . ., and

c only occurs once on the right hand side. If c occurs more than once
on the right hand side, then N c

ab simply counts the number of times it
occurs.
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What does it mean that a particle type can occur more than once in
the list of fusion outcomes? It simply means that the fusion result can
occur in multiple orthogonal ways8 in which case a diagram with a vertex
showing a and b fusing to c should also contain an index (µ ∈ 1 . . .N c

ab)
at the vertex indicating which of the possible c fusion channels occurs,
as shown in Fig. 8.12. For most simple anyon theories N c

ab is either
0 or 1, and we will not usually consider the more complicated case in
examples for simplicity, but they are discussed in the chapter appendices
for completeness (See section 9.1.2. See also section ***). It is good to
keep in mind that such more complicated cases exist.

c

a b

µ

Fig. 8.12 Multiple fusion channels. In
nonabelian theory fusion of a and b to c
can occur in multiple orthogonal ways
when Nc

ab > 1. To specify which way
they fuse, we add an additional index
µ ∈ 1 . . . Nc

ab at the vertex as shown.

Elementary properties of the fusion multiplicity matrices

• Commutativity of fusion a× b = b× a.

N c
ab = N c

ba

• Time reversal

N c
ab = N c̄

āb̄ (8.3)

• Trivial fusion with the identity

N b
aI = δab (8.4)

• Uniqueness of inverse

N I
ab = δbā (8.5)

c

a b a c̄b

Fig. 8.13 An equivalence of Nc
ab with

Nabc̄. Both types of vertices have the
equivalent fusion multiplicity. Note
that the left half of the right picture
is exactly equivalent to the right — c
is entering the vertex from below (then
this c turns over to become a c̄ going
up on the far right).

It is sometimes convenient to define

Nabc̄ = N c
ab (8.6)

which is the number of different ways that a, b, and c̄ can fuse to the iden-
tity. An example of this equivalence is shown graphically in Fig. 8.13.
The advantage of this representation is that Nabc is fully symmetric in
all of its indices. For example, using this notation Eq. 8.4 and Eq. 8.5
are actually the same. Further, using Eq. 8.6 along with the symmetry
of Nabc we can derive identities such as

N c
ab = N b̄

ac̄ = N c
āb. (8.7)

where in the last step we used Eq. 8.3.

8While this does not occur for angular momentum addition of SU(2) (and also will
not occur in Chern-Simons theory SU(2)k correspondingly) it is well known among
high energy theorists who consider the fusion of representations of SU(3). Recall
that

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10 ⊕ 1̄0⊕ 27

and the 8 occurs twice on the right.
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Fusing Multiple Anyons

If we are to fuse, say, five anyons of type a together into a final result of
e, we can do so via a tree as shown in Fig. 8.14.
To find the dimension of the Hilbert space, we write

Dim of fusing five a anyons to final result e =
∑

bcd

N b
aaN

c
baN

d
caN

e
da

=
∑

bcd

N b
aaN

c
abN

d
acN

e
ad

and we identify each factor of N as being one of the vertices in the figure.
It is convenient to think of the tensor N c

ab as a matrix Na with indices
b and c, i.e, we write [Na]

c
b, such that we have

Dim of fusing five a anyons to final result e = [(Na)
4]ea

Similarly were we to have a larger number p of anyons of type a we would
need to calculate [Na]

p−1. We recall (See Eq. 3.8) that the quantum
dimension da of the anyon a is defined via the fact that the Hilbert space
dimension should scale as dNa where N is the number of a particles fused
together. We thus have that

da = largest eigenvalue of [Na] (8.8)

Note that this implies da = dā given the symmetries of N .

a a a a a

b

c

d

e

Fig. 8.14 Fusing five a type anyons
together into a final result e.

Example of Fibonacci Anyons

The fusion matrix for the τ particle in the Fibonacci theory is

I τ

Nτ =

(
0 1
1 1

)
I
τ

where, as indicated here, the first row and first column represent the
identity and the second row and second column represent τ . The first
row of this matrix says that fusing τ with the identity gives back τ and
the second row says that fusing τ with τ gives I and τ . It is an easy
exercise to check that the largest eigenvalue of this matrix is indeed
dτ = (1 +

√
5)/2, in agreement with Eq. 8.2.

Example of Ising Anyons

The fusion matrix for the σ particle in the Fibonacci theory is

I σ ψ

Nσ =




0 1 0
1 0 1
0 1 0



I
σ
ψ
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where the first row and column represent the identity, the second row
and column represent σ and the third row and column represent ψ. So,
for example, the second row here indicates that σ × σ = I + ψ. Again,
it is an easy exercise to check that the largest eigenvalue of this matrix
is dσ =

√
2 as described in section 8.2.2.

8.3.1 Associativity

It should be noted that the fusion multiplicity matrices N are very spe-
cial matrices since the outcome of a fusion should not depend on the
order of fusion. I.e., (a× b)× c = a× (b× c). a b c

d

e

a b c

f

e

Fig. 8.15 Fusing (a× b)× c should be
equivalent to a × (b × c). On the left
a and b fuse to d first then this com-
posite fuses with c to give e. On the
right b and c fuse to f first, then this
composite fuses with a to give e. Both
diagrams represent the same physical
Hilbert space. Fixing a, b, c, e the figure
on the left spans the Hilbert space with
different values of d whereas the figure
on the right spans the same space with
different values of f .

For example, let us try to calculate how many ways a× b× c can give
an outcome of e. We can either try fusing a × b first as on the left of
Fig. 8.15 or we can try fusing b and c first as on the right. Whichever
we choose, we are describing the same Hilbert space and we should find
the same overall dimension either way. In other words, we should have
the same total number of fusion channels. Thus, corresponding to these
two possibilities we have the equality

∑

d

Nd
abN

e
cd =

∑

f

Nf
cbN

e
af (8.9)

Again, thinking of N c
ab as a matrix labeled Na with indices b and c, this

tells us that
[Na, Nc] = 0 (8.10)

Therefore all of the N matrices commute with each other. In addition
the N ’s are normal matrices, meaning that they commute with their
own transpose (Since [Na, Nā] = 0 and Na = NT

ā by Eq. 8.7). A set of
normal matrices that all commute can be simultaneously diagonalized,
thus

[U †NaU ]xy = δxyλ
(a)
x (8.11)

and all Na’s get diagonalized with the same unitary matrix U . Sur-
prisingly (as we will see below in section 18) for well behaved (so-called
“modular”9 anyon theories) the matrix U is precisely the modular S- 9For nonmodular theories, we can still

diagonalize N in the form of Eq. 8.11,
and the resulting unitary matrix U
is sometimes known as the mock S-
matrix.

matrix we discussed above in Eq. 7.6 !

8.4 Fusion and Hilbert Space

The structure of fusion rules can be used to calculate the ground state
degeneracy of wavefunctions on 2-dimensional manifolds10. Here we will 10We are again assuming manifolds are

always orientable – so this excludes ob-
jects like the Klein bottle or the Möbius
strip.

again be examining the Hilbert space V (Σ) where Σ is our 2-manifold
which may or may not have particles in it.
Let us start by considering the sphere S2, and assume that there

are no anyons on the surface of the sphere. As mentioned previously in
Eq. 7.5, there is a unique ground state in this situation because there are
no non-contractable loops (See sections 7.1 and 4.3.1). The dimension
of the Hilbert space is just 1,

Dim V (S2) = 1.
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This will be the starting point for our understanding. All other config-
urations (change of topology, adding particles etc) will be related back
to this reference configuration.
Now let us consider the possibility of having a single (nontrivial11)11By nontrivial we mean this particle

is not the vacuum particle. anyon on the sphere. In fact such a thing is not possible because you
can only create particles in a way that conserves that overall quantum
number. If we start with no particles on the sphere, the total anyon
charge must be conserved — i.e., everything on the sphere must fuse
together to total quantum number of the identity. Thus, we have

Dim V (S2 with one (nontrivial) anyon) = 0 (8.12)

Another way to explain this is to realize that, since particle-antiparticles
are made in pairs, there is no space-time history that could prepare the
state with just a single (non-vacuum) particle on the sphere.1212For higher genus surfaces with non-

abelian theories it is possible to have a
single anyon alone on the surface. An
example of this is when a × ā = I + c.
In this case a pair a and ā may be cre-
ated, one particle can move all the way
around a handle to fuse with its part-
ner, but it may leave behind a single
anyon c since some quantum numbers
can be changed by the action of moving
the anyon around the handle. If we try
this on the sphere (without the handle)
we would always find that the pair re-
annihilates to the vacuum. See further
discussion near Eq. 8.13.

We can however consider the possibility of two anyons on a sphere. We
can create an a particle with an ā particle, and since these two particles
must fuse back to the identity in a unique way we have13

13It is implied that we are counting
states here with the particles a and ā
at some given fixed position (all posi-
tions being topologically equivalent). If
we were to count different positions as
different states in the Hilbert space we
would have to include this nontopolog-
ical degeneracy in our counting as well.

Dim V (S2 with one a and one ā) = 1

The two particles must be antiparticles of each other, otherwise no state
is allowed and the dimension of the Hilbert space is zero. This is a
general principle: the fusion of all the particles on the sphere must be
the vacuum, since these particles must have (at some point in history)
been pulled from the vacuum.
Now we could also imagine puncturing the sphere to make a hole

where the particles were. In the spirit of what we did in section 7.2.1
we could re-fill the hole with any particle type14 . However, if we refill

14Since there is a time direction S1
time

as well, removing a disk with a particle
in it from a spatial manifold Σ is pre-
cisely the same as removing a tubular
neighborhood with a particle world line
in it from the space-time manifold.

one hole with a particular particle type a, then the other hole can only
get filled in with the anti-particle type ā. Nonetheless, we can conclude
that

Dim V (S2 with two unlabeled punctures) = Number of particle types

Now consider the procedure shown in Fig. 8.16. We start with the
twice punctured sphere. The two punctures can be labeled with any
particle-antiparticle pair labels. We can then deform the sphere to sew
the two punctures together in a procedure that is sometimes called
surgery (We will discuss surgery in more detail in chapter 19). The
result of this surgery is the torus surface T 2 and we conclude that

Dim V (T 2) = Number of particle types

as we have already discussed. The general rule of surgery is that two
punctures can be sewed together when they have opposing particle types
(i.e., a particle and its antiparticle). This is exactly the gluing prop-
erty of the TQFT. Although we are gluing together pieces along a 1-
dimensional boundary (the edge of the punctures), we should realize
that there is also a time direction, which we have implicitly assumed is
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⇒ ⇒ ⇒aā

ā a

Fig. 8.16 Surgering the twice punctured sphere into a torus. This is the gluing
axiom in action. Note that we are implicitly assuming the system is trivial in the
“time” direction, which we assume to form a circle S1

time.

compactified into S1
time. Thus we are actually sewing together the 2-

surface (S1
puncture × S1

time) with another 2-surface (S1
puncture × S1

time),
and the inner product between the two wavefunctions on these two-
surfaces ensures that the quantum number on these two punctures are
conjugate to each other15.

15In Eq. 7.3 we had a torus surface
which we crossed with an interval of
time and we closed up the interval to
form a circle, thus giving Tr[Z(T 2 ×
Itime)] = Z(T 2×S1

time) = DimV (T 2).
In contrast, in Fig. 8.16 we have a cylin-
der S1 × I (topologically the same as
a sphere with two holes) crossed with
S1
time and we close the cylinder to get

Tr[Z((S1 × I) × S1
time)] = Z(T 2 ×

S1
time).

We can continue on to consider a sphere with three particles. Similarly
we should expect that the three particle should fuse to the identity as
shown in Fig. 8.17. We can then think of the sphere with three particles

a b c

c̄

Fig. 8.17 Three particles that fuse to
the identity. There are Nabc = N c̄

ab dif-
ferent fusion channels.

as being a sphere with three labeled punctures which is known as a “pair
of pants”, for reasons that are obvious in Figure. 8.18. It turns out that
any orientable 2-dimensional manifold (except S2 or T 2 which we have
already considered) can be constructed by sewing together the punctures
of pants — this is known as a “pants decomposition”. For example, in
Fig. 8.19 we sew together two pair of pants to obtain a two handled
torus.

=

a b c a

b c

Fig. 8.18 A three-times punctured sphere is known as a “pair of pants”.

To find the ground state degeneracy of the two handled torus,

Dim V (Two handled Torus) = Z(Two handled Torus× S1),

we assemble the manifold using two pair of pants as shown in Fig. 8.19
and then we simply need to figure out the number of possible fusion
channels where we could satisfy a × b × c → I (for the bottom pair of
pants) and ā × b̄ × c̄ → I (for the top pair of pants). This number of
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possible fusion channels is given in terms of the fusion multiplicities Nabc
as shown in Fig. 8.17. Essentially we are just looking at the number of
ways we can assign labels to the punctures when we glue the objects
together. Thus we have

Dim V (Two handled Torus) =
∑

abc

NabcNāb̄c̄

a b c

−→ā b̄ c̄

Fig. 8.19 Sewing together two pair of pants to form a two-handled torus.

Another interesting use of the pants diagram is to determine the de-
generacy of a torus T 2 with a single anyon on it labelled a. Unlike
the sphere, where one cannot have a single anyon on the surface (See
Eq. 8.12) one can have a single anyon on a torus (See note 12 of this
chapter). To see how this is possible, take a pants diagram with the
holes labelled b, b̄, and a. Connect up the b to the b̄ to give a torus with
a single puncture remaining labeled a. Thus we conclude that

Dim V (T 2 with one a) =
∑

b

Nbb̄a ≡ La (8.13)

where we have defined this quantity to be called La.
One final example is to determine the ground state degeneracy of a

three handled torus. There are many ways we might cut a three handled
torus into pieces, but a convenient decomposition is the one shown in
Fig. 8.20. Here there are three tori each with a puncture in it (marked as
a red collar), and a single pants in the middle connecting the three. Each
torus with a puncture has a Hilbert space dimension La where a is the
quantum number assigned to the puncture. Thus the total dimension of
the Hilbert space is conveniently written as

Dim V (Three handled Torus) =
∑

abc

LaLbLcNāb̄c̄ (8.14)

Fig. 8.20 Decomposing a three han-
dled torus into three copies of a torus
with puncture (the puncture is the red
collar), and a single pants in the mid-
dle. I have resisted the urge to draw a
three handled object as being covered
with moss.
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Example: Fibonacci Anyons

With the Fibonacci fusion rules, there the five ways we can fuse three
particles and get the identity.

NIII = 1

NττI = NτIτ = NIττ = 1

Nτττ = 1

and all other Nabc = 0. Thus there are five possible labelings of the
punctures in a pants diagram that allow overall fusion to the identity.
If we match these together on both top and bottom of the diagram on
the left of Fig. 8.19, we conclude that in the Fibonacci theory we have

Z(Two Handled Torus× S1) = Dim V (Two Handled Torus) = 5.

Similarly, we can consider the degeneracy of states for a torus with a
single τ particle on its surface

Dim V (T 2 with one τ particle on it) = 1

coming from the allowed fusion Nτττ = 1. Thus we have LI = 2 and
Lτ = 1. It is then easy to plug into Eq. 8.14 to obtain

Dim V (Three handled torus) = 15.

Chapter Summary

• This is

Further reading

This is some reading.

Exercises

Exercise 8.1 Quantum Dimension
Let Nc

ab be the fusion multiplicity matrices of a TQFT

a× b =
∑

c

Nc
ab c
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meaning that Nc
ab is the number of distinct ways that a and b can fuse to c.

(In many, or even most, theories of interest all N ’s are either 0 or 1).
The quantum dimension da of a particle a is defined as the largest eigenvalue

of the matrix [Na]
c
b where this is now thought of as a two dimensional matrix

with a fixed and b, c the indices.
Show that

dadb =
∑

c

Nc
ab dc

Try to prove this without invoking the Verlinde formula which we run into
later in chapter ***.

Exercise 8.2 Fusion and Ground State Degeneracy
To determine the ground state degeracy of a 2-manifold in a 2+1 dimen-

sional TQFT one can cut the manifold into pieces and sew back together. One
can think of the open “edges” or connecting tube-ends as each having a label
given by one of the particle types (i.e., one of the anyons) of the theory. Re-
ally we are labeling each edge with a basis element of a possible Hilbert space.
The labels on two tubes that have been connected together must match (label
a on one tube fits into label ā on another tube.) To calculate the ground
state degeneracy we must keep track of all possible ways that these assembled
tubes could have been labeled. For example, when we assemble a torus as
in Fig. 8.16, we must match the quantum number on one open end to the
(opposite) quantum number on the opposite open end. The ground state de-
generacy is then just the number of different possible labels, or equivalently
the number of different particle types.

For more complicated 2-d manifolds, we can decompose the manifold into
so-called pants diagrams that look like Fig. 8.18. When we sew together pants
diagrams, we should include a factor of the fusions multiplicity Nc

ab for each
pants which has its three tube edges labeled with a, b and c̄.

(a) Write a general formula for the ground state degeneracy of anM -handled
torus in terms of the N matrices.

(b) For the fibonacci anyon model, find the ground state degeneracy of a
4-handled torus.

(c) Show that in the limit of large number of handles M the ground state
degeneracy scales as ∼ DM where D2 =

∑

a d
2
a.



Change of Basis and F -symbols1 9
1This chapter is crucial for the under-
standing of topological quantum sys-
tems. If there is one chapter to really
study closely, this one is it! Don’t worry
too much about the appendices.

As mentioned in Fig. 8.15, one can describe the space of three particles
in two different ways. If we are considering the space spanned by the
fusion of a× b × c as in the figure, we can describe the space by how a
fuses with b (the value of d on the left of the figure), or by how b fuses
with c (the value of f in the figure). Either of these two descriptions
should be able to describe the space, but in different bases. We define
the change of basis as a set of unitary matrices2,3,4 called F , as shown

2In cases where there are fusion mul-
tiplicities Nc

ab greater than one (as in
Fig. 8.12), each vertex gets an addi-
tional index which ranges from 1 to its
multiplicity so that the F matrix gets
additional indices as well. This case is
discussed in section 9.1.2
3The conventions for writing F -
matrices used in this chapter match
that of Refs. Kitaev [2006] and
Bonderson [2007].

4Typically if a or b or c is the identity,
then we choose a gauge so that F is the
identity as well. See appendix 9.1.3.

in Fig. 9.1.
a b c

d

e

=
∑

f

[
F abce

]
df

a b c

f

e

Fig. 9.1 The F -matrix makes a change of basis between the two different ways of
describing the space spanned by the fusion of three anyon charges a, b, and c when
they all fuse to e. For fixed a, b, c and e, the matrix F is unitary in its subscripts d, f .
One often uses the convention that the F matrix is defined to be zero if the fusion
diagram is not allowed, i.e, if any of the fusion multiplicies Nd

ab, N
e
dc, N

f
bc, N

e
af are

zero.

This idea of change of basis is familiar from angular momentum addi-
tion where the F -matrix is known as a 6j symbol (note it has 6 indices).
One can combine three objects with L2 angular momenta values a, b and
c in order to get L2 angular momentum e, and quite similarly you can
describe this space in terms of a combined with b to get d (as in the left
of Fig. 9.1) or in terms of b combined with c to get f (as in the right of
Fig. 9.1). In fact, even when studying TQFTs, sometimes people refer
to F -matrices as 6j symbols.

9.0.1 Example: Fibonacci Anyons

Again we turn to the example of Fibonacci anyons for clarification. We
imagine fusing together three τ particles. As shown in Fig. 8.10, there
is a single state |N〉 in which the three fuse to the identity I. It should
not matter if we choose to fuse the leftmost two anyons first, or the
rightmost two. In either case there is only one possible state for the
outcome. We can thus draw the simple identity shown in Fig. 9.2 The

τ τ τ

τ

I

=

τ τ τ

τ

I
Fig. 9.2 There is only one state in the
Hilbert space of three Fibonacci anyons
fusing to the identity. Thus it does not
matter if you fuse the left two first or
the right two first, you are describing
the same state.

more interesting situation is the case where the three Fibonacci anyons
fuse to τ . In this case, there is a two dimensional space of states, and
this two dimensional space can be described in two ways. We can fuse
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τ τ τ

I

τ

=
τ τ τ

I τ = |0〉

τ τ τ

τ

τ

=
τ τ τ

τ τ = |1〉

Fusing the two particles on the left first

τ τ τ

I

τ

=
τ τ τ

I τ = |0′〉

τ τ τ

τ

τ

=
τ τ τ

τ τ = |1′〉

Fusing the two particles on the right first

Fig. 9.3 Two ways to describe the same two dimensional space. The basis {|0〉, |1〉}
fuses the left two particles first, whereas the basis {|0′〉, |1′〉} fuses the right two
particles first. Again note that we are considering kets so the tree branches point
upwards.

the left two particles first to get either I (yielding overall state |0〉) or to
get τ (yielding overall state |1〉). See the top of Fig. 9.3. On the other
hand, we could fuse the right two particles first to get either I (yielding
overall state |0′〉) or to get τ (yielding overall state |1′〉). See the bottom
of Fig. 9.3.
The space of states spanned by the three anyons is the same in either

description. Thus, there must be a unitary basis transform given by
(

|0〉
|1〉

)
=

(
F00′ F01′

F10′ F11′

)(
|0′〉
|1′〉

)
(9.1)

Here F is a two by two matrix, and in the notation of the F matrix
defined in Fig. 9.1, this two by two matrix is [F ττττ ]ab and the indices
a, b should take the values I and τ instead of 0 and 1, but we have used
abbreviated notation here for more clarity.
For the Fibonacci theory the F matrix is given explicitly by5

5We can redefine kets with different
gauge choices (see section 9.1.3) and
this will insert some phases into the off-
diagonal of this matrix, but the sim-
plest gauge choice gives the matrix as
shown.
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F =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
(9.2)

where φ−1 = (
√
5− 1)/2, so φ is the golden mean. As one should expect

for a change of basis, this matrix is unitary. In the next section (Section
9.0.2) we will discuss how this matrix is derived.
It is important to emphasize that the F -matrix is the same even if one

of the anyons charges being fused is actually a cluster of several anyons.
For example, in Fig. 9.4, this is precisely the same transformation as in
Eq. 9.1, but we must view the cluster of two anyons on the left (red),
which fuse to τ as being a single τ particle.





τ τ

τ

τ

τ τ

I

τ

τ τ

τ

τ

τ τ

τ

τ





= F
↑

(2× 2 matrix)





τ τ

I

τ τ

τ

τ

τ τ

τ
τ

τ τ

τ





Fig. 9.4 The F -matrices are the same even if one of the anyon charges is made up
of a cluster of other anyons. In this particular picture, the cluster of two anyons on
the very top (in red) has overall charge τ . If we replace this cluster of two anyons
with just a single τ , this would be precisely the same transformation as in Eq. 9.1.

9.0.2 Pentagon

It is possible to describe the same Hilbert space in many ways. For
example, with three anyons, as in Fig. 8.15, one can describe the state
in terms of the fusion channel of the two anyons on the left, or in terms
of the two on the right. Ie., we can describe (a×b)×c or a× (b×c), and
as in Fig. 9.1, these two descriptions can be related via an F -matrix.
When there are four anyons, there are still more options of how we

group particles to describe the states of the Hilbert space, and these
can also be related to each other via F matrices similarly, as shown
in Fig. 9.4. The fact that we can change the connectivity of these tree
diagrams then allows one to make multiple changes in the trees as shown
in Fig. 9.5 (the horizontal step on the bottom is equivalent to that
shown in Fig. 9.4). Indeed, in this figure one sees that one can go from
the far left to the far right of the diagram via two completely different
paths (the top and the bottom path) and the end result on the far right
should be the same either way. This diagram, known as the pentagon
diagram6, puts a very strong contraint on the F matrices, which written

6An analogous relation holds for 6j
symbols of angular momentum ad-
dition, known often as the Elliot-
Biedenharn identity.
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e

a b c d

f
g

a b c d

f

e

l
a b c d

e

l
k

a b c d

g

h

e e

h

a b c d

k

F F

F

F

F

Fig. 9.5 Pentagon Diagram. Each step in the diagram is a new description of the
same basis of states via and F -matrix.

out algebraically would be

[F fcde ]gl[F
abl
e ]fk =

∑

h

[F abcg ]fh[F
ahd
e ]gk[F

bcd
k ]hl (9.3)

where the left hand side represents the top route of the figure and the
right hand side represents the bottom route.77It is very worth working through this

to make sure you understand how this
equation matches up with the figure!

For very simple theories, such as the Fibonacci anyon theory, the
fusion rules and the Pentagon diagram are sufficient to completely define
the F -matrices (up to some gauge convention choices as in section 9.1.3).
See exercise 9.1. Further, for any given set of fusion rules there are a
finite set of possible solutions of the pentagon equation — a property
that goes by the name “rigidity”Etingof et al. [2015].
One might think that one could write down more complicated trees

and more complicated paths through the trees and somehow derive ad-
ditional constraints on the F -matrices. A theorem by MacLane [1971],
known as the “coherence theorem”, guarantees that no more complicated
trees generate new identities beyond the pentagon diagram.

9.1 Appendix: F -matrix Odds and Ends

9.1.1 Unitarity of F

The F -matrix relation we defined as

a b c

d

e

=
∑

f

[
F abce

]
df

a b c

f

e
The fact that F is unitary in its indices d and f means we can also
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write

a b c

f

e

=
∑

d

[
F abce

]∗
df

a b c

d

e

9.1.2 F -matrix with higher fusion multiplicities

In cases where there are fusion multiplicities N c
ab greater than 1, each

vertex gets an additional index as shown in Fig.8.12. The F -matrix must
also describe what happens to these indices under basis transform. We
thus have a more general basis-change equation given in Fig. 9.6.

a b c

d
µ

ν

e

=
∑

f,α,β

[
F abce

]
(dµν)(fαβ)

a b c

f

e

α

β

Fig. 9.6 The F -matrix equation with fusion multiplicities greater than one. Here the

vertex indices are µ ∈ 1 . . . Nd
ab and ν ∈ 1 . . . Ne

dc and α ∈ 1 . . . Nf
bc and β ∈ 1 . . . Ne

af .

9.1.3 Gauge Transforms and the F -matrix

We have the freedom to make gauge transformations on our diagrams. In
particular the vertices can be multiplied by a phase as shown in Fig. 9.7

c

a b

µ → uabc;µ
c

a b

µ

Fig. 9.7 We have the freedom to make a gauge transform of a vertex by multiplying

by a phase uabc;µ.

Under such gauge transforms, the F -matrix must correspondingly
transform as

[F abce ](dµν)(fαβ) →
uafe;βu

bc
f ;α

uabd;µu
dc
e;ν

[F abce ](dµν)(fαβ) (9.4)

or more simply in cases where there are no indices at vertices (N c
ab ≤ 1),

we have

[F abce ]df →
uafe u

bc
f

uabd u
dc
e

[F abce ]df (9.5)
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As we shall see in section 10.4, some gauge choices are much more nat-
ural than others, but we should always keep in mind that we have this
freedom.
Note that if one of the upper legs is the identity (a = I or b = I

in Fig. 9.7) we typically do not allow a gauge transform of this type
of vertex, since the presence of a vertex with the vacuum is the same
as the absence of a vertex with the vacuum. Thus we should always
use uaIa = uIaa = 1. Nonetheless, if there are cases where we do want
to specify that a vacuum line has branched off at one particular point,
we then do have the option of choosing a nontrivial gauge (See Lin and
Levin [2014] for further discussion of this possibility).

Chapter Summary

• This is

Further reading

This is some reading.

Exercises

Exercise 9.1 Fibonacci Pentagon
In a TQFT (indeed, in any tensor category), a change of basis is described

by the F-matrix as shown8 in figure 9.1. Consistency of F-matrices is enforced8Strictly speaking when there are fu-
sion multiplicities, Na

bc > 1, then one
also needs an additional index at each
vertex.

by the pentagon equation (Fig. 9.5 and Eq. 9.3).
In the Fibonacci anyon model, there are two particle types which are usually

called I and τ . The only nontrivial fusion rule is τ × τ = I + τ . With
these fusion rules, the F matrix is completely fixed up to a gauge freedom
(corresponding to adding a phase to some of the kets). If we choose all elements
of the F matrix to be real, then the F matrix is completely determined by the
pentagon up to one sign choice. Using the pentagon equation determine the F -
matrix. (To get you started, note that in Fig. 9.5 the variables a, b, c, d, e, f, g, h
can only take values I and τ . You only need to consider the cases where a, b, c, d
are all τ ).

If you are stuck as to how to start, part of the calculation is given in the
Nayak, et al, Rev Mod Phys article (see the reference list)

Exercise 9.2 Ising F-matrix
[Hard] As discussed in the earlier problem, “Ising Anyons and Majorana

Fermions” (Ex, 3.3), one can express Ising anyons in terms of Majorana
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fermions which are operators γi with anticommutations {γi, γj} = 2δij . As
discussed there we can choose any two majoranas and construct a fermion
operator

c†12 =
1

2
(γ1 + iγ2)

then the corresponding fermion orbital can be either filled or empty. We
might write this as |012〉 = c12|112〉 and |112〉 = c†12|012〉. The subscript 12
here meaning that we have made the orbital out of majoranas number 1 and
2. Note however, that we have to be careful that |012〉 = eiφ|121〉 where φ is a
gauge choice which is arbitrary (think about this if it is not obvious already).

Let us consider a system of 4 majoranas, γ1, γ2, γ3, γ4. Consider the basis
of states

|a〉 = |012034〉
|b〉 = |012134〉
|c〉 = |112034〉
|d〉 = |112134〉

rewrite these states in terms of basis of states

|a′〉 = |041023〉
|b′〉 = |041123〉
|c′〉 = |141023〉
|d′〉 = |141123〉

Hence determine the F -matrix for Ising anyons. Be cautious about fermionic
anticommutations: c†xc

†
y = −c†yc†x so if we define |1x1y〉 = c†xc

†
y |0x0y〉 with the

convention that |0x0y〉 = |0y0x〉 then we will have |1x1y〉 = −|1y1x〉. Note
also that you have to make a gauge choice of some phases (analogous to the
mentioned gauge choice above). You can choose F to be always real.





Planar Diagrams1 10
1This chapter develops the diagram-
matic algebra in some detail. For those
who would like an easier (albeit not as
general) introduction to diagrammatic
algebra, go to chapter 11.

One of our objectives is to come up with some diagrammatic rules (some-
what analogous to those of the Kauffman bracket invariant) which will
allow us to evaluate any diagram of world-lines (i.e, a labeled link, pos-
sibly now including digrams where particles come together and fuse, or
split aprart) and get an output which is a complex number as desired
in Fig. 7.1. Having described the idea of the F -matrix we can begin
to construct these rules. In this chapter we will focus only on planar
diagrams — i.e., we do not allow lines to cross over and under each other
forming braids. We can roughtly think of such planar diagrams as being
particles moving in 1+1 dimension. Since there are no over and under-
crossings the only nontrivial possibility is that particles come together
to fuse, or they split apart. An example of a planar fusion diagram is
shown in Fig. 10.1. It is convenient to draw diagrams so that no lines are
drawn exactly horizontally. The reader should be cautioned that there

a
ā

b c
d
e

f

g q
n

x
x̄

ys

Fig. 10.1 A planar fusion diagram
starting and ending at the vacuum.

are several different normalizations of diagrams — two in particular that
we will discuss. These two normalization conventions are convenient in
different contexts. We will start with a more “physics” oriented normal-
ization in section 10.2, but we switch to a more topologically oriented
normalization in section 10.3 and in later chapters.

10.1 What We Mean By a Diagram

If, like Fig. 10.1, a diagram starts at the bottom from the vacuum and
ends at the top with the vacuum, we interpret that diagram to represent
a complex number, or an amplitude. However, as we have been doing in
chapters 8 and 9, we will also consider diagrams that have “loose ends”
(lines sticking off the top or bottom of the page ) meaning that they
may not begin or end with the vacuum2. We can view these diagrams 2Many of the diagrams we have drawn

(such as Fig. 8.1 or Fig. 9.1) have not
started at the bottom with the vacuum
or ended at the top with vacuum.

with loose ends as being part of a larger diagram that begins and ends
in the vacuum. However, it is also useful to give such diagrams quantum
mechanical meaning in their own right.
Our convention is that when we draw a diagram with world-lines that

end pointing upwards we should view these particles as kets (indepen-
dent of the direction of any arrow drawn on the world-line). If world-lines
end pointing downwards, we mean them to be bras. Many diagrams will
have world-lines that point both up and down, in which case we mean
that the diagram has some particles that live in the vector space of kets
and some in the dual (bra) space. Such diagrams can be interpreted as
operators that take as input the lines coming in from the bottom and
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give as output the lines going out the top. The lines coming in from the
bottom are thus in the bra part of the operator and the lines pointing
out the top are the ket part of the operator3. An example of this is3Analogous to some of the ideas of

chapter 7, the bras and kets are meant
to be contracted together with bras and
kets from other diagrams, pasting to-
gether such operators to assemble a pic-
ture with no loose ends like Fig. 10.1
which starts and ends in the vacuum.

shown in Fig. 10.2.

= |a〉 ⊗ |b〉 ⊗ |c〉 Cabcde 〈d| ⊗ 〈e|

a b c

d e

some diagram

Fig. 10.2 Interpreting a part of a diagram as an operator. Incoming lines from
the bottom correpond to bras and outgoing lines towards the top correspond to kets.
The value of the constant Cabcde depends on the particular diagram in the box.

An important principle is that we can construct the hermitian con-
jugate of a diagram with the following procedure: reflect the diagram
across the horizontal axis, and also reverse all the arrows (so up-pointing
arrows continue to point up). An example of this is shown in Fig. 10.3.

= |d〉 ⊗ |e〉 [Cabcde ]∗ 〈a| ⊗ 〈b| ⊗ 〈c|

a b c

d e

some diagram

Fig. 10.3 Reflecting a diagram along a horizontal axis and then flipping the direction
of all arrows gives the hermitian conjugate. This figure gives the Hermitian conjugate
of the diagram shown in Fig. 10.2. We switch bras for kets and complex conjugate
the constant Cabcde .

A particularly important diagram with ends pointing both up and
down is given by a simple labeled straight line, which should be inter-
preted as the identity operator for the particle label type as shown in
Fig. 10.4.

= |a〉〈a|a

Fig. 10.4 A labeled straight line is just an identity operator for the particle type.

10.2 Diagram Rules with Physics
Normalization

To make more sense of these diagrams we should think in terms of the
anyon Hilbert spaces defined in chapter 8. If we start from the vacuum
at the bottom and draw a fusion tree, we construct a particular ket state
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in the Hilbert space. Let us define two particular states of the Hilbert
space as shown in Fig. 10.5.

∣∣∣∣

a b c d

e

f

〉
= |state〉

∣∣∣∣

a′ b′ c′ d′

e′

f ′

〉
= |state′〉

Fig. 10.5 Fusion trees in the Hilbert space form an orthonormal set when
we use physics normalization. The inner product of these two states is
δaa′δbb′δcc′δdd′δee′ δff ′δfd̄. The final factor of δfd̄ is included because at the bottom
of the diagram two particles fuse to the vacuum. In the isotopy invariant normaliza-
tion of section 10.3 and later chapters the inner product obtains an additional factor
of

√
dadbdcdd.

When we draw fusion trees starting from the vacuum, and if we use
the “physics” normalization of diagrams, fusion trees are defined to be
orthonormal with respect to all particle labels4. So for example, in 4To be precise, in cases where there

are fusion multiplicities greater than
one, each vertex gets an additional in-
dex (See Fig. 8.6 and sections 9.1.2
and 10.6.1). In this case, the diagrams
are also orthonormal in these indices as
well. For simplicity of notation we will
often not write these vertex indices.

reference to Fig. 10.5 we have

〈state′|state〉 = δaa′δbb′δcc′δdd′δee′δff ′δfd̄ (10.1)

where the final factor of δfd̄ is included because at the bottom of the
diagram two particles fuse to the vacuum. A more convenient way to
describe Eq. 10.1 and Fig. 10.5 is to take the hermitian conjugate of
|state′〉 by flipping the diagram over (as in Fig. 10.3), so that we obtain
Fig. 10.6.

a b c de

f

a′ b′
c′

d′e′
f ′

= δaa′δbb′δcc′δdd′δee′δff ′δfd̄〈state′|state〉 =

Fig. 10.6 Expressing the inner product of Eq. 10.1 as a single diagram. Again,
the right hand side uses physics normalization. In isotopy invariant normalization of
section 10.3 and later chapters the right hand side is multiplied by

√
dadbdcdd.

Note again that the normalization of these diagrams will be changed
in section 10.3 below and in later chapters.
The result on the right hand side of Fig. 10.6 is given by the principle

of orthonormality of fusion trees. The result in Fig. 10.6 is also consistent
with the principle of locality as shown in Fig. 10.7

= 0 unless a = b

a

b

anything

Fig. 10.7 The locality principle as in Fig. 8.7.
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which we mentioned previously in Fig. 8.7. For example, locality implies
in Fig. 10.6 that a = a′, b = b′, c = c′, d = d′, e = e′, f = f ′.
Note that the principle of orthonormality of trees implies the useful

result that a loop, as shown in Fig. 10.8 is given the value of 1. At
the risk of being repetitive we once again note that we will change this
normalization in section 10.3 below and in later chapters, although it is
correct for this section.

| 〉 = |state〉
a

= 1=〈state|state〉 Physics
Normalization

a

Fig. 10.8 The orthonormality of trees implies a particle loop gets a value of 1 if we
are using physics normalization.

Another very important diagram is the insertion of a complete set of
states into two particle world lines as shown in Fig. 10.9. We should
see this as a ket on top of a bra

∑
c |c〉〈c| which is our usual idea of a

complete set. Another way of thinking about this is that a and b must
fuse to some c, and if you sum over all possible channels c, you have
summed over a complete set5.

5In cases where Nc
ab > 1 we have an

additional index µ at the vertex (See
Fig. 8.12). In this case we must sum
over the index µ as well, and it must
be the same index |cµ〉〈cµ| at both ver-
tices. See section 10.6.1.

a b =
∑

c
c

a b

a b

Fig. 10.9 Insertion of a complete set of states with physics normalized diagrams.

One more useful diagram is given by Fig. 10.10 which is implied by
the orthogonality of tree states6, but it also consistent with the locality6Again if Nc

ab > 1 there are additional
indices at the vertices and these must
match as well. See section 10.6.1.

principle shown in Fig. 10.7.

= δcd c

c

d

ba

ba

Fig. 10.10 This identity is implied by the orthogonality of trees with the same
branching structure, but it is also a result of the locality principle.

10.2.1 Causal Isotopy (vs. Full Isotopy)

Keeping with the idea of diagrams that are planar (no over- and under-
crossings), we now consider how we may deform these diagrams. We
need to ask how much topological invariance we should really expect
from our theories. In the mathematical world of TQFTs and knot in-
variants, it is fine to assume that all directions are equivalent, and we
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can freely distort a line travelling in the x direction (horizontally) on
the page to a line travelling in the t direction (vertically). However,
in real physical systems, generically the time direction might need to
be treated differently from the space directions. In this section we will
discuss topologically theories that allow deformation in space, but with-
out allowing one to freely exchange the time and space directions. In
particular some amount of causality might be demanded.

=

a
b c

d

e f

g

h

a

b

c

d

e

f

g

h

Fig. 10.11 For a theory with full two-dimensional isotopy invariance, these two
diagrams should evaluate to the same result. Full isotopy invariance allows us to
distort the diagram in any way as long as we do not cut any strands or cross lines
through each other.

In chapter 11 we will consider a subset of theories which have a much
higher level of topological invariance, known as full isotopy invariance,
which allows us to freely distort diagrams in either the space or time
direction and further allow us to interchange the two.7 7Those who would like to minimize the-

oretical complexity might want to skip
the rest of this chapter and go directly
on to chapter 11 and follow the rules
presented there. One should just real-
ize that the theories presented there are
not generic.

In this chapter we do not allow full isotopy invariance but rather as-
sume only what we call causal isotopy8. Here we allow deformation of

8This is not standard nomenclature.

space-time diagrams so long as we do not change the time-direction mo-
tion of any particles. In other words, the path of a particle that is moving
forward in time should not be distorted such that it is moving backwards
in time (and vice-versa, a particle moving backwards should not be dis-
torted so that it is moving forwards) — but other than this constraint,
any smooth deformation is allowed. Two examples of deformations that
are allowed under causal isotopy are shown in Fig. 10.12.

=

a a

=

a b d

e f g

a b d

e f g

Fig. 10.12 Two examples of deformations that are allowed under causal isotopy.
Deformations of the path are allowed as long as they do not require a particle to
reverse directions in the time-like direction. In the left example, this deformation
is allowed because in both cases the particle continues to move forward in the time
direciton. In the right example, the temporal order of the vertices does not matter.
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Certain deformation of diagrams are not allowed by causal isotopy.
Two examples of such disallowed deformations are given in Fig. 10.13.
On the left of the figure we see a particle which turns around in time.
This need not be the same as the particle moving straight in time as it
involves a particle creation event and a particle annihilation event. On
the right of Fig. 10.13 a vertex is altered so instead of a b particle coming
in to the vertex, a b̄ particle goes out. In this case we must have a b
with b̄ annihilation event in the right of the diagram that does not exist
in the simpler diagram where a and b directly fuse to c. Thus these two
diagrams do not evaluate to the same result.

6=

a a a b

c

a b

b̄

c

6=

Fig. 10.13 Two examples of disallowed transformations under causal isotopy.

10.2.2 Summary of Planar Diagram Rules in
Physics Normalization

With the principles we have now discussed we should be able to evaluate
any planar diagram — taking a space-time process and turning it into
an amplitude (i.e, a complex number). Similarly we can use the same
principles to evaluate operators9 such as Eq. 10.2.

9Any operator can be defined com-
pletely by how it acts on a basis of
states. Similarly we can define the
action of a diagram with lines point-
ing upwards and downwards, as in
Fig. 10.2, by the complex amplitudes it
gives when placed within some known
bra on top and ket on the bottom which
yield a complete diagram with no lines
that end either upwards or downwards.

a ā

b

=

a ā b

I

b
Fig. 10.14 One can always add or re-
move the identity (or vacuum) line to
any diagram.

Here are a summary of the important rules we have learned for dia-
gram evaluation

(1) One is free to continuously deform a diagram consistent with causal
isotopy as described in section 10.2.1. That is, particles must not
change their direction in time due to the deformation.

(2) One is free to add or remove lines from a diagram if they are labeled
with the identity or vacuum (I). See the example in Fig. 10.14.

(3) Reversing the arrow on a line turns a particle into its antiparticle
(See Fig. 8.4).

(4) A line must maintain its quantum number unless it fuses with
another line, or splits. For example, this tells us immediately in
Fig. 10.6 that d = d′ and c = c′ and b = b′ and f = f ′. Only the
vacuum line is allowed to abrubtly terminate.

(5) Splitting and fusion vertices are allowed10 for multiplicities N c
ab >

10This includes particle creation and
annihilation as a special case where two
particles fuse to the vacuum.

0 (See section 8.3).

(6) A hermitian conjugate is given by reflection of a diagram around a
horizontal line along with flipping the direction of arrows as shown
in Fig. 10.3.

(7) One can use F -moves to change the structure of fusion trees in
order to simplify their structure. For example, in Fig. 10.15, the
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diagram on the left is turned into the one on the right using an
F -move.

b c a

ā

d
ef

ā

=
∑

x

[(F bdeā )−1]cx
b d e a
x

ā

f
ā

= (F bdeā )∗fc

Fig. 10.15 The diagram on the left is evaluated by applying an F -move to the
left half of the diagram. The resulting diagram is evaluated to delta functions as in
Fig. 10.6, in particular enforcing x = f . Finally we use the unitarity of F in the last
step. This diagram is evaluated with physics normalization.

(8) Once one reduces a diagram into tree structures that have the
same branching in the upper and lower half (as on the right of
Fig. 10.15) we can use the orthonormality of trees to complete the
evaluation (as in Fig. 10.6).

With these principles (and given an F -matrix as input information
– which will depend on the particular physical system we are consider-
ing) it is possible to fully evaluate any planar diagram into a complex
number. The structure we have defined thus far (our Hilbert space and
F matrices) is known as a unitary fusion category. Many systems may
have additional structure (such as braiding rules) which we have not yet
mentioned.

10.3 Seeking Full Isotopy Invariance: Isotopy

Invariant Normalization

We would very much like the diagramatic rules of our topological theories
to obey full isotopy invariance — meaning that any smooth deformation
of a diagram leaves its value unchanged as indicated in Fig. ??. In many
cases we can make some small changes to normalizations to remove some
impediments to full isotopy invariance.
Let us first examine where the most obvious problem lies. For a nice

topological theory (meaning one with full isotopy invariance) we would
want to have the so-called zig-zag identity shown in Fig. 10.16 (which
is not a property of theories having only causal isotopy invariance as
mentioned in Fig. 10.13).

=
?

a a

Fig. 10.16 A topological theory with
full isotopy invariance should have this
“zig-zag” identity. However, generi-
cally a set of F matrices will not satisfy
this equality (See Fig. 10.17). We can
often repair this problem by changing
the normalization of kets.

Unfortunately, a set of F matrices (even if they satisfy the pentagon
self-consistency condition Eq. 9.3) does not generically satisfy this zig-
zag identity Fig. 10.16. To see this, consider the manipulations shown
in Fig. 10.17. With the physics normalization of diagrams we have been
using, the zig-zag identity does not hold.
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= [F aāaa ]
II

a
I

I

a
I

I

a
= [F aāaa ]

II
a

Fig. 10.17 Straightening a zig-zag wiggle incurs a factor of F using physics nor-
malization of diagrams. In the first step we use an F -move on the lower part of the
diagram. We then use orthogonality of the tree to remove the small a bubble. This
part of the diagram is just Fig. 10.8. Thus this small a bubble can be removed. We
conclude that with the physics normalization we cannot satisfy the zig-zag identity
Fig. 10.16.

To fix this problem, we take a cue from the Kauffman bracket in-
variant and change our definition of diagrams just by a small bit. In
particular, let a simple loop of particle a, as shown in Fig. 10.18, be
given a value of da. This is different from our prior definition where we
set the loop value to one as in Fig. 10.8. The change here only means
that we will be working with unnormalized bras and kets. We will call
this normalization “isotopy normalization”.

| 〉 = |state〉
a

=〈state|state〉 a = da= Isotopy
Normalization

a

Fig. 10.18 Using a new normalization (which we call “isotopy normalization”) of
bras and kets. Compare to Fig. 10.8.

We should not worry about working with unnormalized bras and kets
— we are allowed to do this in quantum mechanics. The price for using
unnormalized states is that expecations of operators are now given by

〈Ô〉 = 〈ψ|Ô|ψ〉
〈ψ|ψ〉

instead of the usual expression for normalized states which just has the
numerator. Note that clearly for the identity particle dI = 1 since we
should be able to add and remove and deform vacuum lines freely.
With this new normalization, we can recalculate the value of a zig-zag

wiggle analogous to that of Fig. 10.16.
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= [F aāaa ]
II

a
I

I

a
I

I

a
= da[F

aāa
a ]

II
a

Fig. 10.19 With the new isotopy invariant normalization of diagrams, straightening
a zig-zag wiggle incurs a factor of da[F aāaa ]II . We will choose the value of da so as
to make this factor into unity if we can.

Let us choose11 11Note that some references, including
Bonderson [2007] and Kitaev [2006] de-
fine da to be the absolute value of this
quantity so it is always positive.da =

1

[F aāaa ]II
(10.2)

For the time being, let us assume that this definition gives da real and
positive12 and we will return to this issue in section 10.4. 12We will see that for non-self dual par-

ticles a 6= ā we can always make a gauge
choice so that this definition of da is
real and positive. For self-dual parti-
cles a = ā we sometimes will have to
suffer with da real and negative. See
section 10.4.

Given the choice of Eq. 10.2, we see from Fig. 10.19 that the wiggly
lines (like the left of Fig 10.16) can be straightended out freely. As we
will see in chapter 12, the normalization constant da will turn out13 to

13We have already seen examples
where da < 0 (see exercise 2.2). In such
a case we instead get da = |da|.

be the same quantum dimension da that we found in Eq. 8.8 from the
Hilbert space dimension of fusing anyons together.
In this section we are going to try to massage our theory into a form

that is much closer to isotopy invariance. In some cases we will succeed
in our quest of achieiving isotopy invariance, and in other cases we will
fall short and we will need to add further complications to our theory.
Having changed the normalization of our kets, for consistency we need

to change the normalization of fusions and splittings to match. Following
suit, we define new normalization of vertices as shown in Fig. 10.20.

| 〉
a b

c
Isotopy
Normalization

=

(
dadb
dc

)1/4 | 〉
a b

c
Physics
Normalization

Fig. 10.20 New Normalization for vertices. Note that this is consistent with
Fig. 10.8 by setting c = I with a = b (and note that dI = 1.).

With this new normalization, the orthonormality of trees is now dif-
ferent from what we previously assumed. For example, Fig. 10.6 should
now have a factor of

√
dadbdcdd on the right hand side. Similarly our

completeness diagram Fig. 10.9 and our bubble diagram Fig. 10.10 need
to be modified as shown in Fig. 10.21 and 10.2214

14Once again if Nc
ab > 1 there are addi-

tional indices at the vertices and these
must match as well. See section 10.6.1.
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a b =
∑

c

√
dc
dadb

c

a b

a b

Fig. 10.21 Insertion of a complete set of states with isotopy invariant normalization
of diagrams. See Fig. 11.4 for how to interpret the square root in cases where d < 0.

c

d

ba

ba
= δcd

√
dadb
dc

c

Fig. 10.22 Bubble diagran with isotopy invariant normalization of diagrams. See
Fig. 11.2 for how to interpret the square root in cases where d < 0.

A crucial point is that the F -matrix does not need any alteration
when we switch from physics to isotopy-invariant normalization15! One

15Indeed, the reason why we changed
the value of all vertices, as in Fig. 10.20,
and not just rescale the vertex cor-
responding to a simple loop as in
Fig. 10.18, is in order to keep F from
changing.

can check that in changing normalizations both sides of Fig. 9.1 are
multiplied by the same factor of (dadbdc/de)

1/4.
With this isotopy invariant normalization the rules for evaluating di-

agrams are exactly the same as those described in section 10.2.2 ex-
cept that loops are now normalized with the quantum dimension as in
Fig. 10.18 and our orthonormality relationships (Fig. 10.9 and Fig. 10.10)
are altered to those shown in Fig. 10.21 and Fig. 10.22.

10.3.1 Futher Possible Impediments to Full Isotopy
Invariance

With this new isotopy invariant normalization we allow straightening
of wiggly lines (i.e., the zig-zag identity is obeyed) as in Fig. 10.16 (up
to a possible sign, which we will discuss in section 10.4). However, we
emphasize this does not guarantee full isotopy invariance, that is that we
can deform lines in any way we like in the plane. For example, the right
hand side of Fig. 10.13 cannot generically be turned into an equality. In
Fig. 10.23 and 10.24 we give similar examples and show why we should
not expect the two pictures on the far right and far left of these figures
to evaluate to the same result.

I a

c

c̄

b

= [F cc̄aa ]Ib

a

a
b

c
c̄ b

=
√

dadc
db

[F cc̄aa ]Ib

a

bc

Fig. 10.23 To evaluate the diagram on the left, the vacuum line is inserted and
an F -move is made. The bubble is then removed with Fig. 10.22. Note that if we
were to use the physics normalization, the prefactor of

√

db/(dadc) would be absent.
Generally we should not expect that the prefactors of d’s and F obtained on the right
should cancel each other. However, in chapter 11 we focus on precisely the theories
where this prefactor does turn out to cancel as is required for full isotopy invariance.
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Ia

b

c̄

c

=
√

dadc
db

[F ac̄ca ]∗bI

a

cb

Fig. 10.24 The mirror image of Fig. 10.23. Here we use the fact that F is hermitian,

so F−1 = [F ∗]T .

Thus it seems that our most general theory with causal isotopy invari-
ance cannot achieve full isotopy invariance. Perhaps this is not surpris-
ing. Even if we can deform space-time world lines into each other, we
might still expect that there would be some minor difference between a
process on the far left and far right of Fig. 10.23: On the far left c and
c̄ are produced from the vacuum then c̄ and a come together to form
b whereas on the far right, a simply turns into c and b. Fortunately,
many topological theories are not this complicated: as we will see in the
next chapter, there are many theories where one does have full isotopy
invariance, and the prefactor incurred in the process shown in Fig. 10.23
turns out to be unity.

10.4 Frobenius-Schur Indicator

Let us return now to the zig-zag Fig. 10.16 and let us be more care-
ful about how we assure that this identity holds. To arrange this, we
chose a new normalization for our kets such that the factor da[F

aāa
a ]II in

Fig. 10.19 is just the identity. However, if [F aāaa ]II is not a postive real
number this can cause serious problems16. Fortunately, with a gauge

16Having a loop which evaluates to a
non-positive number gives a situation
where our inner product in Eq. 10.18 is
not positive definite, and this can cause
all sorts of problems in quantum me-
chanics (existence of null vectors etc),
which we would really like to avoid.
While one can have consistent dia-
grammatic algebras with non-positive-
definite inner products, we don’t want
them to describe quantum mechanics.

choice, we can fix the phase of [F aāaa ]II any way we like unless a = ā.
Let us see how this can be done.

= |āa〉
āa

= |aā〉
aā

= 〈aā|
aā

Fig. 10.25 The vertex |aā〉 (top)
and the vertex |āa〉 (middle) can be
assigned different phases as a gauge
choice (See section 9.1.3). The bot-
tom figure here is the hermitian con-
jugate of the middle and must have the
conjugate phase choice. In Fig. 10.19
the leftmost figure includes |aā〉 and
〈āa|, whereas the phases cancel in the
loop formed in the middle picture of
Fig. 10.19 which is formed from |aā〉
(middle here) and 〈aā| (bottom here).
Thus choosing gauges we can choose
any phase for [F aāaa ]II unless a = ā
(See section 9.1.3 for discussion of the
effects of gauge transform on F )..

On the far left of Fig. 10.19 we have a vertex |āa〉 as well as a ver-
tex which we write as 〈aā| (compare to Fig. 10.25). Note that these
two vertices are not generally hermitian conjugates of each other. By
making separate gauge transforms on these two states, these kets can
be redefined by an arbitrary phase as discussed in section 9.1.3, and
this phase then ends up in [F aāaa ]II (See the transformation in Eq. 9.5).
Thus by a gauge choice we can choose any phase for [F aāaa ]II , as long
as a 6= ā. However, if a = ā, this scheme fails. In this case the kets |aā〉
and |āa〉 are equal and we do not have the freedom to gauge transform
them separately.
It is easy to show that when a = ā, the factor of [F aaaa ]II must be real

(See appendix 10.7 for a three line proof). In the literature one defines a
gauge-invariant quantity known as the “Frobenius-Schur indicator” for
self-dual particles

κa = sign[F aaaa ]II . (10.3)

If the Frobenius-Schur indicator for all particles is positive, our redefini-
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tion of the normalization of the kets (Figs. 10.18 and 10.20) successfully
allows the zig-zag identity to hold as shown in Fig. 10.19. However, if
the Frobenius-Schur a minus sign is incurred every time we straighten a
zig-zag (as in Fig. 10.16) and no gauge choice can remove this sign.
There are several different approaches for keeping track of the mi-

nus signs incurred when there are negative Frobenius-Schur indicators.
An approach used by several mathematicians (Turaev [1994]; Bakalov
and Kirillov [2001]) is to create a fictitious degree of freedom and (even
when a = ā) treat a and ā as different objects. A similar approach
is used by Lin and Levin [2014]. The approach used by Kitaev [2006]
and Bonderson [2007] labels creations and annihilations with flags that
represent signs. In section 11.3 we will explain a simple but fairly useful
method for bookkeeping of Frobenius-Schur indicators which, while not
completely general, works for most cases of interest.

10.4.1 Spin 1/2 Analogy

It may seem a bit odd that wiggling a space-time line (as in Fig. 10.16)
can incur a minus sign. While this physics might appear a bit unfamiliar
it turns out that there is a familiar analog in angular momentum addition
— where the particle types (the labels a, b, c etc) correspond to the
eigenvalue of total angular momentum squared J2.
Consider three spin-1/2 particles which all taken together are in an

eigenstate of J = 1/2. We can describe the possible states of the system
with fusion trees as in Fig. 9.1 — in this case where a, b, c and e are
all labeled with J = 1/2. In Fig. 9.1 we can (on the left of the figure)
consider either the fusion of the left-most two particles to some angular
momentum d = 0 (meaning a singlet) or d = 1 (meaning a triplet), or
we can (on the right of the figure) consider fusion of the right-most two
particles to either f = 0 or f = 1. The F -matrix that relates these

two descriptions of the same space is given by [F
1
2

1
2

1
2

1
2

]df which is often

known as a 6j symbol in the theory of angular momentum addition.
The analogy of negative Frobenius-Schur indicator here is the fact that

[F
1
2

1
2

1
2

1
2

]00 is negative.

Let us try to see how this happens more explicitly. Given that the
total spin is 1/2 we can focus on the case where the total z-component
of angular momentum is Jz = 1/2 as well. The state where the leftmost
two particles fuse to the identity (or singlet J = d = 0) can then be
written explicitly as

|ψ〉 = 1√
2
(| ↑1↓2〉 − | ↓1↑2〉)⊗ | ↑3〉 (10.4)

where the subscripts are the particle labels given in left to right order.
This wavefunction is precisely analogous to the lower half (the “ket”) of
the far left hand picture in Fig. 10.17.
On the other hand, we could use a basis where we instead fuse the

rightmost two particles together first, as in the righthand side of Fig. 9.1.
We can write the state where the right two fuse to J = f = 0 analgously
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as

|ψ′〉 = | ↑1〉 ⊗ (| ↑2↓3〉 − | ↓2↑3〉)
1√
2

(10.5)

which is precisly analogous to (but the hermitian conjugate of) the top
half (the “bra”) of the left hand side of Fig. 10.17.
It is easy to check that the inner product of these two states |ψ〉 and

|ψ′〉, corresponding to the value of the left diagram of Fig.10.17 is17 17This result of −1/2 is precisely the
6j symbol

{

1/2 1/2 0
1/2 1/2 0

}〈ψ′|ψ〉 = −1/2

By redefining the normalization of these states, we can arrange for this
overlap to have unit magnitude. However, the sign cannot be removed.
The situation is the same for any two half-odd-integer spins fused to a
singlet.

10.5 Appendix: Further Simplifying
Assumptions

10.5.1 Pivotal Assumption

A property that may seem obvious is known as the pivotal property.
This states that there should be isomorphisms between a vertex with a
downturned line and that with an upturned line, such as that shown in
Fig. 10.26. While this seems like a rather minor assumption it turns

c

a b

⇐⇒

a c̄b

Fig. 10.26 A theory is pivotal if there
exists an isomorphism between these
two types of vertices.

out to be quite powerful, implying

10.5.2 Spherical Assumption

One typically assumes topological theories are “spherical”. Given a dia-
gram X with a line coming out the top and a line coming in the bottom.
The so-called left trace is defined by conneting up the top line with the
bottom line in a loop going to the left, as in the left of Fig. 10.27. The
right trace is defined similarly, except that the loop goes to the right of
the diagram X as in the right of Fig. 10.27. If the left trace is always
equal to the right trace we say that the theory is spherical. The name
here comes from the idea that we could pull the string around the back
of a sphere in order to turn a left trace into a right trace as shown in
Fig. 10.28. However, the spherical assumption is actually stronger than
Fig. 10.28 suggests since it allows us to turn a right trace into a left trace
even when there are other objects on the sphere which might prevent us
from dragging a string all the way around the back of the sphere.

Xa = X a

Fig. 10.27 The Spherical Property sets the left trace equal to the right trace as
shown in the picture.
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a X
=

aX

Fig. 10.28 The naming “spherical” comes from the idea that we can pull the string
around the back of a sphere (as indicated by the black arrows) to turn a left trace
into a right trace.

An obvious result of the spherical assumption is that da = dā.
It has been conjectured that any pivotal category is spherical.

10.6 Appendix: Further Details

10.6.1 Higher fusion multiplicities

When we have a theory with higher fusion multiplicities (i.e., N c
ab > 1

for at least one fusion channel), then the vertices must be given indices
as well as lines having indices. In this case we need to modify Figs. 10.5
and Fig. 10.6. These would instead read

〈 a′ b′ c′ d′

e′

f ′

µ′

ν′
∣∣∣∣

a b c d

e

f

µ

ν
〉

= δaa′δbb′δcc′δdd′δee′δff ′δfd̄δµµ′δνν′

Fig. 10.29 Orthonormality of trees in the case of higher fusion multiplicities. Note
that the this diagram uses the physics normalization of section 10.2. Here vertices
are given indices µ ∈ Ne

ab and ν ∈ Nf
ec. If we use isotopy invariant normalization the

right hand side is multiplied by
√

dadbdcdf .

a b
=
∑

c,µ

c

a b

a bµ

µ

Fig. 10.30 Insertion of a complete set of states. When there are fusion multiplicities,
these must be summed over as well µ ∈ Nc

ab. This diagram is drawn in the physics
normalization. In the isotopy invariant normalization there is an extra factor of
√

dc/(dadb) on the right hand side.
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= δcdδµν c

c

d

ba
µ

ν

Fig. 10.31 The bubble diagram when there are fusion multiplicities. This diagram
is a result of the orthonormality of tree diagrams. The variables at the vertices must
match in order for the result to be nonzero. This diagram is drawn in the physics
normalization. In the isotopy invariant normalization there is an extra factor of
√

dadb/dc on the right hand side.

10.7 [F aaa
a ]II is real

Let a be a self-dual particle (i.e., a = ā). Working with the physics
normalization we already showed (Fig. 10.17) that

= [F aaaa ]II aa

Similarly using an inverse F -move, and the fact that F is unitary (See
section 9.1.1) we can derive

= [F aaaa ]∗II aa

Assuming only causal isotopy invariance, the equality

=
a a= = [F aaaa ]∗II[F aaaa ]II

a a

then shows that [F aaaa ]II must be real.





Planar Diagrams with Full 2D
Isotopy 11
In the previous chapter, chapter 10, we viewed diagrams as states (kets)
of quantum mechanical systems. There was a privledged direction which
we called “time” and in general one has be careful not to change the
“causality” of a diagram. While we could make certain deformations of
a diagram, not all deformations were generally allowed. In the current
chapter, we want to focus on theories that allow a greater degree of
topological invariance — theories that enjoy full isotopy invariance as
shown in Fig. 10.11. That is, any deformation is allowed to a diagram
as long as no lines are cut. In this chapter we continue to consider only
planar diagrams, so we do not allow over- and under-crossings (which we
introduce later in chapter ***). Because of our specialization to these
fully isotopy invariant theories, our rules for diagrammatic manipulation
will be slightly easier than those in chapter 10.
As in chapter 10 there is still a bra and ket interpretation of diagrams.

Roughly we can think of cutting a diagram in half and viewing one side
as a bra and the other as a ket1. We can also roughly think of these 1We can think of any direction as be-

ing time, although it is sometimes most
convenient to think of time as up.

diagrams as being world lines of particles moving in 1+1 dimensions.
In section 11.3 below we will generalize some of our manipulations to

also consider a very common modification of our diagrammatic algebra
that allows the value of a loop da to be negative. Due to this negative
value, the theory naively appears to not be valid for describing unitary
quantum mechanical system. However, with a minor reinterpretation of
our diagrams, these theories can describe unitary quantum mechanical
systems but for particles having negative Frobenius-Schur indicators.
Such diagrammatic algebras are quite common and include many simple
topological theories like SU(2)k Chern-Simons theory.

11.1 Diagrammatic Rules

As in the previous chapter we would like to use F -matrices to help us
convert one diagram into another. We found that bending lines up and
down as in Fig. 10.23 can incur nontrivial factors. Here, however, we
instead assume that such factors are unity and we can turn up and down
the branches of the diagrams freely, thus simplifying manipulations. The
conventions we use in this chapter are different from that of the previous
chapter but instead match those introduced by Levin and Wen [2005].
Our F -matrix will relate diagrams as shown in Fig. 11.1.
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b

a

c

e

d =
∑

f

F badecf

b

a

c

e

f

Fig. 11.1 The definition of the F -matrix for 2D isotopy invariant planar diagrams.
These are the conventionsl of Levin and Wen [2005]. For a unitary theory the F -
matrix with fixed indices a, b, c, d is unitary in the indices d and f . Our convention
is that for this F matrix to be nonzero, the vertices in the pictures must be allowed
fusions — i.e., Nabd = Nced̄ = Nbcf = Naef̄ = 1. The case with fusion multiplicities
N greater than one is considered in section 11.5.1.

In this chapter, the orientiation of this diagram (how we direct the
legs compared to some direction we call time) does not matter. We can
compare the definition of F -matrix in Fig. 11.1 to our prior definition
of the F -matrix shown in Fig. 9.1. Since we now assume that we can
bend legs up and down freely, we bending legs in Fig. 9.1 and reversing
arrows to make it look like Fig. 11.1 and we thereby derive the relation
between the two definitions

F badecf = [F āb̄c̄e ]df (11.1)

Again the idea of the F -matrix is to write a single diagram (on the left
of Eq. 11.1) as a sum of diagrams on the right. By successively applying
such F -moves to parts of complicated diagrams we can restructure any
given diagram in a multitude of ways.
There are several further useful rules for diagram evaluation. First,

the contraction of a bubble as shown in Fig. 11.2

c d

a

b

= δcd

√
dadb
dc

c

Fig. 11.2 The locality principle for the isotopy invariant diagrammatic algebra. In
cases where some d’s are negative we interpret the sign outside the square root as
negative if and only if both da < 0 and db < 0.

This identity is the same as Fig. 10.22 only written sideways (in this
chapter direction on the page does not matter). In particular this rule
implies the “no-tadpole” rule, that any diagram of the sort shown in
Fig. 11.3 must vanish unless the incoming line is the vacuum.
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c

a

Fig. 11.3 Picture of a tadpole. (Apparently this picture is supposed to look like
a tadpole.). The locality principle Fig. 11.2 implies that any diagram containing a
tadpole must vanish unless the incoming line is labeled with the vacuum. (I.e., unless
there is no incoming line!). Famously, Physical Review did not allow the use of the
name “spermion” for diagrams of this sort.

We also have again the completeness relation as shown in Fig. 11.4.

a b =
∑

c

√
dc
dadb

c

a b

a b

Fig. 11.4 Insertion of a complete set of states. In cases where some d’s are negative
we interpret the sign outside the square root as negative if and only if both da < 0
and db < 0.

This relation is precisely the same as Fig. 10.21, only now we can
orient the diagram in any direction.
The last rule we need is to give a value to the a labelled loop as in

Fig. 11.5. As in the case of the Kauffman bracket invariant, the value
of the loop will be called d, although here there will be a different da,
called the “quantum dimension”, for each possible particle type a. Note
that we have not yet shown the relationship between this definition of
the quantum dimension and the definition given in Eq. 3.8. In chapter
12 we will show that these two definitions are in fact the same!

a = da = dā

Fig. 11.5 The value of a loop labeled a is given by the quantum dimension da. Here
we have invoked the spherical assumption to give us da = dā.

It is always true that dI = 1, meaning that loops of vacuum can be
freely added or removed from a diagram, and we will always assume
da to be positive. As emphasized in section 10.3, giving the loop this
normalization implies we are working with non-normalized kets. (See
Fig. 10.18, and also note 18 of chapter 2.)
It is entertaining to note that the value of the loop in Fig. 11.5 is

actually contained in the information given in Fig. 11.2 by setting a =
d = I, which then requires c = b̄ and we use dc = dc̄.
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11.1.1 Summary of Planar Diagram Rules For Full
Isotopy Invariant Theories

Given the F -moves (Fig. 11.1) and the locality principle (Fig. 11.2) and
the value of the loop da, we can evaluate any planar diagram2 and turn

2Any planar diagram with no loose
ends. As described in detail in 10.1 a
diagram with loose ends should be con-
sidered a bra or ket or operator.

it into a scalar number made up of factors of F ’s and d’s— very similar
to what we did with the Kauffman bracket invariant, only without over-
and under-crossings here. Here are a summary of the rules for diagram
evaluation in the case of full isotopy invariant theories. These rules are
analogous to those presented in section 10.2.2, only here the rules are
simpler33We assume in this section that for self-

dual particles all the Frobenius-Schur
indicators (see section 10.4) are posi-
tive so that we need not worry about
minus signs when we straighten a zig-
zag diagram as in Fig. 10.16.

(1) One is free to continuously deform a diagram in any way as long
as we do not cut any strand (for this section we assume no over-
or under-crossings).

(2) One is free to add or remove lines from a diagram if they are labeled
with the identity or vacuum (I). See the example in Fig. 10.14.

(3) Reversing the arrow on a line turns a particle into its antiparticle
(See Fig. 8.4).

(4) A line must maintain its quantum number unless it fuses with
another line, or splits.

(5) Vertices are allowed for multiplicities N c
ab > 0 (See section 8.3).

(6) One can use F -moves to change the structure of diagrams.

(7) One can use relations Fig. 11.4 and 11.2 to change the structure
of diagrams.

(8) Every diagram can be reduced to a set of loops which can each be
evaluated to give da for each loop of type a.

11.2 Constraints and Examples

There are many constraints on our diagrammatic algebras for 2D isotopy
invariant theories. Here we give such constraints and explain where they
all come from.

Constraint: The Pentagon

The consistency condition on F -matrices given in Eq. 9.3 can be con-
verted to the notation of this chapter (See note ?? of this chapter) to
give44In deriving Eq. 11.2 from Eq. 9.3 we

have taken a, b, c, d → ā, b̄, c̄, d̄ for ease
of notation.

F cf̄gedl F
baf

el̄k
=
∑

h

F bafgch F
h̄ag
edk F

cbh
kdl (11.2)

Constraint: Relating F to d

For any theory with full 2D-isotopy (or “almost” 2D-isotopy as we have
been considering in this chapter), the value of da should be fixed by the
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F -matrices:

da =
1

F āaIāaI

(11.3)

This is demonstrated by the manipulations of Fig. 10.19, converted into
the notation of the current chapter. In this section we assume that
F āaIāaI > 0. We consider case where it is negative in section 11.3 below.

Constraint: Inversion

One can perform an F -move on the right hand side of Fig. 11.1 to bring
it back into the form on the left. We obtain the diagrammatic relation
shown in Fig. 11.6,

b

a

c

e

d =
∑

f

F badecf

b

a

c

e

f =
∑

f,g

F badecf F
cbf
aeḡ

b

a

c

e

g

Fig. 11.6 In the second step we apply the same F -matrix equation from Fig. 11.1,
but the diagram is rotated by 90 degrees.

which necessarily implies the consistency condition
∑

f

F badecf F
cbf
aeḡ = δdg (11.4)

Constraint: Rotation

Rotating the diagram in Fig. 11.1 by 180 degrees and comparing it to
the original diagram, one derives

F badecf = F ecd̄baf̄ . (11.5)

Constraint: Turning Up and Down

For a theory to be fully isotopy invariant, we must be able to freely
make the moves shown in Fig. 10.23. As shown there, this requires
1 =

√
(dadc)/db[F

cc̄a
a ]Ib, or in the notation of this chapter

F cc̄Iaāb =

√
db
dadc

(11.6)

whenever b× c = a+ . . ..

Constraint: Unitarity

As mentioned above in Fig. 11.1, the F -matrix, being a change of basis,
must be unitary5. This means that 5For a proper quantum mechanical in-

terpretation we will insist on unitarity.
However, planar diagrammatic algebras
can be fully self-consistent and fully iso-
topic invariant without satisfying this
unitarity condition. We will discuss an
example of this in chapter ??.

∑

f

F badecf [F
bad′

ecf ]∗ = δdd′ (11.7)

∑

d

F badecf [F
bad
ecf ′ ]∗ = δff ′ (11.8)
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or equivalently [F baec ]
† = [F baec ]

−1 Comparing the former to Eq. 11.4 we
obtain

[F badecf ]
∗ = F cbf

aed̄
(11.9)

Constraint: Hermitian Conjugate

Using reflection across the horizontal axis as in Fig. 10.3, we can re-
flect the F -matrix equation Fig. 11.1 and compare the reflected to the
unreflected diagram to obtain

F badecf = [F āb̄d̄c̄ēf ]
∗ (11.10)

= [F c̄ēdāb̄f̄ ]
∗ (11.11)

= F ēāf
b̄c̄d

, (11.12)

where in the second line the first line has been used in combination
with Eq. 11.5, whereas in the third line the first line has been used in
combination with Eq. 11.9.

Constraint: Reflection

An independent condition that is very often imposed is that it should
be invariant under left-right reflection. Compare the diagram shown in
Fig. 11.7 to that of Fig. 11.1.

c

e

b

a

d =
∑

f

F ced̄abf

c

e

b

a

f

Fig. 11.7 The diagrammatic equation in Fig. 11.1 after being left-right reflected.

If a theory has left-right reflection symmetry, then we must have a
further constraint

F badecf = F ced̄abf (11.13)

While this additional condition is not required for a diagrammatic al-
gebra, and one can even have full isotopy invariance in two dimensions
without it, it is often assumed. For three dimensional theories, such a
symmetry is natural.
Using Eq. 11.13 along with Eq. 11.12 gives us the natural seeming

constraint

F badecf = [F b̄ād̄ēc̄f̄ ]
∗ (11.14)

Example: Evaluating a bubble

As an example of showing how further constraints are derived, let us use
F -moves to evaluate the bubble shown in Fig. 11.8.
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a d

c

b

=

a d̄

b̄

c

=
∑

f

F c̄ab̄d̄cf

a

c

d

f

= δadF
c̄ab̄
ācI dc

c

a

= δadF
c̄ab̄
ācI a

Fig. 11.8 Evaluation of a bubble diagram. In the first step, as usual we can flip
the direction of an arrow and turn a particle into its antiparticle. In the second step
we apply an F -move (compare to Fig. 11.1). Then by the no-tadpole (locality) rule
(Fig. 11.3) , we can set f to the vacuum particle I and hence a = d.

However, we also know the value of the diagram in Fig. 11.8 from

Fig. 11.2 which gives us
√
dcdb/da. Thus we derive F c̄ab̄ācI dc =

√
dcdb
da

, or

equivalently (while replacing b with b̄ for simplicity and using db = db̄)
we have

F c̄abācI =

√
db
dadc .

(11.15)

whenever c × b = a + . . .. Note that Eq. 11.15 could also be obtained
from Eq. 11.6 with Eq. ??.

Example: The Theta diagram

A commonly considered diagram is the theta diagram Θ(a, b, c) shown
in Fig. 11.9. This diagram is easily evaluated by using Fig. 11.2 along
with the value of a single bubble Fig. 11.5.

Θ(a, b, c) = =

a

b

c
ca b = dc

√
dadb
dc

Fig. 11.9 The Theta diagram. This is evaluated by using Fig. 11.2 along with the
value of a single bubble Fig. 11.5.

Example: The tetrahedral diagram

Let us consider one more evaluation known as the tetrahedral diagram
as shown in Fig. 11.10. At this point we are considering this as a planar
diagram even though it looks three dimensional! However, we usually
consider diagrams to be well defined if they live o the surface of a sphere,
so if we want to think about this as being three dimensional, we should
think of this as living on a spherical surface.
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f cb

a d
e

=
b

a

c

e

df =
∑

g

F badecg

b

a

c

e

g
f

= F badecf df
√

dbdc
df

√
dade
df

≡ Gbadecf

Fig. 11.10 Evaluation of the tetrahedral diagram. The first step is just smooth
deformation. The second step is application of an F move. Using Fig. 11.2, the
index g must be equal to the index f and we obtain some factors of

√
d. Finally we

are left with a single loop of f which gives a factor of df to give the final result which
we give the name G.

For isotopy invariant theories, the tetrahedral diagram has some ob-
vious symmetries. For example, we should have rotational symmetry in
the plane as shown in Fig. 11.11

f cb

a d
e

= c ed

b a

f
Fig. 11.11 An obvious rotational symmetry of the tetrahedral diagram.

which implies the identity (note the definition of G in Fig. 11.10)

Gbadecf = Gdbafēc̄ . (11.16)

Another symmetry comes from Eq. 11.5

Gbadecf = Gecd̄baf̄ . (11.17)

which we draw as shown in Fig. 11.12.

f cb

a d
e

= f ae

c d

b

= b fc

d e

a
Fig. 11.12 The first step is the identity in Eq. 11.17 and the second step is a rotation
as in Fig. 11.11. Although this is actually a planar diagram it appears as a rotation
in 3D.

Although the diagram shown in Fig. 11.12 is a planar diagram, from
the far left to the far right, it appears as if it is a rotation in 3D. Using
Fig. 11.11 and 11.12 we can rotate this tetrahedron in any way we like.
If one assumes the reflection symmetry Eq. 11.13 then one can also take
the mirror image of the tetrahedron as well to obtain an equivalence
between 24 tetrahedral diagrams related by symmetries6.

6For an example of a spherical category
that cannot be put in a form with full
tetrahedral symmetry, see Hong [2009].

.
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11.3 Unitarity, Negative da, and

Frobenius-Schur, again

One often encounters diagrammatic algebras (with evaluation rules as in
section 11.1.1) that have full isotopy invariance, but also have a negative
value for the variable da which gives the value of a loop as in Fig. 11.5.
Having such a negative da corresponds to a negative normed state (in-
terpreting a loop as the norm of a state as in Fig. 10.18), which implies
non-unitarity, which is forbidden in quantum mechanics. Fortunately,
it is very often possible to reinterpret such diagrammatic algebras as
well-behaved unitary quantum theories, having particles witht positive-
definite inner product but negative Frobenius-Schur indicators (See sec-
tion 10.4). Because this situation is so common7, we will describe it here 7Indeed, we have already run into nega-

tive d in exercise 2.2 where d = −1, and
we will re-examine this case in chapter
15 below as well as in ****.

in some detail.
First, we must elaborate the conditions for this unitary reinterpreta-

tion to be possible. We will always assume that

sign(da) sign(db) = sign(dc) whenever a× b = c+ . . . . (11.18)

If this relationship holds (and it very often does!) we can go ahead with
our unitary reinterpretation of the diagrammatic algebra.
As a quick aside, we remind the reader that we have suggested a

number of times that da will be related to the quantum dimension da that
tells us how the size of the Hilbert space grows with increasing number
of particles (See Eq. 3.8). While da is here allowed to be negative, da
must be positive. The general relation will be

da = |da| (11.19)

which we will prove in chapter 12.
Before continuing we should probably clarify some issues that may

arise in theories with negative d. In some of the diagrammatic calculus
we run into factors of

√
d (See, for example, Figs. 11.2, 11.4, 11.9, 11.10),

and this may appear ambiguous. Note, however, that due to Eq. 11.18,
the argument of the square root is always positive, so we need only
decide on whether the square root should be interpreted as positive (as
we have been implicitly doing so far) or negative. The answer to this
is written in the captions of Figs. 11.4 and 11.2 — in other words the
square root should be interpreted negative8 when the factor (dadb)/dc

8To see that this makes sense, consider
Fig. 11.2 in the case where the incoming
lines are the identity, but a = b̄ and
da < 0.

has both da < 0 and db < 0.
Assuming we now have a well defined diagrammatic algebra, with

some negative d’s satisfying Eq. 11.18, we now explain how this alge-
bra can be reinterpreted as a well defined unitary quantum mechanical
theory. Let us define

κa = sign(da)

which we will call the Frobenius-Schur indicator9 for particle type a.

9The common definition of Frobenius-
Schur indicator applies only to parti-
cles which are self-dual a = ā as given
in Eq. 10.3, or possibly even assigns
a value of 0 to non-self dual particles.
Here we will assign κ = ±1 to each par-
ticle.

To remind the reader, when we introduced Frobenius-Schur indicator in
section 10.4, a negative κa means that if we pull straight a zig-zag in
space time (as shown in Fig. 11.13) we incur a minus sign.

a

Fig. 11.13 A zig-zag in space time. If
time in this picture is pointing up, and
if the particle a has negative Frobenius-
Schur indicator, it incurs a minus sign
when the zig-zag is pulled straight.
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Our reinterepretation of this diagrammatic algebra is now quite sim-
ple. We evaluate isotopy invariant diagrams using the rules given in
section 11.1.1. We call this result the non-unitary evaluation of the di-
agram as it corresponds to the non-unitary theory with negative d’s.
However, we now insert two additional crucial rules into our list

(0.a) We break the space-time symmetry and declare one direction on
the page (usually up) to represent time.

(0.b) Before evaluating a diagram, count the number of Frobenius-Schur
caps, and call it n. After fully evaluating the diagram multiply the
final result by (−1)n.

Here a Frobenius-Schur cap occurs when we go forward in time and two
particles with κ = −1 come together to annihilate or form a particle
having κ = +1. (See examples in Figs. 11.14 and 11.15). Another way
of counting the Frobenius-Shur caps is to imagine erasing all lines in the
diagram which have κ = +1. This leaves only a set of closed loops (due
to Eq. 11.18). We then just need to count caps in this set of closed loop
of the form shown in the left of Fig. 11.15.

c

c

a b

a b
Fig. 11.14 With time going vertical,
the left diagram is a Frobenius-Schur
cap if and only if κa = κb = −1. (The
directions of the arrows do not matter,
and if the particles are self-dual we do
not draw arrows). The right diagram is
never a Frobenius-Schur cap.

a

a

Fig. 11.15 With time going vertical,
the left diagram is a Frobenius-Schur
cap if and only if κa = −1. The right
diagram is never a Frobenius-Schur cap.
We can think of these diagrams as being
the same as the diagrams in Fig.11.14
with c being the identity. The direc-
tions of the arrows do not matter.

With these new rules, we are now describing a unitary positive-normed
quantum theory — we call this evaluation of a diagram, including rule
0, the unitary evaluation of the diagram. As a simple example, consider
the evaluation of a single loop as in Fig. 11.5 where da < 0. In this case
we assign κa < 0 for this particle type. Before evaluating the loop we
count that there is a single Frobenius-Schur cap on the top of the loop
(as in the left of Fig. 11.15). We evaluate the diagram with the rules of
section 11.1.1, to obtain da < 0 as the nonunitary evaluation. However,
applying rule (0.b) this quantity is then multiplied by −1, giving the
final result for the quantum dimension −da = |da| > 0. This is the
result of the unitary evaluation of the diagram, and it is positive as we
would hope for a positive definite inner product for a diagram that can
be written as 〈state|state〉 (See Fig. 10.18.)
As a second example, consider in the middle right of Fig. 11.9, and let

us assume that da, db < 0 and dc > 0. The (nonunitary) evaluation of
the diagram (without rule 0) gives −dc

√
dadb/dc (the sign coming from

our above discussed rule of how to handle square roots with negative d’s).
However, applying rule 0, there is a single Frobenius-Schur cap (from
the vertex with a and b coming in from the bottom, and c going out the
top), and hence the unitary evaluation of this diagram is +dc

√
dadb/dc.

Note that this is postive as it should be for a diagram that can be written
as 〈state|state〉 as in Fig. 10.6.
As a third example, consider the same diagram (middle right of Fig. 11.9)

but consider the case where da, dc < 0 and db > 0. Here the nonuni-
tary evaluation gives dc

√
dadb/dc, but applying rule 0, with a single

Frobenius-Schur cap (the top of the c loop) we obtain a final result of
the unitary evaluation given by −dc

√
dadb/dc. Note that this is also

positive as it should be.
The situation described in this section— having a theory which is fully

isotopy invariant but has negative da, which can then be interpreted as
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a unitary theory with negative Frobenius-Schur indicators — is quite
common. There are many topological theories of this type — including
the semion theory SU(2)1 and more generally theories like SU(2)k.

11.4 More General Diagrammatic Algebras
and Important Warning

The diagrammatic algebra we have defined in this chapter (See summary
***) make a number of simplifying assumptions — full isotopy invari-
ance, reflection symmetry, unitarity, and so forth. These are common
assumptions to make for physical systems. However, particularly in the
mathematics literature, one will find discussion of many diagrammatic
algebras where some of these simplifications do not hold. The impor-
tant warning is that one should be particularly careful to make sure
that you know what assumptions do, or do not, hold for any particular
case you happen to be considering.
In the math literature the diagrammatic algebras we have been de-

veloping are known as tensor fusion categories. There is a very detailed
classification of fusion categories describing particular assumptions that
one can impose and the resulting properties. We do not have time (or
inclincation) to make a complete classification here.

11.5 Appendix: Isotopy Invariant F -matrix
Odds and Ends

11.5.1 F -matrix with higher fusion multiplicities

As in section 9.1.2 when fusion multiplicities are greater than one, the
vertices have additional indices which we label with greek indices µ, ν, . . ..
For example, if a and b fuse to c with N c

ab > 1 then the vertex will have
an additional index µ ∈ 1 . . .N c

ab. Note that compared to section 9.1.2
we do not put black dots on the vertices here. In the conventions of the
current chapter we would then have

b

a

c

e

dµ ν =
∑

fλτ

[
F badecf

]µν
λτ

b

a

c

e

f

λ

τ

Fig. 11.16 F -matrix with fusion multiplicity.
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c d

a

b

µ ν
= δcdδµν

√
dadb
dc

c d

a

b

µ ν

Fig. 11.17 The locality principle for the isotopy invariant diagrammatic algebra
with fusion multiplicity.

=
∑

c,µ

√
dc
dadb

a b c

a b

a bµ

µ

Fig. 11.18 Insertion of a complete set of states with fusion multiplicity.

11.6 Summary of properties of F

The defining equations (See Yuting Hu, Levin Wen.) Note Yuting Hu
Frobenius-Schur indicator factor in later paper.
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We have claimed several times that the value of a loop da in our dia-
grammatic calculus (See Fig. 10.18 or 11.5) is related to the quantum
dimension da which tells us that the dimension of the Hilbert space
grows when we fusing n anyons of type a scales as ∼ d

n
a for large n. (See

Eq. 3.8). In Eq. 8.8 we also showed that da is the largest eigenvalue of
the fusion multiplicity matrix Na. To show how da is related to da we
consider fusing two loops labeled a and b as shown in Fig. 12.1.

ab =
∑

c

√
dc
dadb

c b a

=
∑

c

√
dc
dadb

ac b =
∑

c

N c
ab c

Fig. 12.1 Fusing two loops into a single loop. In the first line we use the completness
relation Fig. 10.21, then we deform to the second line and finally in the last step we
remove the bubble using Fig. 10.22.

The result seems rather natural, that a and b can fuse together to form
c in all possible ways. The derivation1 uses the completness relation in
the first line (Fig. 10.21), then we deform to get to the second line, and
finally in the last step we remove the bubble using Fig. 10.22.
We have claimed that the value of a loop of string a will be given

by da = |da| in general2. This then gives Fig. 12.1 the algebraic in- 2For the case where da < 0 here
we mean the unitary evaluation which
gives |da| as discussed in section 11.3

terpretation that the quantites da’s are a representation of the fusion
algebra

dadb =
∑

c

N c
ab dc (12.1)

Now, given Eq. 12.1, which we derived using diagrammatic algebra
(and in particular using the fact that a loop evaluates to the quantity
da = |da|), we can show that da is the largest eigenvalue of the fusion
multiplicity matrix.

1The result holds very generally. There are several possible worries one might have about this calculation which we should
dispell. First, in cases where Nc

ab > 1 one must conisder additional indices at the vertices, in which case we use Fig. 10.30 and
Fig. 10.31 in place of Fig. 10.21 and Fig. 10.22 in the derivation. Secondly, one might worry that for general theories, without
full isotopy invariance, going from the first line to the second line might be problematic. However, it turns out that one does
not need full isotopy invariance, just the pivotal property is enough to get to the second line (See section 10.5.1).
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To do this let us think of the fusion multiplicity for particle a, as a
matrix Na with indices b and c, as we did in Eq. 8.8. We can then think
of dc for the different indices c as a vector ~d, and we can rewrite Eq. 12.1
as

da
~d = [Na]~d

I.e, the vector ~d is an eigenvector of Na with eigenvalue da.
Note now that the fusion multiplicity matrix Na has only non-negative

elements and ~d has only positive elements. This allows us to apply
the Perron-Frobenius theorem which says that for matrices with only
non-negative elements3 there is a unique eigenvector with all positive3If Na had all positive entries, the

Perron-Frobenius eigenvalue would be
the unique largest eigenvalue in abso-
lute value. However, if Na has entries
which are zero, it is posisble that there
are other eigenvalues with the same ab-
solute value as the Perron-Frobenius
eigenvalue.

entries, and it corresponds to the largest eigenvalue. Thus we conclude
that da is actually the largest eigenvalue of the matrix Na and it has
eigenvector ~d. Thus we conclude that the value of a loop da is the same
as the definition of the quantum dimension da as largest eigenvalue of
the fusion multiplicity matrix.
Since da and da are so closely related one often abuses nominclature

and refers to da as being the quantum dimension da whereas they need
only be the same in absolute value.



Some Simple Examples of
Planar Diagram Algebras 13
In this chapter we give a few examples of simple planar diagram algebras.
To a mathematician these are known as spherical tensor categories (See
section 10.5.2). All of the examples given here will enjoy full isotopy
invariance (perhaps with a nontrivial Frobenius-Schur indicator in some
cases) so we will use the notation of chapter 11.

13.1 Z2 Fusion Rules

Let us start with the simplest system of particles we can imagine, an
identity 0 and a nontrivial particle 1. The simplest fusion rules we can
have are

1× 1 = 0

which tells us that 1 is its own antiparticle 1 = 1̄. This is known as Z2

fusion rules and is shown in Fig. 13.1.

=
1 1 1 1

0

Fig. 13.1 Fusing two 1-particles to the
vacuum, shown in two notations.

Our fusion multiplicity matrix is N110 = N101 = N011 = N000 = 1 and
N111 = N001 = N010 = N100 = 0. ( Since N is symmetric in its indices,
we could have just written N110 = N000 = 1 and N100 = N111 = 0.)

Fig. 13.2 Examples of allowed vertices
for the Z2 fusion rules. A 1 particle
(drawn solid) comes into the vertex and
the 1-partice must also go out of the
same vertex. The 0 particle, the iden-
tity, is drawn dotted, but it need not be
drawn at all.

With 0 being the identity, the only nontrivial vertices we can have
with these fusion rules is where one particle 1 comes in and one particle
1 also goes out as shown in Fig. 13.2. If one does not draw the identity
particle, diagrams must then be just a so-called loop gas as shown in
Fig. 13.3. The constraint N100 = 0 means that loops cannot end, and
N111 = 0 means that loops cannot intersect. With these fusion rules,

Fig. 13.3 A loop gas has Z2 fusion rules.
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there are two sets of F -matrices and d’s that give a consistent fully iso-
topy invariant planar algebras. Note that the identity particle is always
assigned quantum dimension d0 = 1.
The Z2 loop gases were studied in Exercise 2.2 (where we allowed

over and undercrossings in addition to just planar diagrams), and we
will consider them again in section 15.1 below.

13.1.1 d = 1 loop gas

Here we choose d1 = 1 for the nontrivial particle, in which case every F
which is consistent with the fusion rules (See Fig 11.1) is +1. In other
words, F badecf = 1 for every case where Nabd = Nced = Nbcf = Naef = 1
and F is zero otherwise. We can write out explicitly the nonzero elements

F 000
000 = 1/d0 = 1 (13.1)

F 110
110 = 1/d1 = 1 (13.2)

F 110
001 = F 000

111 = 1 (13.3)

F 101
101 = F 011

011 = 1 (13.4)

F 101
010 = F 011

100 = 1 (13.5)

The first two lines are required from Eq. 11.3. Eq. 13.3 is from Eq. 11.6.
Eq. 13.4 and Eq. 13.5 can be derived from Eq. 13.2 and Eq. 13.3 by the
tetrahedral symmetry equation Eq. 11.16.
The d = 1 loop gas turns out to be a relatively trivial diagrammatic

algebra. The value of every allowed diagram is unity! (or is zero if there
is anything disallowed in the diagram, such as the intersection of loops.)

13.1.2 d = −1 loop gas

Here we choose d1 = −1 for the nontrivial particle, in which case every
F which is consistent with the fusion rules is ±1. Again F badecf = ±1 for
every case where Nabd = Nced = Nbcf = Naef = 1 and is zero otherwise.
The signs of F are given as follows

F 000
000 = 1/d0 = 1 (13.6)

F 110
110 = 1/d1 = −1 (13.7)

F 110
001 = F 000

111 = 1 (13.8)

F 101
101 = F 011

011 = 1 (13.9)

F 101
010 = F 011

100 = 1 (13.10)

= F 011
011

= F 110
001

Fig. 13.4 These F -moves for the Z2

loop gas simply deform the path of the
particles. These are known as “isotopy”
moves.

= F 110
110

Fig. 13.5 This F -move for the Z2 loop
gas reconnects the paths of particles.
This is known as a “surgery” move.

As with the d = 1 loop gas, the first two lines are required from
Eq. 11.3. Eq. 13.3 is from Eq. 11.6. Eq. 13.4 and Eq. 13.5 can be
derived from Eq. 13.2 and Eq. 13.3 by the tetrahedral symmetry equation
Eq. 11.16. Note in particular how the signs work in Fig. 11.10 in the
defintiion of the tetrahedral diagram.
It is worth looking at the two different signs that F can take. (If

necessary, refer back to Fig. 11.1 for details of how the F -matrix is
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defined). Moves such as shown in Fig. 13.4 simply deform the path
of the particle and do not incur a sign. However, the move shown in
Fig. 13.5 perform “surgery” on the parths and reconnect loops and does
change the sign. Such a surgery always changes the number of loops in
the diagram by one. The value of any loop diagram is thus given by

Value of (d = −1)
loop diagram

= (−1)number of loops

As mentioned in section 11.3, while this is a perfectly consistent diagram-
matic algebra, it has non-positive definite inner products and therefore
is not appropriate for describing quantum mechanics.
To make a proper unitary theory out of the d = −1 loop gas we let

there be a Frobenius-Schur indicator

κ1 = −1

With this nontrivial Frobenius-Schur indicator, and assuming the time
direction is up on the page, the value of a diagram is (see section 11.3)

Value of (d = −1)
loop diagram
in theory with

nontrivial Frobenius-Schur

= (−1)number of loops+number of caps

For example, in Fig. 13.3 there are 10 loops and 14 caps, so the full value
of the diagram is +1.

13.2 Fibonacci Fusion Rules: The Branching
Loop Gas

We now consider Fibonacci fusion rules as discussed in sections 8.2.1
and 9.0.1 above. Here the nontrivial fusion rule is1

1Here we have switched to the notation
of τ for the nontrivial particle and I
for the vacuum. Using 1 and 0 is also
common.

τ × τ = I + τ

Again τ = τ̄ is self-dual. These fusion rules allow vertices with three τ
particles (one coming from each direction as shown in Fig. 13.6) so the
loop gas can have branches as shown in Fig. 13.7.

Fig. 13.6 An allowed fusion vertex
(right) and a disallowed fusion vertex
(left) for the Fibonacci fusion rules.
The solid line is τ and the dotted line
is the identity. The vertices shown in
Fig. 13.2 are also allowed.

Fig. 13.7 A Fibonacci branching loop diagram allows intersections of loops, but no
loop ends.
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The fusion multiplicity matrix Nabc is zero if exactly one of the indices
is τ and the other two are I. Otherwise Nabc = 1. As usual F badecf is
nonzero for every case where Nabd = Nced = Nbcf = Naef = 1 and
F is zero otherwise. We can establish the nonzero components of the
F -matrices for these fusion rules.

F IIIIII = 1/dI = 1 (13.11)

F ττIττI = 1/dτ (13.12)

F ττIIIτ = F IIIτττ = 1 (13.13)

F ττIτττ = 1/
√
dτ (13.14)

F τττττI = 1/
√
dτ (13.15)

F τIττIτ = F IττIττ = 1 (13.16)

F τIτIτI = F IτττII = 1 (13.17)

F τττIττ = F ττττIτ = F Iτττττ = F τIττττ = 1 (13.18)

F ττττττ = −1/dτ (13.19)

As with the case of the Z2 loop gases, the first two lines are required from
Eq. 11.3. Eq. 13.13 and Eq. 13.14 are from Eq. 11.6. Eq. 13.15 comes
from Eq. 13.14 and Eq. ??. Eqs. 13.16, 13.17, and 13.18 can be derived
from Eqs. 13.12, 13.13, 13.14 and 13.15 by the tetrahedral symmetry
equation Eq. 11.16. Finally, Eq. 13.19 comes from the requirement that
the two by two matrix [F ττττ ] is a unitary matrix (See Fig. 11.1) which
we write out as

F ττττ =

(
1/dτ 1/

√
dτ

1/
√
dτ −1/dτ

)
(13.20)

The unitarity requirement on this matrix also gives us

1

d2τ
+

1

dτ
= 1 (13.21)

The solution to this is

dτ =
1 +

√
5

2

which matches the expected quantum dimension given in Eq. 8.2 as it
must, given the considerations of chapter 12. Note that this matrix also
matches our previous claim in Eq. 9.2.
Eq. 13.21 also has a solution with dτ < 0. However, as discussed

in section 11.3 this would correspond to a non-unitary theory and in
this case it is not possible to remove the problem by using a negative
Frobenius-Schur indicator. To see how this fails, recall we can push the
minus sign onto the quantum dimension only in cases where κaκb = κc
whenever a× b = c+ . . .. Here, since τ × τ = τ + . . . we cannot assign
κτ = −1.
As in the case of the Z2 loop gases, Many of the F -matrix elements

correspond to simple deformations of paths (isotopy) as in Fig. 13.4.
The nontrivial F -moves (correspondig to the matrix F in Eq. 13.20) are
summarized in Fig. 13.8.
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= 1
dτ

+
√

1
dτ

=
√

1
dτ

− 1
dτ

Fig. 13.8 The F -moves for the Fibonnaci branching loop gas. Note that the first
line is actually the insertion of a complete set of states as in Fig. 11.4

13.3 Ising Fusion Rules: A two species loop
gas

As discussed in section 8.2.2 the Ising fusion rules are given by

ψ × ψ = I

ψ × σ = σ

σ × σ = I + ψ

with both particle types being self dual ψ = ψ̄ and σ = σ̄. These rules
describe a loop gases with two non-vacuum particles ψ (which we draw
as blue lines and loops in Fig. 13.9) and σ (which we draw red loops in
Fig. 13.9). The rule of this loop gas is that one may have a vertex with
two sigmas and a ψ, which appears as a blue line splitting off from a red
loop.

Fig. 13.9 A diagram with Ising fusion rules. Here σ is red and ψ is blue.

Looking at the first fusion rule, ψ × ψ = I, we realize this rule alone,
is simply a Z2 fusion rule. Indeed, this tells us immediately that we have

1/dI = 1/dψ = 1

= F IIIIII = FψψIψψI = FψψIIIψ = F IIIψψψ = FψIψψIψ = F IψψIψψ = FψIψIψI = F IψψψII

as given in Eqs 13.1-13.5. One might wonder why we do not consider
dψ = −1 with a Frobenius-Schur indicator. This is for the same reason
why we could not consider negative Frobenius-Schur indicator in the
Fibonacci case. Here we must have κσκσ = κψ so we must have a
postive Frobenius-Schur indicator for the ψ particle.
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Very similarly we have

F σσIσσI = 1/dσ

F σσIIIσ = F IIIσσσ = 1

F σIσσIσ = F IσσIσσ = 1

F σIσIσI = F IσσσII = 1

The first equation is from Eq. 11.3, and the second from Eq. 11.6. The
last two are derived from the first two via the tetrahedral symmetry
Eq. 11.16.
Further using Eqs. 11.6 and 11.15 we obtain

F σσIσσψ = F σσψσσI = 1/dσ (13.22)

F σσIψψσ = FψψIσσσ = F σψσψσI = FψσσσψI = 1 (13.23)

Enforcing unitarity on the two by two matrix [F σσσσ ] we get

F σσψσσψ = −1/dσ (13.24)

giving the two by two matrix the form

[F σσσσ ] =

(
1/dσ 1/dσ
1/dσ −1/dσ

)
(13.25)

The unitarity condition also gives us the condition that

dσ = ±
√
2

which is expected from section 8.2.2. Both of these roots are viable
solutions. The positive solution is known as the Ising model whereas
the negative solution corresponds to SU(2)2 Chern-Simons theory. As
we might expect when we find a negative value of dσ we must also assign
the σ particle a negative Frobenius-Schur indicator κσ = −1 so as to keep
the theory unitary.
The remaining nonzero elements of F are obtained from Eq. 13.22-

13.24 by using tetrahedral symmetry Eq. 11.16 to obtain

1 = F σIσσψσ = F Iσσψσσ = F σψσσIσ = FψσσIσσ (13.26)

= F σIσψσψ = F Iσσσψψ = FψIψσσσ = F Iψψσσσ (13.27)

= FψσσσIψ = F σσψIψσ = F σσψψIσ = F σψσIσψ (13.28)

−1 = F σψσσψσ = Fψσσψσσ (13.29)

The nontrivial F -moves corresponding to the matrix Eq. 13.25 are
shown in Fig. 13.10.

13.4 Rigidity

There are obviously many other diagrammatic algebras we can define
(Indeed, we will run into more in chapters *** and *** below). The
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= 1
dσ

+ 1
dσ

= 1
dσ

− 1
dσ

Fig. 13.10 The nontrivial F -moves for the Ising fusion rules. Note that the first
line is actually the insertion of a complete set of states as in Fig. 11.4

trends we have found here are very general. In particular, as mentioned
in section 9.0.2 for any given set of fusion rules, there are a finite number
of possible consistent solutions of the pentagon equation thus defining a
finite number of possible conistent F -matrices. This property is called
“rigidity” Etingof et al. [2015]2. This suggests the possibility of building 2It is sometimes known as “Ocneanu

Rigidity”, having been discovered by
Ocneanu although never published by
him.

a sort of “periodic table” of all possible diagrammatic algebras by start-
ing with a small number of fields (we chose two fields in the case of the
Z2 rules and the Fibonacci rules, and then three fields for Ising) then
looking for all possible fusion rules with these fields and then finding all
possible consistent F -matrices for those fusion rules. While there are an
infinite number of possibilities, it is a countable infinite number.

Exercises

Exercise 13.1 Show that evaluation of the diagram in Fig. 13.7 gives −d9/2τ .

Exercise 13.2 Show that evaluation of the diagram in Fig. 13.9 gives d2ψd
3
σκσ.
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In this chapter we will use the structure of discrete groups to build
rules for planar diagrams. In section 14.1 we will label our diagrams
with group elements whereas in section 14.2 we will label diagrams with
group representations.

14.1 Fusion as Group Multiplication

One way to construct a wide variety of consistent planar diagrammatic
algebras is to construct our fusion rule based on the structure of a group.
In this approach we consider a discrete group G, and each element g ∈ G
is a particle type with the identity element I of the group being the
vacuum.
Fusion rules follows the rules for group multiplication. That is, for

g, h ∈ G

g × h = gh

which we draw as shown in Fig. 14.1.

g h

gh

=

g h

h−1g−1

Fig. 14.1 Fusion is defined by group
multiplication. On the right we show
the three particles orientied as all leav-
ing the vertex. With this orientation
when the three particles are multiplied
together in clockwise order, they should
fuse to the identity gh(h−1g−1) =
h(h−1g−1)g = (h−1g−1)gh = I.)

Since gg−1 = g−1g = I, antiparticles are given by the inverse elements
in the group, or ḡ = g−1. This means that in a diagram we may reverse
an arrow if we invert the group element as shown in Fig. 14.2.
Let us consider diagrams where each line is labeled by a group element

g ∈ G. Reversal of a line corresponds to inversion of the group element
as shown in Fig. 14.2 analogous to reversing an arrow in order to turn a
particle into its antiparticle.

g g−1

=

Fig. 14.2 Reversing an arrow inverts
the group element.

In cases where the group is abelian so that g×h = gh = hg = h×g this
structure completely fits with the structure of fusion of particle types
we defined in section 8.1 above. In section 14.1.3 we will consider the
possibility of using nonabelian groups, but for now we will assume the
group is abelian. We thus have fusion rules given by group multiplication

Na
g,h = δa,gh = δa,hg

Since the result of any fusion is always uniquely defined by group mul-
tiplication (one never has a sum on the right hand side, such as g× h =
a+ b), the quantum dimension of every particle is dg = 1 meaning the
Hilbert space size does not grow with the number of particles.
An example of a planar diagram with this type of group multiplication

is shown in Fig. 14.3.
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b

a
ab

c

cab
d

dcab
dca

ca

Fig. 14.3 A planar diagram with fusion being defined as group multiplication. For
each vertex, if all arrows are pointed out of the vertex, then going around the vertex
clockwise, the group elements multiply to the identity, as shown in Fig. 14.1.

14.1.1 Group Cohomology

We now have the task of trying to construct consistent F -matrices for
our planar diagram algebra. This is an extremely well studied problem
in the field of group cohomology.1

1Group cohomology is a very general
framework which we will not delve into
more than is necessary. However, it
is worth knowing that it enters promi-
nently in a number of topological theo-
ries.

Consider a general group G. A so-called 3-cocyle of the group is given
by a function of three variables ω(a, b, c) where a, b, c ∈ G that satisfies

ω(a, b, c)ω(a, bc, d)ω(b, c, d) = ω(ab, c, d)ω(a, b, cd) (14.1)

Generally we will consider cases of ω being a U(1) valued complex phase.
In group cohomology notation we say that

ω ∈ H3(G,U(1)) (14.2)

Eq. 14.1 may look obscure, but it is actually just a translation of the
pentagon equation! Let us make the identification, in the notation of
chapter 9,

[F a,b,c(abc)](ab),(bc) = ω(a, b, c)

So that we have diagrammatically

a b c

ab

abc

= ω(a, b, c)

a b c

bc

abc

Fig. 14.4 The 3-cocycle is precisely an F -matrix. Compare to Fig. 9.1.

Examining the pentagon equation Eq. 9.3 and Fig. 9.5 we see that
this is precisely the same as Eq. 14.1 in a different language. Note that
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there is no sum over indices here (like the sum over possible elements
h in Eq. 9.3) since the fusion of any two group elements always gives a
unique group element as an outcome.

ab

a b

→ u(a, b)

ab

a b

Fig. 14.5 We have the freedom to
make a gauge transform of a vertex by
multiplying by a phase u(a, b).

As with F -matrices, it is possible to choose different gauges (See sec-
tion 9.1.3). In particular given a 3-cocycle (ie., a solution of the pentagon
equation) we can multiply each a, b vertex by a phase u(a, b) as shown
in Fig. 14.5 to transform the cocycle by

ω(a, b, c) → u(a, bc)u(b, c)

u(a, b)u(ab, c)
ω(a, b, c). (14.3)

By making such a gauge transform we generate additional solutions of
the pentagon equation. We view different solutions which are gauge
transforms of each other as being physically equivalent, We will typically
work with just one representative 3-cocycle for each equivalence class by
choosing a convenient gauge. It is useful to always work with a so-called
normalized gauge, where ω(a, b, c) = 1 whenever a = I or b = I or c = I.
(I.e, fusing with the vacuum gives no phase). Further we want to only
consider gauge transforms that maintain this normalized gauge, so we
must insist on u(I, g) = u(g, I) = u(I, I) = 1. Given this restriction
to normalized gauge, however, one still has a large additional gauge
freedom.
The 3-cocycle (pentagon) equation Eq. 14.1 typically will have more

than one gauge-inequivalent solution. Further, if we have two different
3-cocycles ω and ω′, we may multiply these together to generate another
solution ωω′ and we may invert ω to generate another solution. Thus,
the space of 3-cocycles H3(G,U(1)) in Eq. 14.2 is itself a group, known
as the third cohomology group of G with coefficients in U(1).
A trivial 3-cocycle ω(a, b, c) = 1 for all a, b, c ∈ G is always possible. In

this case all diagrams have value 1. However, for any group (beyond the
trivial group with only one element), there are always other possible 3-
cocycles as well. Such 3-cocycles and group cohomology in general have
been studied extensively in the mathematics and physics communities
and it is possible to simply look up the form of the possible 3-cocyles.
(See the end of the chapter for good references).
While all 3-cocycles provide a solution to the pentagon equation, they

do not always allow for full isotopy invariance as discussed in chapter 11.
Indeed, for any 3-cocycle ω, we will need to check whether it satisfies all
the requirements for full isotopy invariance. For example, if we want to
be able to freely turn up and down legs of a vertex as shown in Fig. 14.6.
Thus for full isotopy invariance (and allowing for d both +1 and −1)

we need to have

s(a, b)ω(a, a−1, b) = 1 (14.4)

s(a, b)ω(a, b−1, b) = 1 (14.5)

for all a, b in the group with

s(x, y) =

{
−1 dx = dy = −1
+1 otherwise

(14.6)
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. While this condition seems quite restrictive, the gauge freedom
Eq. 14.3 allows us often to achieve this.

b

a

a-1

a-1b

= s(a, b)ω(a, a-1, b)

b

a-1ba

a

ab-1

b-1
b

= s(a, b)ω(a, b-1, b)−1

a

bab-1

Fig. 14.6 Turning up and down relations (analogous to Fig. 10.23). The prefactor

s comes from the proper interpretation of the sign of the
√
d factors in 10.23. See

section 11.3.

A further item to note is that the Frobenius-Schur indicator for a
particle is

κa = da = ω(a, a−1, a)

and if a is self-dual (a = a−1) this is a gauge invariant quantity. If we
can do so, we will try to choose a gauge for our 3-cocyles such that we
have full isotopy invariance (this is not always possible). In cases where
we have negative Frobenius-Schur indicators, we will try to put our 3-
cocyles in the form of section 11.3 where we have full isotopy invariance of
diagrams up to Frobenius-Schur indicators and correspondingly negative
values of d.

14.1.2 Examples: G = ZN

For example, let us take a simple case of the group G = ZN , the group
of integers modulo N with the group operation being addition modulo
N . Since this group is abelian, we have g× h = h× g and these particle
types fit the description of chapter 8.
The inequivalent 3-cocyles of the group ZN can be written as (See

references at the end of the chapter)

ω(a, b, c) = exp

(
2πip

N2
a(b+ c− [b+ c]N )

)
(14.7)

where here a, b, c ∈ 0, . . .N − 1, and the brackets [b + c]N means b + c
modulo N where the result is chosen to lie in the range 0 . . .N − 1.
Here the index p is an integer in the range 0 . . .N − 1 describing the N
different gauge-inequivalent 3-cocyles.
The trivial 3-cocyle is given by p = 0 which gives ω = 1 always. The

nontrivial 3-cocycles are more interesting.
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Z2

Lets consider the simple case of Z2 fusion rules. Here the group elements
are g = 0, 1 and the group operation is addition modulo 2. One has the
trivial 3-cocycle p = 0 in Eq. 14.7, giving ω = 1, or all F matrix elements
equal to 1, which we identify as being exactly the same as the d = 1
loop gas from section 13.1.1.
The only nontrvial 3-cocycle is the p = 1 case. Here, using Eq. 14.7

we determine the 3-cocycle is of the form

ω(a, b, c) =

{
−1 a = b = c = 1
1 otherwise

(14.8)

We recognize this as being exactly the case of the d = −1 loop gas
from section 13.1.2 (This translates to saying that the F -matrix is −1
if and only if all four incoming legs a, b, c and abc are in the 1 state as
in Eq. 13.7, and note that abc here means multiplication with the group
operation so is really (a+ b+ c)mod 2.).

Z3

Generalizing the Z2 fusion to Z3, we now have g = 0, 1, 2 with the
group operation being addition modulo three. In this case we have
three different 3-cocycles, the trivial 3-cocycle (p = 0 in Eq. 14.7) and
two nontrivial 3-cocycles (p = 1 and p = 2 in Eq. 14.7). While these
nontrivial cocycles provide a valid solution to the pentagon equation
14.1 (or Eq. 9.3) they are not in a form where they enjoy full isotopy
invariance. One can use gauge transforms Eq. 14.3 to try to put the
cocyles in different forms, but it is not possible to find a gauge where
both Eq. 14.4 and Eq. 14.5 are satisfied at the same time2. Nonetheless 2To see that it is not possible to achieve

full isotopy invariance note that from
Eq. 14.4 and 14.5, isotopy invariance re-
quires ω(1, 1, 2) = ±1 and ω(1, 2, 2) =
±1. However, for N = 3, the prod-
uct ω(1, 1, 2)ω(1, 2, 2) is gauge invari-
ant, and it is only ±1 for the case of
p = 0. See exercise ***.

they still provide a consistent planar diagrammatic algebra, although
not a fully isotopy invariant one.

Zodd

One can further show that Zn for any odd n is like the case of Z3. That
is, the only fully isotopy invariant case is p = 0. See exercise ***.

Zeven

For Zn with n even, the situation is similar to what we just found with
Z3 for any p 6= 0, n/2 (See exercise ***). That is, we have a perfectly
consistent planar diagrammatic algebra, although not a fully isotopy
invariant one (no matter what gauge we choose).
For the remaining cases p = 0 and p = n/2, however, we can obtain

an isotopy invariant form.

(1) Any even n with p = 0
For p = 0 we have an isotopy invariant solution given by ω(a, b, c) =
1 for all a, b, c and correspondingly d = 1 for all particles3.

3It is interesting to note that in the case
of n = 4m, by making a gauge trans-
form we can also express this as an iso-
topy invariant theory wth da = κa =
(−1)a and ω(a, b, c) = −1 when a, b, c
are all odd, and ω(a, b, c) = 1 other-
wise. This appears similar in spirit to
case (2).
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(2) n = 4m+ 2 such that p = n/2 is odd
In this case, the particle numbered 2m + 1 is self dual, and has
Frobenius-Schur indicator −1, which is gauge invariant. A fully
isotopy invariant theory is possible by choosing a gauge where
da = κa = (−1)a and ω(a, b, c) = −1 when a, b, c are all odd, and
ω(a, b, c) = 1 otherwise. Note that the compisition rule Eq. 11.18
is satisfied.

(3) n = 4m such that p = n/2 is even
In this case the Frobenius-Schur indicator of the self-dual particle
is +1 and we can work in a gauge where all da = +1 and ω is
nontrivial

An example of case (3) is that of Z4 with p = 2. Here we can make a
gauge transform (See exercise ***) such that

ω(a, b, c) =

{
−1 (a, b, c) = (1, 1, 1); (1, 2, 3); (2, 1, 2); (2, 3, 2); (3, 1, 1)
1 otherwise

(14.9)
and wth d = 1 for all particles 0,1,2,3. This gives a fully isotopy invariant
theory.

14.1.3 Using Nonabelian Groups?

In the case where the group is nonabelian we deviate from what was
done when we discussed fusion of particle types in section 8.1 above.
In the discussion of fusion of particle types, we have always assumed
g× h = h× g and with a nonabelian4 group gh may not be the same as

4We have a bit of a language difficulty
here. Here we use the word nonabelian

to mean when g×h 6= h×g whereas pre-
viously (See section 8.2) we used non-
abelian to describe fusion rules where
there is more than one fusion channel,
such as g × h = a+ b+ . . ..

hg.
Why did we insist in chapter 8 that particle fusion should satisfy

g× h = h× g? If we think about particles living in three dimensions, er
we bring two particles, g and h together, looking at the system from one
angle it looks like g is to the right of h but looking at the two particles
from another angle, it looks like h is to the right of g. Thus there is no
way to decide whether the pair fuses to gh or hg.
However, if we are only concerned with a planar diagram algebra (as

we are in this chapter) then there is no ambiguity! The surface we are
considering is assumed to be oriented so we can always unambiguously
decide which particle is clockwise of which other particle at a vertex.
Thus we can make the general rule that for a vertex to be an allowed
fusion, the three particles leaving the vertex must multiply in clockwise
order to the identity as shown in the right of Fig. 14.1. Thus, at least for
planar diagrams we can generalize our rules for particle fusion to allow
non-commutative fusions.
All of the figures in this section (Fig. 14.1 – Fig. 14.6) have been drawn

so as to be consistent with our rule for nonabelian groups — that is, if
all of the arrows are outgoing, when you multiply the group elements
clockwise around the vertex you obtain the identity.
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Example S3

To give an example of a non-abelian group, let us look at the case of the
group S3. To remind the reader5 this group has 6 elements which can 5The group S3, the permutation or

symmetric group on three elements,
represents the symmetries of a triangle
and correspondingly is also known as
the dihedral group with 6 elements, of-
ten denoted D3 or sometimes D6. See
section 28.2 for a few more details of
this group.

be written in terms of two generators X and R with multiplcation rules
X2 = R3 = e and XR = R−1X with e the identity. The 6 elements can
be written as e,R,R−1, X,XR,XR−1. Let us write them as (A, a) =
XARa with A = 0, 1 and a = −1, 0, 1. There are 6 independent 3-
cocycles described by p = 0, . . . 5 in the equation (See references at the
end of the chapter)

ω((A, a), (B, b), (C, c)) = (14.10)

exp{iπpABC} exp
{
2πip

9
(−)B+Ca

{
(−)Cb+ c− [(−)Cb+ c]3

}}

where the bracket []3 indicates modulo 3 where the result is assumed to
be in the range −1, 0, 1.
Note that within S3 there is a Z2 subgroup consisting of e and X ,

or a = 0 with A = 0, 1. The first term on the right hands side,
exp(iπpABC), matches the two possible 3-cocyles from the Z2 group.
For even p it is the trivial cocycle, whereas for odd p we have a ω being
−1 only when A,B,C are all in the 1 state, equivalent to Eq. 14.8. The
second factor looks similar to the Z3 cocycles but only when C = 0.
Setting C = 0 for a moment, the same argument as in the Z3 case shows
that we cannot have full isotopy invariance unless p = 0 or p = 3, in
which case the second factor on the right hand side of Eq. 14.10 is trivial.
Thus this case of p = 3 gives an isotopy invariant cocyle which essen-
tially ignores the a variable of (A, a) and is equivalent to Eq. 14.8 for
the A variableswith d(A,a) = (−1)A.

14.2 Fusion of Discrete Group Representations

Another way to construct a consistent planar diagrammatic algebra is
to work with representations of discrete groups6. Suppose we have ir-

6To remind the reader, each discrete
group has a finite number of irreducible
representations, and any representation
of the group can be decomposed into
a direct sum of irreducible representa-
tions. See section 28.2.4.

reducable representations Ri of a group G. A tensor product of two of
these irreducible representations will necessarily decompose into a direct
sum of irreducible representations. I.e., we have7 7If we write M ⊗ N = P we mean the

following. If Mab is a matrix of dimen-
sion m and Ncd is a matrix of dimen-
sion n then P is defined as P(ac),(bd) =
MabNcd and is of dimension nm. If
we write P = N ⊕ M we mean that
P is block diagonal with blocks N and
M . Finally note that the relation in
Eq. 14.11 is an isomorphism not an
equality. One can choose a basis such
that the right hand side is block diag-
onal, however, this is not the natural
basis for the left.

Ra ⊗Rb ≃ Rc ⊕Rd ⊕ . . . (14.11)

with the sum on the right hand side being finite. We thus propose to
label a particle type for our diagrammatic algebra with an irreducible
group representation, and have the fusion relations be given by these
tensor product decompositions. Thus we interpret the tensor produt
equation Eq. 14.11 as a particle fusion relation

a× b = c+ d+ . . .

and accordingly a particle a’s corresponding to representation Ra has
antiparticle ā corresponding to the dual representation which we write
as Rā = R∗

a.
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It is fairly easy using some tricks of group theory to determine the
fusion rules for discrete group representations. Recall that a represen-
tation R is a homomorphism8 from each group element g to a matrix

8Meaning a mapping where the
group operation is preserved:
ρR(g1)ρR(g2) = ρR(g1g2).

ρRmn(g) (See section 28.2.4). The trace of the representation matrix is
known as its character

χR(g) = Tr[ρR(g)]

One can either work out the characters of a group explicitly or (much
more commonly) just look them up on character tables, which can be
found in any group theory book or on the web.
Since Tr(ab) = Tr(ba) we have χR(g) = χR(hgh−1) meaning that the

character depends only on the so-called conjugacy class of the group
element g.
Characters combine in fairly simple ways under both direct product

and direct sum

χRa⊕Rb(g) = χRa(g) + χRb(g) (14.12)

χRa⊗Rn(g) = χRa(g)χRb(g) (14.13)

Further we have orthonormality relations for irreducible representations:9

9This orthonormality is derived triv-
ially from the grand orthogonality theo-
rem, Eq. 28.3. Since the character χ(g)
is a function of the conjugacy class of g
only it is sometimes more convenient to
replace the sum over all elements with
a sum over classes where we then also
include a factor of the number of ele-
ments in the class. So the left hand
side would read instead

∑

classesC

|C|
|G| [χ

Ra(g ∈ C)]∗ χRb(g ∈ C)

with |C| meaning the number of ele-
ments in class C.

1

|G|
∑

g∈G
[χRa(g)]∗ χRb(g) = δRa,Rb (14.14)

where the sum is over all elements g of the group G and |G| is the total
number of elements in the group. We can thus deduce the tensor product
decomposition10.11

10The
⊕

symbol here means a direct
sum of all the arguments. The prefactor
Nc
ab here means the Rc representation

occurs Nc
ab times in the direct sum.

11We have Ra ⊗ Rb ≃ Rb × Ra mean-
ing the two tensor products are isomor-
phic, but they are not equal. The two
matrices have their entries in different
places. See the definition in note 7 of
this chapter above.

Ra ⊗Rb ≃
⊕

c∈ irreps

N c
abRc (14.15)

where

N c
ab =

1

|G|
∑

g∈G
[χRc(g)]∗ χRa(g)χRb(g) (14.16)

or in our fusion product language

a× b = b× a =
∑

c

N c
ab c

Note that in the case where the group is abelian, the representations
themselves are also an abelian group (meaning N c

ab = N c
ba ∈ {0, 1}

only.)

Example: Representations of S3

As a simple example, let us consider the representations of the group S3

which can also be thought of as the symmetries of a triangle5. There are
three conjugacy classes, which we will call the identity, the rotations,
and the reflections. There are also three irreducible representations12.

12The number of irreducible reps is al-
ways equal to the number of conjugacy
classes.
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identity rotations reflections
1 element 2 elements 3 elements

trivial rep (I) 1 1 1
sign rep (S) 1 1 -1
2d rep (V ) 2 -1 0

Table 14.1 Character table for the group S3. Notice the orthogonality of rows as
defined by Eq. 14.14.

The group has a character table as given in table 14.1. It is then easy
to use Eq. 14.16 to determine the fusion laws for the representations,
which are given by

I × I = I, I × S = S, I × V = V (14.17)

S × S = I, S × V = V (14.18)

V × V = I + S + V (14.19)

from which we see that I plays the role of the vacuum particle. Just as
an example, let us consider Eq. 14.19. From the character table we have
χV = (2,−1, 0) and so χV⊗V = χV χV = (4, 1, 0) = (1, 1, 1)+(1, 1,−1)+
(2,−1, 0) = χI + χS + χV .

14.2.1 F-matrices

With a bit of work, the F -matrices (often known as 6j symbols in this
context) can also be derived using group theoretic methods13. In general 13This section uses a bit more advanced

group theory and is a bit harder to di-
gest.

this can be a bit complicated but the principle is straightforward group
theory. As usual we should think of F badecf as a basis transform (See
Fig. 11.1). In this case it is convenient to think of the process of b, a, e
and c fusing to the identity in different ways or equivalently, the tensor
product of Rb, Ra, Re and Rc fusing to the identity representation.

(1) ConsiderRa⊗Rb ≃
⊕

d̄N
d̄
abRd̄ and fuse with Rc⊗Re ≃

⊕
dN

d
ceRd.

The resulting representations, Rd and Rd̄ then fuse together to
form the identity representation. Such a process corresponds to
the diagram on the left of Fig. 11.1.

(2) Consider instead Rb ⊗ Rc ≃
⊕

f̄ N
f̄
bcRf̄ and fuse with Ra ⊗ Re ≃⊕

f N
f
aeRf , and finally fuse Rf̄ and Rf to form the identity repre-

sentation. Such a process corresponds to the diagram on the right
of Fig. 11.1.

Both of these processes correspond to fusion of the four representations
to the identity. The first, we might say is the identity component of
Rb ⊗ Ra ⊗ Re ⊗ Rc whereas the second is the identity component of
Rb ⊗ Rc ⊗ Ra ⊗ Re. While these two tensor products are isomorphic,
they are expressed in a different basis (see note 11 above). To find F badecf
matrix relating these bases we simply have to find the overlap between
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the d contribution to the overall identiy representation in case (1) above
with the f contribution to the overall identity representation in case (2).
To impliment this procedure, we work with explicit D dimensonal ma-

trices ρRij for each D dimensional unitary representation R. We extract
the identity component of the fusion of the four particles by writing1414This is a result of the grand orthogo-

nality theorem Eq. 28.3. If we sum over
all group elements we extract only the
identity representation.

∑

g

ρRa(g)⊗ ρRb(g)⊗ ρRc(g)⊗ ρRe(g) = C
∑

d

wdw
†
d (14.20)

where wd is a unit length orthogonal DaDbDcDe dimensional vector
representing the process where a and b fuse to d̄ and also c and e fuse
to d, and C is an unimportant normalization constant. Similarly we can
write

∑

g

ρRa(g)⊗ ρRc(g)⊗ ρRb(g)⊗ ρRe(g) = C
∑

f

zfz
†
f (14.21)

= C
∑

d

Pwdw
†
dP

T

where zd is a DaDbDcDe dimensional vector representing the process
where a and c fuse to f̄ and also b and e fuse to f . In the second line
of Eq. 14.21, the matrix P is simply a permutation matrix since the
two tensor products are isomorphic and simply have rows and columns
appropriately permuted.
The F matrix is then just given by the overlap

F badcef = w†
d · zf (14.22)

The challenge is then simply to extract the correct vectors wd and sim-
ilarly zf in Eq. 14.20 and 14.21.
We thus only need to buid up the tensor product in Eq. 14.20 and

14.21 step by step. We have1515In cases where N d̄
ab > 1 we must take

extra care to separate to add the mul-
tiple instances of each representation.
For simplicity let us assume Nd

ab = 0 or
1 only.

ρRa(g)⊗ ρRb(g) =
∑

d̄∈a×b

Dd̄∑

α,β=1

xd̄α [ρ
Rd̄(g)]αβ [x

d̄
β ]

† (14.23)

where the x’s are a set of orthonormal DaDb dimensional vectors (both
sides of this equation are DaDb dimensional matrices). The particular
form of the x vectors can be extracted using the grand orthogonality
theorem Eq. 28.3. Performing the same decomposition for

ρRc(g)⊗ ρRe(g) =
∑

d∈c×e

Dd∑

γ,δ=1

ydγ [ρ
Rd(g)]γδ [y

d
δ ]

† (14.24)

To find the identity element of the fusion between the tensors in Eq. 14.23
and 14.24 we simply match up the d representations with the d̄ repre-
sentations. Thus we have

wdw
†
d ∼

∑

g

Dd∑

α,β,γ,δ=1

(
xd̄α [ρ

Rd̄(g)]αβ [x
d̄
β ]

†
)
⊗
(
ydγ [ρ

Rd(g)]γδ [y
d
δ ]

†
)

∼
Dd∑

α,β=1

(
xd̄α [x

d̄
β ]

†
)
⊗
(
ydα [y

d
β ]

†
)

(14.25)
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where in going to the second line we have used the grand orthogonality
theorem Eq. 28.3. Both sides of this equation are DaDbDcDe dimen-
sional matrices with a single nonzero eigenvalue, so it is then trivial to
extract wd. Then extracting zf by permuting rows of the vector wd as
noted in Eq. 14.21, we then determine the F -matrix using Eq. 14.22.
The procedure outlined here is fairly straightforward, although te-

dious. Equivalent schemes are outlined in Refs. Buerschaper and Aguado
[2009] and Wang et al. [2020]. In exercise *** we walk through calcula-
tion of F -matrices for the representations of the group S3 whose fusion
rules we worked out in Eqs. 14.17–14.19 above.

14.2.2 Continuous (Lie) Group Representations?

One can imagine that instead of looking at the representations of dis-
crete groups, one considers instead the representations of Lie groups
(See section 28.2.3). For example, the different representations of the
group SU(2) are the different values of the spin quantum number j, and
these fuse together with the usual angular momentum addition rules.
Further, the F -matrices are (up to a normalization) precisely what we
call 6j symbols of angular momentum addition.
While such a scheme makes a perfectly good planar diagrammatic

algebra, the problem is that there are an infinite number of different
representations (For the case of SU(2) for example, the angulular mom-
mentum j can inifinitely large) and this violates our rule of having a
finite number of “particle types” for our diagrammatic algebra. Such
algebras can be problematic when used for physical purposes (For ex-
ample, as we will see in section 16.3 using a diagrammatic algebra with
an infinite number of representations for construction of a TQFT re-
sults in divergences). Schemes have been constructed to regularize such
a diagrammatic algebra and arrange that only a finite number of repre-
sentations ever occur – which are often known as “deformations” of the
Lie algebra representation16. The most common such deformations cor- 16The term “quantum group” is often

used. Be warned that a quantum group
is not a group.

respond precisely to the particle types of a corresponding Chern-Simons
theory at some finite level. For example, in the case of SU(2), one can
consider SU(2)k Chern-Simons theory which has deformed F -matrices
such that angular momentum j = 0, 1/2, . . . k/2 can occur, but one never
gets any higher angular momenta.

Further Reading

de Wild, Yuting Hu for group cohomology (probably more)
Yuting Hu Buerschaper for F matrices
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Exercises

Exercise 14.1 Some F matrix elements for representatons of S3 [Hard]
Let us consider the simplest nonabelian group S3,which we discuss in sec-

tions 4, 11, and 28.2.1.
We remind the reader taht this group has 6 elements which can be writ-

ten in terms of two generators X and R with multiplcation rules X2 =
R3 = e and XR = R−1X with e the identity. The 6 elements can be
written as e,R,R2, X,XR,XR2 which are grouped into conjugacy classes
{e}, {R,R2}, {X,XR,XR2} (See Table 14.1).

The three representations are as follows: The trivial represenatation has
ρI(g) = 1 for all g in the group. The sign rep has ρS(g) = 1 for g ∈ {e, R,R2}
and ρS(g) = −1 for g ∈ {X,XR,XR2}. (Note that since both these reps
are one dimensional, they are completely defined by the character table). We
write the two dimensional represenation in a unitary form as

ρV (X) =

(

−1 0
0 1

)

ρV (R) =
−1

2

(

1
√
3

−
√
3 1

)

with ρV (e) the identity matrix and all other matrices ρV (g) for the other
elements g in the group can be generated by using the group multiplication
properties. (Do this first, you will need it later!)1717 It may be useful to use a computer to

multiply matrices (Mathematica, mat-
lab, octave, and python are all fairly
convenient), since there are a lot of ma-
trix manipulations in this problem and
a single error will destroy the result.

Note that we already know the fusion rules for these representations as they
are given in Eqs. 14.17–14.19.

In this exercise we will calculate some F -matrix elements by focusing on the
most interesting case, where all four incoming lines in Fig. 11.1 are in the two
dimensional V representation. Thus we are interested in the unitary matrix
F V V dV V f .

(a) Using the grand orthogonality theorem (Eq. 28.3) find the decomposition

ρV (g)⊗ ρV (g) = xI [xI ]† + ρS(g)xS[xS]† +
2
∑

α,β=1

xV̄α [ρRd̄(g)]αβ [x
V̄
β ]

†

Hint: The one dimensional representations are easy to obtain since they can
be obtained by

(1/|G|)
∑

g

ρR(g)∗[ρV (g)⊗ ρV (g)]

what remains is the two dimensonal representation.
(b) Given two dimensional matrices A,B,C,D find the permutation matrix

such that
P (A⊗B ⊗ C ⊗D)P T = A⊗C ⊗B ⊗D

(c) Use Eq. 14.22 and 14.25 to show that the F matrix is given by

F V V dV V f =
1

2





1 1
√
2

1 1 −
√
2√

2 −
√
2 0







Temperly-Lieb Algebra and
Jones-Kauffman Anyons 15
To give a definite example of the diagrammatic algebra related, let us
look back at the Kauffman bracket invariant that we introduced in chap-
ter 2. In the current chapter we want to make use of these rules, but we
want to consider the case where all diagrams are planar — i.e., there are
no over- and under-crossings. The only rule then is that the a loop is
given a value d as shown in Fig. 15.1. As compared to the diagrammatic
algebra we have constructed over the last few chapters (roughly starting
in chapter 8, and continuing through chapter 11), one things that was
missing in the discussion of the Kauffman bracket invariant is the idea
of multiple particle types and fusion rules. In this chapter we will try to
construct particle types, fusion rules, and F -matrices given only the rule
15.1 as a starting point. The algebra of loops that we will construct is
known as the Temperly-Lieb algebra. While we will not consider over-
and under-crossings yet, these be considered in chapter *** below and,
taken together, the theories we construct here will be well defined anyon
theories, sometimes known as Temperly-Lieb-Jones-Kauffman anyons,
or just Kauffman anyons for short.

= d

Fig. 15.1 The loop rule for the
Kauffman bracket invariant and the
Temperly-Lieb algebra.

Let us start by thinking a bit about what kind of particle types we
already have in our theory. Certainly we have the simple string1 which

1It is admittedly confusing that 1 is not
identity, but this is the usual notation!
It is (not coincidentally!) similar to
spins where spin 0 is the identity (no
spin), and spin 1 is nontrivial.

we will call “1”; and we always have a vacuum particles, which we will
call “0”. Now we would like to ask whether we can fuse two of these
1-strings together to make another particle.
Several things are immediately obvious. First consider the fact that

two 1-particles can fuse to the vacuum, or in other words, a 1-string
can go up and then turn down, as shown in Fig. 15.2. This tells us
immediately that

1 = 1̄.

The fact that 1 is its own antiparticle is why we do not draw arrows
on the 1-string. For simplicity, if a string is not labeled we will assume
it is a 1-string. Given that loop of 1-string is assigned the value d, we
identify this as the quantum dimension d1.

=
1 1 1 1

Fig. 15.2 Fusing two 1-particles to the
vacuum

We might also consider the possibility that two of these 1-particles
can fuse to something besides the vacuum, in a way similar to that
shown in Fig. 15.3. This is a good idea, but it isn’t yet quite right. If 1 1

?

Fig. 15.3 Attempting to Fuse two
1-particles to something different from
the vacuum

the two strings fuse to some object besides the vacuum 0, we have to
make sure that this new object is appropriately “orthogonal” to 0. This
orthogonality must be in the sense of the locality, or no-transmutation
rule (see Fig. 8.7): a particle type must not be able to spontaneously turn
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into another particle type (without fusing with some other particle or
splitting). In Fig. 15.3 it looks like the two strings brought together could
just fuse together to form the vacuum as in Fig. 15.2, and this would
then turn the collection of two strings into the vacuum. To prevent such
transmutation, we will work with operators known as projectors.

15.1 Jones-Wenzl Projectors

Fig. 15.4 A cup (left) and a cap
(right).

The general definition of a projector is an operator P such that P 2 = P .
This means that P has eigenvalues 0 and 1. Let us think of a string
diagram as an operator that takes as an input strings coming from the
bottom of the page, and gives as an output strings going towards the
top of the page (compare Fig. 10.2). Now consider a set of n-strings
traveling together in the same direction (in what is often called a cable).
The Jones-Wenzl projection operator Pn operates on a set of n such
strings — it takes n-strings in and gives n-strigs out — and it is defined
such that attaching a cup or a cap to the bottom or top of the operator
gives a zero result (See Fig. 15.4). The Jones-Wenzl projector acting
on thirivial case to consider is we will construct projectors out of two
incoming s cable of n-strings should be interpreted as the nth particle
species.
The purpose of the Jones-Wenzl projector is to fix the problem we

discovered with Fig. 15.3. That is, if a cable of two strings forms a
nontrivial particle (the particle we will call 2), we should not be able to
put a cap on the top of these two strings and transmute the 2-particle to
the vacuum. I.e., adding a cap should make the entire diagram vanish,
and this is the property we are looking for in the 2-string Jones-Wenzl
projector.
Let us now try to construct the will construct the 2-string Jones-Wenzl

projector P2 out of two incoming 1-particles2 (two elementary strings ).2The Jones-Wenzl projector, if one de-
fines one, for a single string is the trivial
operator. I.e., one string comes in and
the same string comes out unchanged.

To do this we first construct a different projector P̄2 that forces the two
incoming particles to fuse to the vacuum3 as shown in Fig. 15.5.

3The estute reader will notice that
a particle “turning around” as in
Fig. 15.2 is not quite the same as pro-
jecting to the 0 particle, due to the pref-
actor 1/d. We will return to this issue
in section 15.3 below.

P̄2 =
1

d
= P̄2

Fig. 15.5 The projector of two strings to the vacuum P̄2. This figure should
be thought of as an operator that takes as an input two strings coming in from
the bottom, and gives as an output two strings going out the top. Sometimes the
operator is represented as a labeled box as shown on the right.

To establish that this P̄2 operator is a projector we need to check that
[P̄2]

2 = P̄2. To apply the P̄2 operator twice we connect the two strings
coming out the top of the first operator to two strings coming in the
bottom of the second operator. As shown in Fig. 15.6, using the fact
that a loop gets value d we see that [P̄2]

2 = P̄2 meaning that P̄2 is indeed
a projector.
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[P̄2]
2 =

1

d

1

d
=

1

d2
=

1

d
= P̄2

Fig. 15.6 Checking that [P̄2]2 = P̄2. In the second step we have used the fact that
a loop gets the value d.

The Jones-Wenzl projector P2 for two strings is the complement of
the operator P̄2 we just found, meaning P2 = I− P̄2 where I is the iden-
tity operator, or just two parallel strings. Diagrammatically we have
Fig. 15.7. Since the P̄2 operator projects the two strings onto the vac-
uum, the P2 operator projects the two strings to a different orthogonal
particle type which we call 2.

− 1

d
P2 = = P2

Fig. 15.7 The projector of two strings to the nontrivial particle made of two strings

P2 = I − P̄2. Sometimes this projector is drawn as a labeled box, as on the right.

We can algebraically check that P2 is indeed a projector

P 2
2 = (I − P̄2)(I − P̄2) = I − 2P̄2 + P̄ 2

2 = I − P̄2 = P2

and also we can check that P2 is orthogonal to P̄2, by

P̄2P2 = P̄2(I − P̄2) = P̄2 − P̄ 2
2 = 0

and similarly P2P̄2 = 0.
Often it is convenient to draw these projection operators as a labeled

box, as shown on the right of Figs. 15.5 and 15.7. Sometimes instead of
drawing two lines with a projector P̄2 or P2 inserted, we simply draw a
single line with a label, 0 or 2 respectively as in the right of Fig. 15.10
or the left of Fig. 15.8.
It is useful to calculate the quantum dimension of the 2-string4. This 4The quantum dimension of the 2-

string is called ∆2 in many references
(and similarly dn is called ∆n). We will
stick with d to fit with the notation in
the rest of this book.

is shown in Fig. 15.8.

d2 = 2 = P2 = − 1
d = d2 − 1

Fig. 15.8 Evaluating the quantum dimension of the 2-string.
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Abelian Case

In the case where d = ±1 it is easy to prove (see Exercise 2.2 and ***)
that two horizontal strings equals d times two vertical strings as shown
in Fig. 15.9. In this case, notice that the projector P2 = 0 since the
two terms in the projector in Fig. 15.7 are equal with opposite signs.
Correspondingly note that the quantum dimension of the putative 2-
string is d2 = 0 as shown in Fig. 15.8, meaning that no such particle
exists.

For d = ±1 :

=
1

d

Fig. 15.9 Two cases where the Kauff-
man bracket invariant rules become
very simple. If you have not convinced
yourself of these rules, try to do so! (See
exercise 2.2). Note that d = 1 occurs
for bosons or fermions and d = −1 oc-
curs for semions.

The relevant theories here are bosons or fermions for d = 1 and
semions for d = −1 (See Exercise 2.2). All of these theories are abelian,
so it is not surprising that two particles which fuse to the identity can-
not fuse together in a different way (recall that in abelian theories, the
outcome of a fusion is always unique). The only possible outcome of
fusion of two 1-strings is the vacuum as shown in Fig. 15.2. Thus the
entire fusion rules of these theories are

1× 1 = 0

where again 0 is the identity or vacuum.
It is worth noting that the case of d = −1 falls into the category of

theories we discussed in section 11.3 since the value of the loop is nega-
tive. As emphasized there, while we are free to consider diagrammatic
algebras with d = −1 loops, this would correspond to a system with a
non-positive-definite inner product (See Fig. 10.18), which is forbidden
in quantum mechanics. Nonetheless, this can be made into a perfectly
well behaved quantum theory by interpreting the string as a particle
with negative Frobenius-Schur indicator κ = −1. Thus, if we want our
diagrammatic algebra to represent a quantum theory, we must follow
rule (0.a) and (0.b) from section 11.3 — that is, before evaluating a di-
agram we count the number of caps and call this number n; then after
evaluating the diagram we multiply the result by (−1)n. The resulting,
now well-behaved, diagrammatic algebra (including the additional rules
(0.a) and (0.b)) corresponds to the semion, or SU(2)1 theory.

Two Strands in the General Case

For values of d not equal to ±1, the projector P2 does not vanish. This
means that two 1-strands can fuse to either 0 or 2 as shown in Fig. 15.10.
We can write the fusion rule as

1× 1 = 0 + 2

We might ask whether it is possible to assemble a third type of particle
with two strands. It is obvious this is not possible since P̄2 + P2 = I,
which means these two particle types form a complete set (P̄2 projects
the two particles to the vacuum, and P2 projects to the 2 particle type).

P̄2 or P2 =

1 1

0 or 2

Fig. 15.10 Two possible fusions of two
1-strands, drawn in two different no-
tations. A single line labeled 2 is in-
terpreted as two 1-strands traveling to-
gether with a P2 operator inserted. The
label 0 means the two strands fuse to
the vacuum as in Fig. 15.2.



15.1 Jones-Wenzl Projectors 157

Three Strands in the General Case

We can move on and ask what kind of particles we can make if we are
allowed to fuse three strands together. We want to try to construct
a three leg projector. The most general three legged operator we can
construct is of the form in Fig. 15.11.

P3 = α + β +γ + δ + ǫ

Fig. 15.11 The form of the most general three legged operator we can construct.

We would like to find the three-string operator which is a projector. So
we should enforce P 2

3 = P3. However, there are other things we want to
enforce as well. Since 0 is the identity, we want 0 × 1 = 1 which means
we should not be able to fuse P̄2 (the projector of two strings onto the
vacuum) with a single strand to get P3. Diagrammatically this means
we must insist on relations like Fig. 15.12.

1 0

3

= = 0
P3

P̄2

Fig. 15.12 Insisting that 0× 1 does not give 3

This and analogous constraints allow us to insist on the conditions
shown in Fig. 15.13.

P3 = P3 = P3 = P3 = 0

Fig. 15.13 Four conditions that come from the fusion condition shown in Fig. 15.12.

However, we should alllow fusions of the form 1 × 2 = 3 as shown in
Fig. 15.14. Enforcing the condition in Fig. 15.13, along with P 2

3 =
P3 gives the form of P3 shown in Fig. 15.11 with the results that (see
Exercise 15.1)

α = 1

β = γ = − d

d2 − 1

δ = ǫ =
1

d2 − 1

1 2

3

=
P3

P2

Fig. 15.14 We allow 1× 2 = 3
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We can do a short calculation in the spirit of Fig. 15.8 to obtain the
quantum dimension of the 3-string4, giving the result (See exercise 15.1)
shown in Fig. 15.15.

d3 = 3 = d(d2 − 2)

Fig. 15.15 Evaluating the quantum dimension of the 3-string.

Ising Anyons

Consider the case where d = ±
√
2. In this case, d3 = 0 meaning that

there is no 3-string particle. Equivalently it is possible to show that
P3 vanishes when evaluated in any diagram (See exercise 15.1). It is
similarly possible to show that P4 = 0 and so forth. Thus, in this theory
there are only three particle types 0, 1, and 2. In addition to the fusions
we have already determined, we have 2 × 2 = 0 as shown in Fig. 15.16
and 2 × 1 = 1 as shown in Fig. 15.17. (Note that showing 2 /∈ 2 × 2
requires another explicit calculation, not shown here! See exercise 15.1)

2 2

0

=
P2 P2

Fig. 15.16 2× 2 = 0.

2 1

1

= P2

Fig. 15.17 2 × 1 = 1. We recog-
nize this as the fusion 1 × 1 = 2 from
Fig. 15.10 just turned on its side.

We thus have the full set of nontrivial fusion rules

1× 1 = 0 + 2

2× 2 = 0

1× 2 = 1

which we recognize as Ising fusion rules (see sections 8.2.2 and 13.3)
where 1 = σ and 2 = ψ and 0 is the vacuum I

For d = ±
√
2 :

P2

P
2

P
2

= 0

Fig. 15.18 For d = ±
√
2 we have 2×2

not fusing to 2.

Recall in our discussion of Ising anyons in section 8.2.2 we found that
the quantum dimension of the σ particle (here the ”1”-string) is

√
2 by

studying the number of fusion channels for multiple σ anyons. As we
found in section 12, this value of quantum dimension does indeed match
the quantum dimension given by the value of a loop of 1-string.
For the case of d = +

√
2 the model here is precisely what is known

as the Ising model, and it is very closely related to the Ising conformal
field theory which we will encounter in section ***.
For the case of d = −

√
2 again we must use the approach of sec-

tion 11.3. Here the 1-string, d1 = d = −
√
2 represents a particle with

negative Frobenius-Schur indicator κ1 = −1, whereas the 2-string with
d2 = d2−1 = 1 has positive Frobenius-Schur indicator κ2 = +1. We can
check that the fusion rules respect κaκb = κc whenever a × b = c + . . .
(where κ0 = +1.). The resuting diagrammatic algebra corresponds to
the SU(2)2 Chern-Simons theory.
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15.2 General Values of d

The generalization of the above discussions for d = ±1 and d = ±
√
2 is

fairly straightforward. One can generally show the following properties
(See Kauffman and Lins [1994] and exercise 15.2). First, the Jones-
Wenzl projector for n+ 1 strands can always be written in terms of the
projector for n strands as shown in Fig. 15.19 (See exercise 15.2)

......

......
Pn+1 =

.....

.....
Pn − dn−1

dn

....
Pn

....
Pn

Fig. 15.19 Recursion Relation For Jones-Wenzl Projectors

Note in particular that if Pn vanishes, we can conclude that Pm van-
ishes for all m > n as well.
We define the quantum dimension dn of particle type n by connecting

n strings coming from the bottom of projector Pn to those coming from
the top as shown in Fig. 15.20.

dn = n =

...

...

....

....
Pn.....

Fig. 15.20 Evaluating the quantum dimension of the n-string particle. We connect
the n strings coming from the top of the projector Pn to those coming from the
bottom. Often this quantity is notated as ∆n.

Using the recursion shown in Fig. 15.19 and the definition of dn in
15.20 we obtain the recursion relation

dn+1 = ddn − dn−1 (15.1)

where we define d−1 ≡ 0 and d0 = 1 and hence d1 = d. This recursion
has the general solution

dn = Un(d/2) (15.2)

where Un is the nth Chebyshev polynomial of the second kind. These
are defined by (See exercise 15.2)

Un(cos θ) sin θ = sin[(n+ 1)θ] (15.3)

A theory has a finite number of particle types if dn = 0 for some n (Such
that Pn vanishes for all p ≥ n). This situation occurs precisely when
(See exercise 15.2)

d = 2 cos

(
kπ

n+ 1

)
(15.4)
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4 5

3

=
P3

P 5

P
4

Fig. 15.21 The general vertex in the Temperly-Lieb algebra. Here the vertex is
shows for 4 and 5 fusing to 3.

for some k ∈ 1, . . . n. For values of d that are not of this form, one
can construct an infinite number of orthogonal particle types (n-strand
projectors with different values of n), which indicates a badly behaved
theory. (I.e., the algebra never “closes”).
Once one constructs the appropriate n-strand projectors, the general

vertex between three different particle types can be constructed analo-
gous to that shown in Fig. 15.21. Consider a vertex between particle
types (a, b, c) as in with a, b, c,≥ 0 as in Fig. 15.22. The number of
strings going between the projectors (as in the fight of Fig. 15.21) is
given by

m = (a+ b− c)/2 = strings between a and b (15.5)

n = (a+ c− b)/2 = strings between a and c (15.6)

p = (b + c− a)/2 = strings between b and c (15.7)

these quantities must be non-negative, and we must have all of these
quantities integer, which is assured if

(a+ b+ c) is even (15.8)

Note that a, b or c are allowed to have the value 0, meaning no strings
come out that edge. These variables are also allowed to have the value 1
meaning a single string comes out the edge (and no projector is needed,
see note 2.)

a b

c

Fig. 15.22 A general vertex between
particle types (a, b, c) with a, b, c ≥ 0

One can show that a vertex between particle types (a, b, c) can be
nonzero only if further if the projector

P(a+b+c)/2 is nonzero (15.9)

This final conditon is nontrivial and we will not prove it in all generality
here (See for example, Kauffman and Lins [1994], for a proof). However,
Fig. 15.18 is an example of this condition: When d = ±

√
2, we’ve shown

that P3 vanishes and this implies the vertex (2, 2, 2) must also vanish.
The conditions we have just described for a vertex (m,n, p non-negative

integers and P(a+b+c)/2 nonzero) gives us the fusion relations for the the-
ory which are given by

a× b = |a− b|, |a− b|+ 2, . . . , min(a+ b, 2k − a− b)

where k is the largest integer such that Pk is non-zero.5

5This is entirely equivalent to the gen-
eral SU(2)k Chern-Simons fusion rules
where particles j take integer and half-
integer values and

j1 × j2 = |j1 − j2|, |j1 − j2|+ 1, . . . ,

min(j1 + j2, k − j1 − j2) (15.10)

where we have made the identifica-
tion that a in the Temperly-Lieb-Jones-
Kauffman theory is 2j. Note further
that in the case where k is infinitely
large (so that the final term in the se-
ries on the right of Eq. 15.10 is always
j1+j2), these fusion rules match the an-
gular momentum addition rules of reg-
ular SU(2).
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With this definition of a vertex we can evaluate diagrams. A particu-
larly useful one is the version of the theta diagram shown in Fig. 15.23.
The value of this diagram can be derived generally and is given by

∆(a, b, c) = (d(a+b+c)/2)!
(dn−1)! (dm−1)! (dp−1)!

(da−1)! (db−1)!(dc−1)!
(15.11)

where we have defined

(dn)! ≡ dndn−1dn−2 . . . d2d1

with d1 = d and d0 = d−1 = 1. From Eq. 15.11 we see that ∆(a, b, c)
is symmetric in exchanging any of its arguments. Further we see that
the quantity vanishes when d(a+b+c)/2 vanishes which agrees with the
condition Eq. 15.9.

∆(a, b, c) =

a

b

c

Fig. 15.23 The Theta diagram in the
Temperly-Lieb-Jones-Kauffman theory.

While the most general derivation of Eq. 15.11 is somewhat compli-
cated (See Kauffman and Lins [1994]), it is easy enough to confirm it is
correct for a few examples (See exercise 15.3)
The value, Eq. 15.11, of the Theta diagrams do not match what

we would have expected given the rules in chapter 11. Comparing to
Fig. 11.9 we would have expected the Theta diagram in Fig. 15.23 to
have a value

√
dadbdc which in general it does not.

15.3 Unitarization

The diagrammatic algebra we have constructed so far in this chapter
is a perfectly self-consistent algebra (See Kauffman and Lins [1994] for
a large amount of detail of this algebra). However , this algebra does
not fit the rules we have establshed in prior chapters. In section ??
we just found that the value of the Theta diagram does not match the
expectation from chapter 11. If we tried to work out further details of
the diagrammatic algebra, we would find other failures as well — for
example, we would find the F -matrices to be non-unitary! Fortunately,
it is not hard to modify the theory a small amount so that it fits within
our existing framework from chapter 11.

a b

c
= v(a, b, c)

a b

c

Fig. 15.24 A renormalized vertex between particle types (a, b, c) with a, b, c ≥ 0
marked with a blue dot on the left is defined in terms of the original vertex on the
right. We assume here that the vertex on the right, defined analogous to Fig. 15.21
is nonzero.

Θ(a, b, c) =

a

b

c

Fig. 15.25 The Theta diagram with
renormalized vertices.

Let us define a new vertex which is a constant multiple of the old
vertex as shown in Fig. 15.24. We define the rescaling factor as

v(a, b, c) =

√√
dadbdc

∆(a, b, c)
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such that the value of the Theta diagram in Fig. 15.25 is now Θ(a, b, c) =√
dadbdc as we expect from Fig. 11.9. It turns out that this simple modi-

fication is sufficient to make the theory fit into the framework developed
in chapter 11.

15.4 F-matrices

We can now determine the F -matrices directly from the graphical al-
gebra. As a simple example, consider the F -matrices F 11α

11β (which we
abbreviate as Fαβ ) as shown in Fig. 15.26. Note that for this equation
we use renormalized vertices as defined in Eq. 15.24 and notated by dots
on the vertices.

1

1

1

1
0

= F 0
0

1

1

1

1

0 + F 0
2

1

1

1

1

2

1

1

1

1
2

= F 2
0

1

1

1

1

0 + F 2
2

1

1

1

1

2

Fig. 15.26 The F -matrix in the Temperly-Lieb-Jones-Kauffman theory is unitary

when use renormalized vertices, indicated by dots. Here we have abbreviated F 11α
11β

as Fαβ for brevity.

This F -matrix equation is that of Fig. 11.1 for four incoming 1-string
particles. The F matrix is nontrivial since there is more than one fusion
channel when we fuse the 1’s together: 1× 1 = 0+ 2, so long as d 6= ±1
(in which case the 2-string particle vanishes). We can now rewrite the F -
matrix equation in terms of string diagrams as in Fig. 15.27. Note that in
Fig. 15.27, the prefactors of d/

√
d2 come from the vertex renormalization

factors v(1, 1, 2)2, and the quantities in brackets are P2 projectors which
force the two strings to fuse to the 2-particle.

= F 0
0 + d√

d2
F 0
2

[ ]
− 1
d

d√
d2

[ ]
− 1
d = F 0

2 + d√
d2
F 2
2

[ ]
− 1
d

Fig. 15.27 Explicitly writing out the F -matrix equations of Fig. 15.26. The pref-
actors terms in brackets are P2 projectors. The prefactors d2 is from the ver-
tex renormalization factors v(1, 1, 2)2 = d2/d2. (The other renormalization factor
v(1, 1, 0) = 1).

We then match up terms on the right and left of the graphical equa-
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tions in Fig. 15.27. In the first line we see that the diagram on the left
is topologically like the first term in the brackets on the right, so we
have F 0

2 =
√
d2/d. Similarly the first term on the right is topologically

the same as the second term in the brackets, so F 0
0 = 1/d. Then in the

second line the second term in brackets on the left is topologically the
same as the first term in brackets on the right, so we have F 2

2 = −1/d.
Then among the remaining terms, the first term in brackets on the left,
the first term on the right, and the second term in brackets on the right,
are all topologically the same, so we have d/

√
d2 = F 0

2 − (1/
√
d2)F

2
2 or

F 0
2 = (1/d)(d2 − 1)/

√
d2. Finally using d2 = (d2 − 1) (See Fig. 15.8) we

obtain the full form of the F -matrix (and returning the 11 superscripts
and subscripts which we have suppressed)

[F 11
11 ] =




1
d

√
d2−1
d√

d2−1
d − 1

d


 (15.12)

Note that this matrix is properly unitary for any value of d. For d = ±
√
2

the matrix matches our expectation for the Ising fusion rules given in
Eq. 13.25.
With similar diagrammatic calculations, we can work out the F -

matrices for any incoming and outgoing n-string particles. Detailed
calculations are given in Kauffman and Lins [1994]. However, note that
the results given there are nonunitary expressions due to the use of un-
rernormalized vertices.

Further Reading

• Louis Kauffman, Knots and Physics, World Scientific, (2001), 3ed.
Kauffman [2001]

• L. H. Kauffman and S. L. Lins, Temperley-Lieb Recoupling Theory

and Invariants of 3-Manifolds, Annals of Mathematics Studies, no
134, Princeton University Press (1994).
Kauffman and Lins [1994]

• Wang book for unitarization Wang [2010]

• some of the ideas date back to Penrose [1971]

Exercises

Exercise 15.1 Jones-Wenzl projectors P0, P2, and P3

For two strands one can construct two Jones-Wenzl projectors P0 and P2

as shown in Fig. 15.5 and 15.7.
(a) Show that these projectors satisfy P 2 = P , so their eigenvalues are 0

and 1. Further show that the two projectors are orthogonal P0P2 = P2P0 = 0.
(should be easy, we did this in lecture)



164 Exercises

(b) Show that for d = ±1 we have P2 = 0 in the evaluation of any diagram.
The result means that in these models there is no new particle which can
be described as the fusion of two elementary anyons. Why should this be
obvious? Hint: Look back at the exercise 2.2.

(c) The three strand Jones-Wenzl projector must be of the form shown in
the figure 15.11.

The coefficients α, β, γ, δ, ǫ are defined by the projector condition P 2
3 = P3

and also by the condition that P3 is orthogonal to P0 which is shown in the
Figs. 15.12 and 15.13.

Calculate the coefficients α, β, γ, δ in P3. Calculate the quantum dimension
d3 shown in Fig. 15.15.

(d) Choosing d = ±
√
2 show that P3 = 0 in the evaluation of any diagram.

We can then conclude that in this model there is no new particle that is the
fusion of three elementary strands. Hint: Try putting P3 within a some simple
diagrams and calculate the results.

(e) For the case of d = ±
√
2 show that, when evaluated in any diagram,

2× 2 /∈ 2. In other words, prove Fig. 15.18.

Exercise 15.2 More General Jones-Wenzl Projectors
(a) A Jones-Wenzl projector for n strands is defined both by P 2

n = Pn+1

as well as by being orthogonal to P0 analogous to Fig. 15.13. Assuming these
properties are satisfied for Pn show that they are satisfied for Pn+1 given by
Fig. 15.19. Hint: Use the fact that connecting up a single string from Pn+1

from top to bottom as in Fig. 15.28 must give something proportional to Pn
(Why?).

......

......
Pn+1

Fig. 15.28 This figure, with n strands
going in the bottom, and n strands
coming out the top, must be propor-
tional to Pn.

(b) Using Fig. 15.19 derive Eq. 15.1. Show that the solution to this equation
is given by Eqs. 15.2 and 15.3. Confirm the condition for dn to vanish given
in Eq. 15.4.

Exercise 15.3 Theta Diagram
(a) Show ∆(a+ 1, a, 1) = da+1. Hint: Use Fig. 15.28.
(b) More generally show ∆(a+ k, a, k) = da+1. Hint: Generalize Fig. 15.28

to the case where k strands are connected in a loop from the top to the bottom.

Exercise 15.4 F -matrix diagrammatics
Using the diagrammatic algebra, determine F 21α

12β and F 21α
21β for arbitrary d.

Confirm that your results are unitary matrices.
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Having learned about planar diagrammatic algebras we are now in a
position to explicitly construct a real 3D TQFT1. There are several steps 1It is a bit surprising that one only

needs a planar algebra to make a 3D
TQFT!

in this idea. We start by considering a closed 3D manifold M which we
discretize into tetrahedra (a so called simplicial decomposition of the
manifold). Next we construct a model, similar in spirit to statistical
mechanics, which sums a certain weight over all quantum numbers on
all edges of all tetrahedra. The weights being summed are defined in
terms of our planar diagrammatic algebra as we will see below. The
result of this sum is the desired TQFT partition function Z(M) which
we discussed extensively above, and particularly in chapter 7.
This discretization of a manifold into tetrahedra is very commonly

used in certain approaches to quantum gravity, which we will discuss in
section ***.

16.1 Simplicial Decomposition and Pachner
Moves

We start by considering a so-called simplicial decomposition of our man-
ifold. Such decompositions can be made of smooth manifolds in any
number of dimensions2. 2It is interesting (but beyond the scope

of this book) that manifolds exist in
dimension d ≥ 4 that cannot be
smoothed, and cannot be decomposed
into simplicies.

16.1.1 Two Dimensions

As a warm up let us think about two-dimensional manifolds. In two
dimensions, the elementary 2-simplex is a triangle, so this dedomposition
is the familiar idea of triangulation shown in Fig. 16.1.
Since we are only concerned with the topology of the manifold, not the

geometry, the precise position of vertex points we use is irrelevant— only

Fig. 16.1 Some triangulations of 2-manifolds
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the connectivity of the points is important, i.e, the topological structure
of the triangulation network. Furthermore, a particular manifold, like a
sphere, can be triangulated in many different ways. It turns out that any
two different triangulations can be related to each other by a series of
elementary “moves” known as two-dimensional Pachner moves3,4, which3I encourage you to play with these two

moves and see how you can restructure
triangulations by a series of Pachner
moves.
4It is interesting to note that a Pach-
ner moves can be thought of as view-
ing a 3D tetrahedron from two oppo-
site directions. We can thus think of
2D Pachner moves as a cobordism (See
chapter 7) in 3D between a surface tri-
angulated with the initial triangulation
and a topologically equivalent surface
triangulated with the final triangula-
tion.

are shown in Figs. 16.2 and 16.3.

⇋

Fig. 16.2 The 1-3 Pachner move in two dimensions corresponds to adding or re-
moving a point vertex from the triangulation. This turns one triangle into three or
vice-versa.

⇋

Fig. 16.3 The 2-2 Pachner move in two dimensions corresponds to replacing two
adjacent triangles with two complementary triangles. This turns two triangles into
two different triangles.

Thus if we want to construct a manifold invariant (like Z(M) we
discussed in chapter 7) with a manifold represented in terms of a trian-
gulation we only need to find some function of the triangulation that is
invariant under these two Pachner moves.

16.1.2 Three Dimensions

The story is quite similar in three dimensions. Since we have been fo-
cused on 2+1 dimensional TQFTs we will mostly discuss three-dimensional
manifolds. We discretize any closed three-dimensional manifold5 by5For now let us focus on closed mani-

folds. We briefly discuss manifolds with
boundary in section 16.2.2.

breaking it up into tetrahedra (otherwise known as three-dimensional
simplices). Any two discretizations are topologically equivalent to each
other if they can be related to each other by a series of three-dimensional
Pachner moves6, which are shown in Figs. 16.4 and 16.5. Again, the key6Analogous to the 2D case (see note 4

above), the 3D Pachner moves can be
thought of as viewing a 4D-simplex (a
so-called pentachoron) from two oppo-
site directions.

point here is that if we can find some function of the the network struc-
ture that is invariant under the Pachner moves, we will have constructed
a topological invariant of the manifold.
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Fig. 16.4 The 1-4 Pachner move in three dimensions corresponds to adding or removing a point vertex to the tetrahedon
decomposition. This turns a single tetrahedron into four or vice versa. On the far right we show the four tetrahedron separated
for clarity.

Fig. 16.5 The 2-3 Pachner move in three dimensions corresponds to re-splitting a double tetrahedron (left) into three
tetrahedron (right). This turns a single tetrahedron into four or vice versa. On the far left we show the two tetrahedra
separated for clarity; and on the far left we have the three tetrahedra separated for clarity.

16.2 The Turaev-Viro State Sum

The idea of the Turaev-Viro state sum is to build a 3D manifold invariant
from one of the planar diagrammatic algebras we have been discussing
in chapters 8-15.
First, let us choose any particular planar diagrammatic algebra. We

take any decomposition of an orientable three dimensional manifold into
tetrahedra. Let each edge of this decomposition be labeled with one
of the quantum numbers (the particle labels) from the diagrammatic
algebra7. We then consider the following sum

7As we have been doing all along, when
we label an edge with a quantum num-
ber we must put an arrow on the edge
unless the particle type is self-dual.

ZTV (M) = D−2Nv
∑

all edge labelings

W (labeling) (16.1)
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where Nv is the number of vertices in the decomposition, and

D =

√∑

n

d2n

is known as the total quantum dimension (the sum is over all particle
types). In Eq. 16.1, W is a weight assigned to each labeling of all the
edges8. We consider the following definition of a weight assiggned to a8In the language of statistical physics

we can think of W as a Boltzmann
weight for each edge label configura-
tion, although it need not be positive,
or even real.

given labeling of edges

W (labeling) =

∏
tetrahedra G̃(tetrahedron)

∏
edges dedge∏

triangles Θ̃(triangle)
(16.2)

Thus each tetrahedron is given a weight G̃, depending on its labeling,
each edge is given a weight d which is its quantum dimension and each
triangle is given a weight Θ̃−1 depending on its labeling.
The weights G̃ and Θ̃ are very closely related to quantities G and Θ

we have already studied9 in chapter 11 for example10. The functions G̃9Many works, including the original
works by Turaev and Viro [1992],
use the diagrammatic algebra based
on Temperly-Lieb which we discussed
in chapter 15. However, in those
works, they have used the nonuni-
tary version of the diagrammatic al-
gebra without the vertex renormal-
ization which we introduce in section
15.3. In such an approach Θ(a, b, c)
is replaced by ∆(a, b, c), for example
(See Eq. 15.11). It is easy to show
that these vertex renormalization fac-
tors completely cancel and the end
value of the Turaev-Viro invariant is in-
dependent of whether the renormaliza-
tion factors are included or not. Indeed,
it is not necessary to have a fully uni-
tary algebra for the Turaev-Viro con-
struction to give a well behaved mani-
fold invariant. We only need a consis-
tent planar diagrammatic algebra. See
also next margin note!

10In chapter 11 we insist on a fully iso-
topy invariant algebra with tetrahedral
symmetry, and we will continue to as-
sume those simplifications here. How-
ever, for constructing a Turaev-Viro in-
variant it turns out to be sufficient to
have a spherical (and pivotal) tensor
category as we discuss in chapter 10.
Full isotopy invariance is not required.
This is discussed in depth by Barrett
and Westbury [1996].

and Θ̃ are given by

Θ̃




a

c b


 = Θ(a, b, c) =

√
dadbdc (16.3)

and

G̃




b

d
c

e

a f




= Gbadecf = F badecf df

√
dbdc
df

√
dade
df

(16.4)

Note that the tetrahedron shown here is different from the one shown
in Fig. 11.10 that defines G from a planar diagram (or perhaps more
properly a diagram drawn on the surface of a sphere). In fact the two
tetrahedra are dual to each other. For example, in Fig. 11.10 the lines
f, e, c̄ form a loop whereas f, ē, ā meet at a point. In the diagram in
Eq. 16.4 on the other hand e, f, c̄ meet at a point where f, ē, ā form a
loop. In Eq. 16.4 the three edges around any face must fuse together to
the vacuum. I.e., we have the four conditions

Nbad > 0 Ncd̄e > 0 Nfēā > 0 Nc̄f̄ b̄ > 0

or else G̃ will vanish. Note that, like G, the value of G̃ is unchanged
under any rotation of the tetrahedron.

16.2.1 Proof Turaev-Viro is a Manifold Invariant

The proof that ZTV (M) is a manifold invariant is not difficult – one
only needs to show that it is unchanged under the 1-4 and 2-3 Pachner
moves. This is basically an exercise in careful bookkeeping (see exercise
***). Roughly, however, it is easy to see how it is going to work.
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Let us first examine the 2-3 Pachner move shown in Fig. 16.5. On the
left we have two tetrahedra (call them 1 and 2) which are joined along
a triangle (call it α). On the right we have three tetrahedra (call them
3, 4 and 5 which are joined along three triangles (call them β, γ, and δ)
with the three triangles intersecting along a new edge down the middle
(shown vertical in the figure) which we label with the quantum number
n. To show that the ZTV remains invariant we need to show that

G̃(1)G̃(2)Θ̃(α) =
∑

n

G̃(3)G̃(4)G̃(4)Θ̃(β)Θ̃(γ)Θ̃(δ)dn

The factors of Θ̃ are simply factors of
√
da and these cancel some factors

of
√
da in the definition of G̃ in Eq. 16.4. After this cancellation of these

factors, what remains is a relationship between two F ’s on the left and a
sum over three F ’s on the right. The relationship that remains is exactly
the pentagon equation Eq. 11.2 (or Eq. 9.3)! Thus any diagrammatic
algebra which satisfies the pentagon equation will result in a Turaev-Viro
invariant (Eq. 16.1) that is invariant under the 1-4 Pachner move!
The case of the 1-4 Pachner move is only a bit harder and we will

sketch the calculation here. The large tetrahedra on the left of Fig. 16.4
(lets call this large tetrahedron 1) needs to be equivalent to the four
smaller tetrahedra on the right (lets call these small tetrahedra 3, 4, 5
and 6) when we sum over the quantum numbers on the four internal
edges on the right. The three tetrahedra 3, 4 and 5 share a common edge,
and this is entirely analogously to the three tetrahedra we considered in
the case of the 2-3 Pachner move. Summing over the quantum number
of this common edge, and using the same pentagon relation replaces the
three tetrahedra 3, 4, 5 with two tetrahedra 1 and 2, where 1 is the large
tetrahedron and 2 includes exactly the same edges as the remaining
small tetrahedron 6. The tetrahedra 2 and 6 have 3 edges which are
not shared with tetrahedron 1 — these are the remaining internal edges
that need to be summed over. Summing over one of these internal edges,
one invokes the consistency condition Eq. 11.4 to create a delta function
which then kills one of the two remaining sums. The last remaining sum
just yields a factor of D2 =

∑
n d

2
n which accounts for the prefactor in

Eq. 16.1 being that we have removed one vertex from the lattice in this
procedure.

16.2.2 Some TQFT Properties

The Turaev-Viro state sum has all the properties we expect of a TQFT.
Although we need to discretize our manifold, the resulting “partition
function” ZTV (M) for a manifold M is a complex number which is
indeed independent of the discretization and depends on the topology
of the manifold only.
As we discuss at length in section 7.1 we would also like ZTV (M)

to represent a wavefunction if M is a manifold with boundary. To
remind the reader, the point of this construction is that when we glue
together two manifolds with boundary to get a closed manifold, this
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corresponds to taking the inner product between the two corresponding
wavefunctions to get a complex number.
To see how this occurs let us consider discretizing a manifold with a

boundary. Here the 3D bulk of the manifold M should be discretized
into into tetrahedra, and the 2D boundary surface Σ = ∂M should be
discretized into triangles. We divide the edge degrees of freedom into
bulk and boundary where a boundary edge is defined as an edge where
both vertices are on the boundary and all other edges are defined to be
bulk. We define Z(M) of such a discretized manifold with boundary as
a sum like Eq. 16.1 where the sum is only over the edges in the bulk,
leaving fixed (un-summed) the quantum numbers on the edges that live
entirely on the boundary (i.e., both vertices on the boundary). Thus for
manifolds with boundary we more generally write

ZTV (M; a1, . . . , aN) = D−2Nv−nvW ′(a, . . . , aN )
∑

bulk labelings

W (bulk labels)

where Nv is the number of vertices in the bulk and nv the number of
vertices on the boundary. The weight function W is exactly the same
as the weight function in Eq. 16.2 but only including edges, triangles,
and tetrahedra in the bulk (All tetrahedra are considered bulk, and a
triangle is considered boundary only when all three vertices are on the
boundary). Here a1, . . . , aN are the quantum numbers of the edges on
the boundary, and these are not included in the sum over bulk lables.
An additional weight is included which is a function of these boundary
edge labels

W ′(a1, . . . , aN ) =

√√√√
∏

boundary edges dedge
∏

boundary triangles Θ̃(triangle)

The partition function ZTV (M; a1, . . . , aN) is now a function the edge
variables and is interpreted as a wavefunction |Z(M)〉 that lives on the
boundary Σ = ∂M .
It is then quite natural to see how two manifolds can be glued together

along a common boundary as in Fig. 7.3. In that figure we have a closed
manifold M ∪Σ M′ where M and M′ are manifolds with boundary
joined along their common boundary Σ = ∂M = [∂M′]∗. When we
glue together M and M′ we obtain the partition function for the full
manifold as in Eq. 7.1 where we obtain the inner product by summing
over the degrees of freedom of the wavefunction — which in this case
means summing over the quantum numbers a1, . . . , aN of the edges on
the boundaries. In other words, we have

ZTV (M∪Σ M′) = 〈ZTV (M′)|ZTV (M)〉

=
∑

a1,...,aN

[ZTV (M′; ā1, . . . , āN)]
∗ ZTV (M; a1, . . . , aN) (16.5)

=
∑

j1,...,jN

ZTV (M′; a1, . . . , aN ) ZTV (M; a1, . . . , aN ) (16.6)
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where in the second line the edge variables in the first term are inverted
because the surface of M′ has the opposite orientation from the surface
of M. Going from the second to third line is an easy exercise (See
***). The final result is easily see to be the correct expression for the
Turaev-Viro invariant for the full manifold M∪M′ .
As in section 7.2 on can generalize the idea of a TQFT to include

particle world lines (labeled links) as a well as the space-time manifold
M. As mentioned there we can roughly think of these world lines as
internal boundaries, and we just fix the quantum number of edges along
these hollow tubes to describe different world-line types. (See references
at the end of the chapter)

16.3 Connections to Quantum Gravity
Revisited

The Turaev-Viro invariant is a natural descendant of one of the very
earliest approaches to quantum gravity pioneered by Penrose [1971] and
Ponzano and Regge [1968]. Indeed much of the continued interest in
Turaev-Viro and similar state-sum invariants is due to this relationship.
An interesting approach to macroscopic general relativity, used for ex-

ample, in numerical simulation, is to discretize space-time into simplices
— tetrahedra in three dimensions or 4D simplices (sometimes known
as pentachora) in four dimensions11. The curvature of the space-time 11It is also possible to discretize space

and leave time continuous. This leaves
some concerns with Lorentz invariance
but may have other advantages. Other
discretization approaches also exist, see
Regge and Williams [2000].

manifold (the metric) is then determined by the lengths assigned to the
edges12.

12All of general relativity can be refor-
mulated in this discrete language. This
is known as Regge calculus. See Regge
[1961].

If one then turns to quantum gravity, one wants to follow the Feynman
prescription and perform a sum over all possible metrics as we discussed
previously in section 6.1. We can write a quantum partition function as

Z =

∫
Dg eiSEinstein[g]/~ (16.7)

We can imaging performing such as sum for a discretized system by
integrating over all possible lengths of all possible edges. However, not
all triangle edge length should be allowed — in Euclidean space one
must obey the crucial constraint of the triangle inequality13 13With a bit of thought we realize that

these inequalities must hold even with
a curved spatial metric.

l1

l3
l2 ⇒ |l1 − l2| ≤ l3 ≤ (l1 + l2) (16.8)

The key observation is that the triangle inequality is precisely the same
as the required inequality for regular angular momentum addition

j1 ⊗ j2 = |j1 − j2|, |j1 − j2|+ 1, . . . , |j1 + j + 2|. (16.9)

Thus it is natural to label each edge of with a quantum mechanical spin,
and sum over all possible spins. Such an approach is known as a spin
network. We thus imagine building a Turaev-Viro model (Eq. 16.1) with
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a planar diagrammatic algebra built from angular momentum addition
rules: quantum numbers are the angular momenta j, the fusion rules
are as given in Eq. 16.9, and the F -matrices are given by the regular
6j symbols of angular momenta addition14. Such a model turns out to

14Building a diagrammatic algebra
based on a Lie group (SU(2) in this
case) is mentioned in section 14.2.2
above.

be very precisely15 the quantum gravity partition function Eq. 16.7 (up15Although the idea of spin networks as
a toy model for quantum gravity goes
back to Penrose [1971], and pursued
further by Ponzano and Regge [1968],
it was only much later that Hasslacher
and Perry [1981] showed the precise
equivalence of the model to gravity.

to the fact that one still needs an additional sum over topologies of the
space-time manifold if one wants a full sum over all possible histories)!
As we expect from the discussion in chapter 6, the resulting description
of quantum gravity in 2+1D is a TQFT.
There is, unfortunately, one clear problem with this approach. Be-

cause there are an infinite number of different representations of SU(2)—
i.e., an infinite number of different values for the angular momentum
quantum number j — the partition function sum formally diverges. This
divergence becomes regularized if we find a way to consistently cut off
the sum over angular momenta at some maximum value k. Using the
diagrammatic rules of SU(2)k (the same diagrammatic rules we built up
in chapter 15, see in particular margin note 5) implements this cutoff
and yields a divergence-free result16.

16As we will see in section *** be-
low, the Turaev-Viro model built from
the SU(2)k diagrammatic rules is
equivalent to the so-called quantum-

double Chern-Simons theory SU(2)k ⊗
SU(2)−k . As we mentioned in section
6.3 above, such a Chern-Simons the-
ory is equivalent to 2+1D gravity with
a cosmological constant λ = (4π/k)2.
Taking the limit of large k then gives
the classical limit of simple SU(2) an-
gular momentum addition correspond-
ing to a universe with no cosmological
constant. 16.4 Dijkgraaf-Witten Model

Another state sum model of some interest is the so-called Dijkgraaf-
Witten model17 (Dijkgraaf and Witten [1990]). As with Turaev-Viro

17Robbert Dijkgraaf is a very promi-
nent theoretical physicist and string
theorist. His surname is likely to be dif-
ficult to properly pronounce for those
who are not from the Netherlands be-
cause the “g” is a gutteral sound that
only exists in Dutch. However, those
from the south of the Netherlands don’t
use the gutteral “g” and instead pro-
nunce it as Dike-Hraff, which is prob-
ably about the closest most English
speakers will get to the right result.
The word “Dijkgraaf” refers to an oc-
cupation: A Dijkgraaf is the person in
charge of making sure that water stays
in the ocean and does not flood the
cities and the rest of the Netherlands.

this model discretizes space into simplices and sums over possible labels
of all the edges.
In the Dijkgraaf-Witten model we choose a group G and we label

the edges of the simplices with elements from that group. The general
idea is very similar to that of Turaev-Viro just using the multiplication
properties of the group to give us a set of fusion rules as in section 14.1
and we use a 3-cocycle in place of the F -matrix18. These fusion rules

18For the case of an abelian group
Dijkgraaf-Witten is a special case of
Turaev-Viro. However Turaev-Viro
does not consider fusion rules where
g × h = h× g so for nonabelian groups
Dijkgraaf-Witten is not just a special
case of Turaev-Viro. The group need
not be abelian since we only need to
have an algebra that is consistent on a
plane (or sphere) in order to defne its
value on a tetrahedron (see the com-
ments in section 14.1.3).

require that multiplication of the group elements around every triangle
must result in the identity as shown in Fig. 16.6. This is the analog of
Eq. 16.3 where three quantum numbers around a triangle must fuse to
the identity. This condition is known as a “flatness” condition, with the
name coming from lattice gauge theory, which we will see in more detail
in chapter ***.

a

c b ⇒ cba = identity

Fig. 16.6 Multiplying group elements around a triangle in Dijkgraaf-Witten theory
results in the identity. This is known as the “flatness” condition

As mentioned in section 14.1 when we use group multiplication for
fusion rules the quantum dimensions19 of all the particles are all da =19In chapter 14 we considered also the

possibilyt of da = −1 but this is a gauge
choice. We are always entitled to chose
+1 instead at the cost of possibly losing
isotopy invariance.

1. This means that in Eq. 16.2 both the da factor and the Θ̃ factor
are trivial. We are thus left with only the tetrahedron factor and the
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Dijkgraaf-Witten partition function looks like a simplified version of the
Turaev-Viro case in Eqs. 16.1 and 16.2 given by20 20With apologies for using G and G̃ in

the same equation to mean completely
different things!ZDW (M) = |G|−Nv

∑

labelings

∏

tetrahedra

G̃(tetrahedron) (16.10)

where Nv is the number of vertices, |G| is the number of elements in
the group G, and the sum is only over labellings that satisfy the flatness
condition (Fig. 16.6).
The tetrahedral symbol G̃ is a bit more complicated than in the case

of the Turaev-Viro invariant. We do not generally have full tetrahedral
symmetry so it could matter which way we orient the tetrahedron when
we evaluate G̃. In order to define the tetrahedral symbol G̃ properly
we do the following: First we label each vertex in the system with a
unique integer (it will not matter which vertex gets which label!). Given
a tetrahedron with vertices i1, i2, i3, i4 we sort these vertices in ascending
order so that

[j1, j2, j3, j4] = sort[i1, i2, i3, i4] such that j1 < j2 < j3 < j4

we then define

G̃




i1

i2 i3

i4




= ω(gj2,j1 , gj3,j2 , gg4,g3)
s(j1,j2,j3,j4) (16.11)

Here gk,l is the group element on the edge directed from vertex k to
vertex l, and ω is the chosen 3-cocycle. The exponent s(j1, j2, j3, j4) is
either +1 or −1 depending on whether the orientation of the tetrahe-
dron defined by the ordered set of vertices [j1, j2, j3, j4] has the same or
opposite orientation as the manifold we are decomposing21. This pre- 21To find the orientation of a tetrahe-

dron, place j1 closest to you and see if
the triangle [j2, j3, j4] is oriented clock-
wise or counterclockwise.

scription gives a manifold invariant (The Dijkgraaf-Witten invariant) for
any choice of 3-cocycle even if the corresponding diagrammatic algebra
does not have isotopy invariance. (See exercise ***).

16.4.1 Other Dimensions

An interesting feature of Dijkgraaf-Witten theory is that essentially the
same recipe builds a Dijkgraaf-Witten TQFT in any number of dimen-
sions. One discretizes the D-dimensional manifold into D-dimensional
simplices (segments in 1D, triangles in 2D, tetrahedra in 3D, penta-
chora in 4D) and labels each edge with a group element g ∈ G and
each vertex is assigned an integer label. The flatness condition is al-
ways the same as that shown in Fig. 16.1 — multiplying the group ele-
ments around a closed loop must give the identity. In D-dimensions we
build the partition function by multiplying a weight for each D-simplex,
where the weight is given now by a so-called D-cocycle22 which we call 22I won’t give the most general defini-

tion of cocycle as this takes us too far
afield into group cohomology. However,
as with the 3-cocycle it is simply a func-
tion satisfying a particular cocycle con-
dition. See Eq. 14.1 for the 3D case and
Eq. 16.13 for the 2D case.

ωD(g1, g2, . . . , gD) which is now a function of D arguments. Finally, one
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builds a partition function by summing over all possible labelings

ZDW (MD) = |G|−Nv
∑

labelings

∏

D-simplices

ωD(gj2,j1 , . . . , gjD+1,jD )
s(j1,...,jD+1)

(16.12)
As with the 3D case, the arguments of the cocycle gk,l are the group
elements along the edges of the simplex from vertex k to vertex l and
we always write them ordered such that j1 < j2 < . . . < jD. Finally
the exponent s is always ±1 depending on whether the orientation of
simplex described by the ordered set [j1, . . . , jD+1] matches that of the
underlying manifold or not.
As a quick example, let us consider the 2D case. The definition of a

2-cocycle ω2 is any function that satisfies the condition2323The 2-cocycle condition is equiva-
lent to the consistency condition for a
so-called “projective representation” of
the group. For projective representa-
tions we have the multiplication rule
ρ(g)ρ(h) = ω2(g, h)ρ(gh) whereas for
regular group representations we have
ω2 = 1. See section 28.2.4.

ω2(g, h)ω2(gh, k) = ω2(h, k)ω2(g, hk) (16.13)

In the partition function, Eq. 16.12, each triangle gets a weight given by
the cocycle. It is then easy to see that the cocycle condition is precisely
the condition necessary to make the partition function invariant under
the 2-2 Pachner move, as shown in Fig. 16.7.
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2 3
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(gh)kgh

ω2(gh, k)

ω2(g, h)

=

01

2 3

ω2(h, k)

ω2(g, hk)

h

g

k

g(hk)
hk

Fig. 16.7 Each triangle satisfy the flatness condition Eq. 16.6 meaning multiplying
all three edges in order gives the identity. In the partition function each triangle
gets a weight given by the corresponding cocycle ω2 as written in black text. All
of the triangles in the figure are oriented positively s = +1. The cocycle condition
Eq. 16.13 guarantees that the product of the cocycles on the left equals the product
of the cocycle on the right.

16.4.2 Further Comments

One particularly interesting special case of Dijkgraaf-Witten theory is
the case of the trivial 3-cocycle where ω is always unity. In this case,
the argument of the sum in Eq. 16.10 (or more generally Eq. 16.12)
is just unity so the partition function just counts the number of flat
field configurations (See Fig. 16.6) and then divided by |G|Nv . This
partition function is exactly that of lattice gauge theory, as we will see
in chapter *** below. The more general case, with a nontrivial cocycle
is correspondingly sometimes known as “twisted” gauge theory, where
the cocycle is thought of as some sort of twist to the otherwise simple
theory.
The Dijgraaf-Witten theory has had extensive recent applications

within quantum condensed matter physics where it turns out that a
classification of so-called symmetry protected topological (SPT) phases
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is given in terms of Dijgraaf-Witten theories. We will briefly discuss
SPT phases in section *** below.

Further Reading

• The Turaev-Viro invariant was introduced in Turaev and Viro
[1992]. Rather interestingly Turaev and Viro were apparently un-
aware of the earlier work by Penrose, Ponzano, Regge and others
when they first discussed these state sums!

• Recent book Turaev and Virelizier [2017]

• Discrete Gravity Regge and Williams [2000]

• Regge orignal work Regge [1961]

• Ooguri [1992]
Crane and Yetter [1993]
spin foam Lorente [2006].
It is worth commenting that the state-sum approach to quantum
gravity has been extended in a multitude of ways, and continues to
be an active area of research. Among the key directions are exten-
sion to 3+1 dimensions, and extensions to Lorentzian signature.
The rather

Exercises

Exercise 16.1 Some Facts about Turaev-Viro
Consider a manifold M with boundary Σ which has been discretized into

tetrahedra on in the bulk and triangles on the surface. Let the edges on
the surface be labeled by j1, . . . , jN . Assume tha the theory has relflection
symmetry as in Eq. 11.13, show that

[ZTV (M; ā1, . . . , āN )]∗ = ZTV (M; a1, . . . , aN )

And as a result show that for a closed manifold Z(M) is real.
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17.1 Twists

In an Anyon theory (or topological quantum field theory in general) each
particle a is endowed with a topological spin, or conformal scaling
dimension, usually called ha related to the twist factor θa

θa = e2πiha

In our diagrammatic notation, we have twists factors defined by Fig. 17.1.
We note that in many cases, quantities of interest will depend only on the
twist factor, i.e., the fractional part of the topological spin, ha mod 1.
It is often hard to pin down the value of the topological spin itself.

Fig. 17.1 Definition of Twist Factor

Fig. 17.2 Pulling a ribbon straight

Recall we should treat particle world-lines as ribbons, so that a loop
can be pulled straight as in Fig. 17.2 to represent a particle twisting
around its own axis, as well as giving the phase of exchange for two
identical particles (See also Fig. 2.7). Two cases are well known to us: if
the spin ha is an integer, then e2πiha is the identity, and this particle is a
boson. If ha is a half-odd-integer, then the phase is −1 and the particle
is a fermion. The vacuum, or identity particle, should have zero scaling
dimension, hI = 0.

17.2 R-matrix

Consider the possibility of two particles fusing to a third as shown in
Fig. 17.3. We have a × b = c + . . .. I.e., c is among the possibile

Fig. 17.3 Two particles fusing to a
third. For this anyon system a × b =
c + . . ., and c is the particular fusion
channel that has occured in this dia-
gram.

fusion channels that can occur and we assumes in the diagram that c
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is the particular fusion channel that has occured. Now let us consider
braiding a and b around each other before fusing them as in Fig. 17.4.
This diagram defines the so-called R-matrix. Here we have dropped the
arrows and we show the particle world lines as ribbons to show that
there are no additional self-twists. Note that braiding anything with

Fig. 17.4 Definition of R-matrix. Here
we drop the arrows for convenience of
notation and we draw the particle world
lines as ribbons to show that no ad-
ditional self-twists are incurred by the
particles.

the identity particle should be trivial, RaIa = RaaI = 1.
Taken together with the F -matrices, the R-matrix allows us to calcu-

late the physical result of any braid, as we shall see below.
To see the relationship between braiding and twisting, consider ap-

plying the R matrix twice to make a double twist as in Fig. 17.5. By
pulling tight the double twist, the diagram can be reduced to twist fac-
tors previously defined, and this fixes Rcab up to a possible minus sign.

Fig. 17.5 Relation of R-matrix to twist factors. Note there is an error in the picture.
It should read RcbaR

c
ab

We can generally write this relationship as

RcbaR
c
ab = e2πi(hc−ha−hb) = θc/(θaθb) (17.1)

Example: Fibonacci Anyons

In the Fibonacci theory, two τ particles can fuse to either τ or I. Ap-
plying the above relationship, Eq. 17.1, we have

[Rτττ ]
2 = e2πi(hτ−hτ−hτ ) = e−2πihτ (17.2)

[
RIττ

]2
= e2πi(hI−hτ−hτ ) = e−4πihτ (17.3)

Fig. 17.6 The two states of three τ
particles fusing to τ . Unmarked dots
are τ particles.

Using the F and Rmatrices for a general anyon theory we can evaluate
the unitary transform associated with any braid. Recall the two possible
states of three τ particles fusing to τ as shown in Fig. 17.6.
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Now consider braiding the two leftmost particles around each other.

Fig. 17.7 Braiding the two left particles in this basis gives a phase dependent on
the fusion channel of the two particles.

The result of this braiding gives a phase, either RIττ if the fusion
channel of the two particles is I or Rτττ if the fusion channel of the two
particles is τ .
Note that the braiding operator is a linear quantum mechanical oper-

ator, so it acts on superpositions.

R :
(
α|0〉+ β|1〉

)
= αRIττ |0〉+ βRτττ |1〉

This is what is known as a controlled phase gate in quantum information
processing — the phase accumulated depends on the state of the qubit.
Now how can we evaluate the braid shown in Fig. 17.8? The trick

here is to use the F -matrix to change the basis such that we know the
fusion channel of the right two particles, and then once we know the
fusion channel we can use the R-matrix. If we want, we can then use
the F -matrix to transform back to the original basis. To see how this

Fig. 17.8 How does one evaluate this
braid? One applies F -first, then R as
shown in the next two figures!works, Recall that we can use the F matrix to write (See Eq. 9.1)

|0〉 = F00′ |0′〉+ F01′ |1′〉

or in diagrams (see Fig. 17.9).

Fig. 17.9 The F-matrix relation in diagram form. See Eq. 9.1

On the right hand side of Fig. 17.9 (i.e., in the prime basis) we know
the fusion channel of the rightmost two particles, so we can braid them
around each other and use the R-matrix to accumulate the corresponding
phase.
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Fig. 17.10 To braid particles, switch basis using F until we know the fusion channel
of the two particles we want to braid, and then we can apply the R-matrix.

To describe this in equations, we can write the operator that braids
the rightmost two particles as R23 and then we have

R23|0〉 = R23(F00′ |0′〉+ F01′ |1′〉)
= F00′R23|0′〉+ F01′R23|1′〉
= F00′R

I
ττ |0′〉+ F01′R

τ
ττ |1′〉 (17.4)

= F00′R
I
ττ

(
[F−1]0′0|0〉+ [F−1]0′1|1〉

)
(17.5)

+ F01′R
τ
ττ

(
[F−1]1′0|0〉+ [F−1]1′1|1〉

)

=
(
F00′R

I
ττ [F

−1]0′0 + F01′R
τ
ττ [F

−1]1′0
)
|0〉

+
(
F00′R

I
ττ [F

−1]0′1 + F01′R
τ
ττ [F

−1]1′1
)
|1〉

Where between Eq. 17.4 and 17.5 we have used the inverse F transform
to put the result back in the original |0〉 and |1〉 basis.1.1For this particular case (using Eq. 9.2

for the F -matrix) the matrix F and
F−1 happen to be the same matrix
(however we write out the inverse ex-
plicitly for clarity!)

This general principle allows us to evaluate any braiding of particles.
We can always convert to a basis where the fusion channel of the two
particles to be braided is known, then we apply the R matrix directly.
At the end we can transform back to the original basis if we so desire.

17.3 The Hexagon

As with the case of the F -matrix, there are strong consistency con-
straints on the R-matrices given a set of F -matrices (indeed, it is pos-
sible that for a given set of F -matrices that satisfy the pentagon, there
may not even exist a set of consistent R-matrices!). The consistency
equations are known as the hexagon equations and are shown diagram-
matically in Fig. 17.11. In equations this can be expressed as
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Fig. 17.11 The hexagon equations in graphical form. (nice picture stolen from
Bonderson thesis)

Rcae [F acbd ]egR
cb
g =

∑

f

[F cabd ]efR
cf
d [F abcd ]fg

[
Rcae ]−1[F acbd

]
eg
[Rcbg ]−1 =

∑

f

[F cabd ]ef [R
cf
d ]−1[F abcd ]fg

The top equation is the left diagram whereas the lower equation is the
right diagram in Fig. 17.11. The left hand side of the equation corre-
sponds to the upper path, whereas the right hand side of the equation
corresponds to the lower path.
In simple theories such as the Fibonacci theory, knowing the F ma-

trices, the Hexagon equation almost uniquely defines the R-matrices. In
fact there are two consistent solutions to the Hexagon equations for the
Fibonacci theory (See exercise 17.1).

Rτττ = e±3πi/5

RIττ = e∓4πi/5

These two solutions correspond to left and right handed versions of the
Fibonacci theory corresponding to twist factors for the elementary Fi-
bonacci anyon of

θτ = e±4πi/5
.

17.4 Ocneanu Rigidity

Given a set of fusion rules, the pentagon and hexagon equation are very
very strong constraints on the possible F and R matrices that can result.
(For example, as mentioned above, with Fibonacci fusion rules, there is



182 Braiding and Twisting

only one solution of the pentagon up to a gauge freedom and then only
two solutions the hexagon). In fact, it is a general principle that the
pentagon and hexagon for any set of fusion rules for a finite set of parti-
cles will have a finite set of solutions. In particular, once we have a set
of solutions, in no sense is there a way that we can deform the values
of F and R by a small amount and have another solution. This is a
principle known as rigidity of the solutions, and it was first pointed out
by Ocneanu2. This principle makes it possible to contemplate putting

2But not published by him! See for ex-
ample, “On fusion categories”, Annals
of Mathematics, Pages 581-642 from
Volume 162 (2005), by Pavel Etingof,
Dmitri Nikshych, Viktor Ostrik.

together a sort of “periodic table” of possible anyon theories, starting
with those having very few particle types. In fact, such periodic tables
have been compiled up to about five or six different particle types3,4.

3See for example E. Rowell, R. Stong,
and Z. Wang, On Classification of
Modular Tensor Categories, Comm.
Math. Phys. 292 (2009),p343.
arXiv:0712.1377
4It is often useful to impose one more
condition, that the theory is “modu-
lar” which we will discuss below in sec-
tion ***. Most well behaved theories
are modular, although the presence of
a fermion makes a theory non-modular
— indicating how difficult it is to prop-
erly treat fermions! As far as we can tell
from the known periodic table, all mod-
ular theories can be described in terms
of some sort of Chern-Simons theory or
closely related construction!

There is nothing in principle that prevents one from listing all the pos-
sible anyon theories even for more particle types although the search for
all solutions becomes extremely difficult for greater numbers of particles.

17.5 Appendix: Gauge Transforms and R

As in section 9.1.3 one can gauge make general gauge transformations
on the vertices of a theory. Given the transform

c

a b

µ → uabc;µ
c

a b

µ

the R matrix transforms as

Rabc → ubac
uabc

Rabc

Note that Raac is gauge invariant, as is Rabc R
ba
c in Eq. 17.1.

17.6 Appendix: Parastatistics Revisited

Given that we have now explained the general topologica structure of
theories in 2+1 dimensions we re-ask the queston of whether we can
have exotic statistics of particles in 3+1 dimensions. We discussed this
issue previously in section 3.5.1. Recall that in order to construct a path
integral we were looking for the topologically distinct classes of paths
through configuration space — which we identified as the braid group
in 2+1 but the symmetric group in 3+1. The idea of using a nonabelian
representation of the symmetric group is known as parastatistics. We
claimed that if we are to allow particle creation/annhiliation, and we
enforce locality, such types of statitics can be excluded.
Now that we have explored the topological structure of general the-

ories in 2+1 dimension, we can try to see whether a similar structure
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can be imposed upon a 3+1 dimensional theory. In 3+1 dimensions,
recall that one cannot distinguish an over-crossing from an undercross-
ing (See section 3.3.2) and a double exchange is equal to the identity.
Thus we have the gauge invariant statement Rabc R

ba
c = 1. In particular

this implies Raac = ±1. Note that we leave open the possibility that two
particles a and b may fuse to multiple results c.
Further we can look at the 3+1 dimensional analogue of a particle

twist as in Fig. 17.1. Since over and undercrossings are identical, we
conclude that the twist factor is θ = θ−1 = ±1. Equivalent to this
statement we consider a coordinate frame (x, y, z) which may rotate as
a function of time (analogous to rotating a vector as a function of time
in 2 spatial dimensions, which traces out a ribbon in 2+1 d). Since
each rotation is an element of the group SO(3) and we know that two
full rotations in SO(3) is topologically equivalent to the identity (but
one rotation is not! See section 28.3.1), we conclude that the phase
associated with a full rotation must be ±1 (corresponding to integer
and half integer spins).
Let us further consider a × b = c + . . . then we can consider a full

rotation of c as being a full rotation of a and a full rotation of b combined
with braiding a all the way around b. Since the full braiding of a around b
is trivial in 3+1 dimension (i.e., since Rabc R

ba
c = 1) we may conclude that

θaθb = θc. This can also be seen from Eq. 17.1 along with Rabc R
ba
c = 1.

Thus, we have a Z2 grading of our fusion algebra, where particles are
classified as having θ = ±1 (obviously these are going to correspond to
bosons or fermions).

Further reading

This is some reading

Exercises

Exercise 17.1 Fibonacci Hexagon In any TQFT or ”braided” (including
modular) tensor category (think of all of these as just anyon theories! don’t
worry about the fine distinctions), a braiding is defined by an R-matrix as
shown in the figure 17.4. Once F matrices are defined for a TQFT, consistency



184 Exercises

of the R-matrix is enforced by the so-called hexagon equations as shown in
the figure diagramatically by Fig. 17.11.

For the Fibonacci anyon theory, once the F matrix is fixed as in Eq. 9.2,
the R matrices are defined up to complex conjugation (i.e., there is a right
and left handed Fibonacci anyon theory — both are consistent). Derive these
R matrices.



Diagrammatic Algebra, the
S-matrix and the Verlinde
Relation 18
We have built up our anyon theories and now, using F and Rmatrices we
can generally figure out how the degenerate Hilbert space V (Σ) evolves
(where by Σ we mean a surface with particle in it) as the particles move
around in the manifold.
We are almost at the point where we have a full diagramatic calculus

— which would produce a number as an output given any world-line
diagram as input

Z(Manifold with particle world lines in it) → C

where here the world lines should be allowed to fuse and split, and as
discussed in section?? one can always choose the manifold to be S3 or
some other simple reference manifold if one is willing represent other
manioflds via Kirby calculus.
Note that while the diagrammatic calculus for the Kauffman case is

often quite simple, there can be some nasty bookkeeping glitches for
other anyon theories. For careful details of how all of the details, see
Kitaev 2005 or Bonderson’s thesis (*** See also chapter *** to be added).
First, we should be careful about our normalization when we evaluate

some knot or link of world lines1. We choose our evaluation of a world 1We allow branching world lines which
correspond to fusion or splittingline link to be of the form

〈Link〉 ≡ Z(S3 with embedded Link)

Z(S3)
(18.1)

= Z(S2 × S1 with embedded Link) (18.2)

where in the case of S2×S1 we require that the Link not go around the
nontrivial handle of the S1. This normalization is chosen so that the
evaluation of the empty link will give unity (as discussed in chapter 7).

〈∅〉 = 1 (18.3)

By using F ’s and R’s we hope to reduce diagrams to a collection of
non-linking labeled loops (labeled with their particle type), similar to
what we did in evaluating the Kauffman invariant. We then need to
know what value to give a particular loop.
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18.1 Normalizations and Loops

Let us define da > 0 to be the value associate with the a loop of particle
of type a as shown in Fig. 18.12,3. Note that we have d0 = 1 for the2 The reason we should assume that

this is a positive quantity is because,
cutting the loop half-way up, it can be
thought of as an inner product between
two identical states © = 〈∪|∪〉 = da
(most directly we can see that the two
halfs are identical when they are em-
bedded in S2 × S1 since the manifold
is assembled by gluing two identical
pieces as well.). While the value of this
states is not normalized to unity in our
convention, we will insist that we have
postive-normed states.

3In some cases it is convenient to define
the value of a loop to be negative, as in
the case of the semion Kauffman theory
discussed above. However, by redefin-
ing some F -matrix elements, one can
always work with the convention that
da is positive, although this comes at
the expense of having troublesome mi-
nus signs pop up in other places! These
minus signs are known as Frobenius-
Schur indicators and will be discussed
in section ***.

identity particle (due to Eq. 18.3).
These quantities will turn out to be the quantum dimensions of the

particles, but we have not shown this yet! We have not yet decided

Fig. 18.1 A loop of particle type a
is given value da > 0. This will turn
out to be the quantum dimension of the
particle.

what value this loop should get. However, we can look back to 7.6 to
note that we have

Z(S3; a loop linking b loop) = Sab = Sba

where Sab is the unitary matrix known as the modular S-matrix. Recall
that S should be unitary because it can be interpretated as a change of
basis. (Theories where the S matrix comes out non-unitary are consid-
ered badly behaved, or “non-modular”. We will ignore this harder case
for now4).

4It turns out that any fermion will
make a theory non-modular! This is
why fermions are a bit difficult to han-
dle!

We can then think of the single loop da as particle a linking the
vacuum, so we write

Z(S3; a loop) = Sa0 = S0a

and further we can write the normalizing factor Z(S3) as vacuum linking
vacuum, so we have the value of a single loop as

da = Sa0/S00

The fact that S is unitary gives us a useful identity

1 =
∑

a

|Sa0|2 = |S00|2
∑

a

d2a

where the sum is over all particle types in the theory. We can then
write5

5See footnote 16 in chapter 7 for why
S00 must be real.

Z(S3) = S00 = 1/D
where D is known as the total quantum dimension and is given by

D2 =
∑

a

d2a

Note that, as of this point we still have not shown that the da’s, i.e., the
values of the loops, are related to the quantum dimensions.

18.2 Quantum Dimensions

Now, we claim that these loop quantites da should satisfy the fusion
algebra

dadb =
∑

c

N c
ab dc. (18.4)

Diagrammatically we have Fig. 18.2 This rule seems rather natural,
Fig. 18.2 The quantum dimensions
satisfy the fusion algebra. See rigorous
derivation in chapter appendix ***
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that a and b can fuse together to form c in all possible ways (See also
Exercise 8.1). However, to prove it is a bit more complicated than this
argument, and is given in the appendix to this chapter.
Now, given Eq. 12.1, if we think of the fusion multiplicity for particle

a, as a matrix Na with indices b and c, and we think of dc as a vector ~d
we can write

da ~d = [Na]~d

I.e, the vector ~d is an eigenvector of Na with eigenvalue da.
Note that the matrix Na has only non-negative elements and ~d has

only positive elements. This allows us to apply the Perron-Frobenius
theorem which says that for matrices with only non-negative elements6 6Actually the simplest version of

Perron-Frobenius requires all positive
elements. Using the theorem for non-
negative matrices allows there to be
a second eigenvalue with same magni-
tude but opposite sign — this does not
change the conclusion.

there is a unique eigenvector with all positive entries, and it corresponds
to the largest eigenvalue. Thus we conclude that da is actually the
largest eigenvalue of the matrix Na and it has eigenvector ~d.
Recall that our previous definition of the quantum dimension da is

that it is the largest eigenvalue of the fusion multiplicity matrix Na.
Thus we have rigorously shown that the value da of the loop in the
graphical algebra is precisely the quantum dimension!

18.3 Verlinde Algebra

Using the locality principle (or no-transmutation) principle (See Fig. 8.7)
we can show that a closed loop of type a around a world line of type
x gives some constant which we call S̃ax as shown in Fig. 18.3. by

Fig. 18.3 The locality principle tells
us that the value of a loop around a
world line is some number which we call
S̃ax

bending the top of x and forming a closed loop with the bottom of x,
we construct linked rings on the left of this equation which we relate to
the modular S-matrix, but on the right we form just a single x-loop.

Sax = Z(S3, a loop links x loop) = S̃axZ(S
3, x-loop) = S̃axS0x

from which we conclude

S̃ax =
Sax
S0x

(18.5)

On the other hand, if we have two loops a and b around x, we can fuse
the two loops to all possible loops c as shown in Fig.18.4. This identity
is entirely analogous to that of Fig. 18.2, and the rigorous derivation is
given in the appendix. On the other hand, we could also evaluate the

Fig. 18.4 Similar reasoning as in
Fig. 18.2 allows us to write this dia-
grammatic relationship. See rigorous
derivation in chapter appendix ***

left hand side of Fig. 18.4 by applying the identity of Fig. 18.3 twice in
a row, and similarly we can evaluate the right hand side of Fig. 18.4 by
applying Fig. 18.3 once. Thus we obtain the identity

S̃axS̃bx =
∑

c

N c
abS̃cx

This important result can be re-presented in two important ways. First,
inverting this matrix equation gives

N c
ab =

∑

x

S̃axS̃bx[S̃
−1]xc
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Plugging in the value of S̃ from Eq. 18.5, and using the fact that the
modular S matrix is unitary, we obtain the famous Verlinde formula

N c
ab =

∑

x

SaxSbxS
∗
cx

S0x

which tells us that all the information about the fusion algebra is con-
tained entirely within the modular S matrix!
A second way to present this important results is to write it in the

form

[S†NaS]xy = S̃ayδxy

where Na here is the matrix N c
ab with indices b and c. Thus the result

tells us that the modular S matrix is precisely the unitary diagonalizing
matrix we were looking for in Eq. 8.11!

18.4 Return of Kirby Color

As mentioned in section 19.2.3, one can assemble a string called the
“Kirby Color” (or Ω string) that is the sum of all strings weighted by
the S-matrix.

|Ω〉 =
∑

a

S0a|a〉 =
1

D
∑

a

da|a〉 (18.6)

This string has some remarkable properties. Suppose we loop this string
around a string x similar to that of Fig. 18.3. The result then looks like

∑

a

S0aS̃ax|x〉 = Dδx0|0〉

where we have used the fact that S is unitary, that S0a = Sa0 is real,
and that S00 = 1/D. This is shown explicityly in fig. 18.5

Fig. 18.5 The killing property. A loop of the Kirby color string projects to the
vacuum going through it.

Thus, a loop of Kirby color string projects to zero (or vacuum) flux
going through it! This is sometimes known as the ”killing property”, as
a loop of Ω string kills any non-trivial particle that tries to go through
it. This principle is extremely useful in later attempts to construct
topological models.
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Further, the Kirby color string can be used, as mentioned in section
19.2.3 to build up a manifold invariant from anyon braiding rules. Indeed
we can check this. The evaluation of the empty knot is defined to be
1 = Z(S3)/Z(S3). Starting with S3, surgery on a single loop takes S3

to S2 × S1. We thus expect that

〈single ΩLoop〉 = Z(S2 × S1)

Z(S3)
=

1

S00
= D

where we have used that Z(S2×S1) = 1 and Z(S3) = S00 = 1/D. Now,
let us evalulate the Ω-loop using our diagrammatic rules as shown in
Fig. 18.6.

Fig. 18.6 The value of an Ω loop is D.

Indeed, this gives D in agreement with our surgery prediction. So this
appears to be working! One should be a bit careful with this because
one needs to properly account for twists in loops which we have not done
here. See the more detailed discussion in section ***.

18.5 S and θ and that is all?

In building up an anyon theory, we now have compiled a large amount
of data. Say there areM particle types, then we have F matrices, which
have 6 indices7, each running from 1 to M , we have N matrices with 7Here we assume no fusion multiplicity

greater than 1. If we have such mul-
tiplicities, we would add additional in-
dices to the F -matrices.

three indices, we have R matrices with three indices, we have S matrices
with two indices, and d’s and θ both with one index each. This seems
like a huge amount of data needed to keep track of (and in some sense
it is a huge amount of data). However, due to the idea of Rigidity (see
section 17.4), it is believed that you need only specify the matrix Sab and
the values of the twists θa and you completely pin down the rest of the
theory! This statement is not proven, but there are no counter-examples
known.

18.6 Appendix: Quantum Dimensions Satisfy
the Fusion Algebra

We would like to show the identity shown in Fig. 18.2. We need a few
useful pieces. First note that we can use an F -move on parallel lines to
show the identity shown in Fig. 18.7.
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Fig. 18.7 An F-move. If a and b do not fuse to c, then the coefficient κcab must be
zero. And if a and b do fuse to c then κcab is not zero. Note that the constant κcab
shown here is typically notated as F ab0abc . This is quite similar to [F a

abb̄
]0c except that

some lines pointing up have been turned down. This incurs certain normalization
factors that one needs to keep track of. See section ***

Further we can use the locality principle (See Fig. 8.7) to give us
Fig. 18.8

Fig. 18.8 Removal of a bubble gives a factor, which we call ∆cab 6= 0.

We can then use these two identities to directly fuse the loop of a with
the loop of b incurring a factor of κcab∆

c
ab as shown in Fig. 18.9

Fig. 18.9 We have applied first the result of Fig. 18.7 then Fig. 18.8. Note that if
a and b cannot fuse to c then that term is zero in the sum.

However, we can also apply the same reasoning to split the loops into
multiple bubbles as shown in Fig. 18.10.
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Fig. 18.10 Applying the result of Fig. 18.7 twice then Fig. 18.8 twice.

From these two results we can immediately conclude that κcab∆
c
ab = 0

or 1. Since both of these factors are nonzero when a and b can fuse to c,
and are zero when they cannot, we can write κcab∆

c
ab = N c

ab (assuming
no N c

ab > 1)8. This then proves our Lemma. 8In cases where Nc
ab > 1 we would have

had to keep track of an additional in-
dex µ at the a, b, c vertex. However,
this index is also conserved around the
loop meaning that the sum eventually
becomes

∑

c,µ which will then generate
a factor of Nc

ab as desired.

Once it is established that the factor κcab∆
c
ab = N c

ab then this can be
also used to directly prove the identity in Fig. 18.4.

18.7 Appendix: Purely Algebraic Proof of
Verlinde Relation

In this section we assume only that we have a set of symmetric fusion
matrices [Na]

b
c which represent the fusion algebra9. Nowhere do we need 9The argument of this section is repro-

duced from Bonderson,Patel, Shtengel,
and Simon, to be published.

to know anything about the braiding properties of the particle types
(indeed, a braiding need not even be defined!). The fusion matrices
must be commutative as in Eq. 8.9 so that they are all simultaneously
diagonalizable by a unitary matrix which we will call U for now (See Eq.
8.11) which we write as

Na = Uλ(a)U † (18.7)

where λ(a) is a diagonal matrix for each a. Thus the columns of U are
eigenvectors of the N matrices which we write as

∑

c

[Na]
c
bUcd = Ubdλ

(a)
d

and no sum on d implied. Note, at this point, the columns of U may
be multiplied by an arbitrary phase (i.e., a phase redefinition of the
eigenvectors).
Since there is a particle type labeled the vacuum 0 (or identity) which

fuses trivially with all other particles, we have [Na]
c
0 = δca so we have

Uad =
∑

c

[Na]
c
0Ucd = U0dλ

(a)
d

so that
λ
(a)
d = Uad/U0d

substituting back into Eq. 18.7 we get

[Na]
c
b =

∑

x

Ubx
Uax
U0x

U∗
cx. (18.8)
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Using Eq. 8.6, we immediately obtain that

Ucx = U∗
c̄x

In particular this implies U0x is real. Using Eq. 12.1 (also the result of
exercise 8.1)

dadb =
∑

c

N c
abdc

we see that the vector ~d must be an eigenvector of Na for all a, and hence
is a column of the matrix U . We choose this to be U0x, and indeed this
must be the eigenvector with the largest eigenvalue for each Na.

Further reading

This is some reading

Exercises

Exercise 18.1 Kirby Color
From any anyon theory (i.e., TQFT or modular tensor category) we can

construct a type of string (a sum of particle types) called an Ω (sometimes ω)
string, or sometimes called a Kirby-color string as given in Eq. 18.6.

(a) Evaluating a knot diagram with the evaluation rules of the TQFT gives

Z(S3with link)/Z(S3)

So the empty diagram is give value 1.
Consider a simple ring (an “unknot” or unknotted loop of string), black-

board framed (meaning no twists) of Kirby color string. Evaluate this diagram.
(b) A knot (or link) of Kirby-colored string is meant to be equivalent to

doing surgury on a the knot thickened into a torus. Considering the result of
part (a) above as well as part (a) of the above exercise 19.1 on Surgery. Are
these results consistent?

(c) Show that the Ω string made into a loop has the so-called “killing prop-
erty” shown in Fig. 18.5. In other words, any diagram gives zero unless the
particle type going through the Ω loop is the trivial or vacuum particle. Hint:
Use the fact that the quantum dimension is part of the modular S matrix,
and various properties of the S matrix to prove this identity.

(d) Evaluate a Hopf Link of Kirby color string (See Fig. 19.11). Does this
match the result of part (b) of the exercise 19.1 above?

(e) [Harder] Evaluate the Borromean rings of Kirby color string (See Fig. 19.12).
Compare your result to that of part (c) of exercise 19.1 above, and also the
discussion in the problem on ”Ground State Degeneracy” above.

Hints: Consider the F-move shown in figure 18.11. By closing up the top
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Fig. 18.11 An F-move. The far left diagram can be thought of as having a vacuum
particle go between the two strings (middle). Then we can use an F-move to obtain
the diagram on the right

and bottom, show that F aa0aa0 = 1/da with da the quantum dimension of the
particle a. You will need the locality law (also known as the ”no-tadpole”
law), which says that diagrams of the type shown in Fig. 18.12 must be zero
unless the incoming particle is the vacuum, p = 0.

Fig. 18.12 A tadpole diagram must be zero unless p = 0, by locality

Exercise 18.2 Handle Slide As discussed in section ??, one can describe a
3-manifold by giving a knot (or link) diagram which should be thickened into
a tube and surgered. A handle-slide of a link diagram (which corresponds to
sliding a handle of the manifold over another handle, but leaving the manifold
topologically unchanged) involves splitting one strand, having it trace the path
of a second strand and then reconnecting. An example is shown Fig. 19.7.
In TQFT, one uses a string of Kirby color to represent the knot or link to
be surgered. In fact, the evaluation of the link in the diagramatic calculus is
unchanged by handle-slides. While it takes a bit more diagramatic calculus
rules to derive the handle-slide invariance in general, a simple case of the
handle-slide is fairly easy to derive. Consider instead a handle-slide over an
untwisted loop as shown in the figure 18.13. Use the killing property. You
will have to think about fusion, but you should not need to do any detailed
calculations with F matrices.

Exercise 18.3 Fusion and Ground State Degeneracy In exercise 8.2 above,
we have calculated the ground state degeneracy for a TQFT on an arbitrary
oriented 2d manifold Σ. Using the Verlinde relation, show that the ground
state degeneracy can be written as

dim = Z(Σ× S1) =
∑

x

[S0x]
χ
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Fig. 18.13 A handle-slide over an untwisted loop. In this figure all strings are
meant to be Ω strings or Kirby color (a weighted sum of all particle types).

where χ = 2−2g is the Euler characteristic where g is the genus of the manifold
(the number of handles).



Surgery and More Complicated
3-Manifolds1 19

1Although this chapter is super interest-
ing and fun, physicists can probably skip
it on a first reading.

In the previous chapter we saw two examples of assembling manifolds by
gluing together pieces. We found that we could assemble together two
solid tori (D2 ×S1) into either S3 or S2×S1 depending on how we glue
together the S1×S1 surfaces. (In fact, one can consider gluing together
the surfaces in yet other ways to get even more interesting results, but
we will not need that here.1). We would like to use this sort of trick to

1See however, the discussion in section
*** as well as ref *** for example.

be able to study much more complicated three dimensional manifolds.
The understanding of three dimensional manifolds is a very rich and

beautiful problem2. In order to describe complicated manifolds it is
useful to think in terms of so-called surgery. Similar to what we were
just discussing in section 7.3 — assembling a manifold by gluing pieces
together — the idea of surgery is that we remove a part of a manifold and
we glue back in something different. Imagine replacing someone’s foot
with a hand!4 By using successive surgeries we will be able to construct 4Prehensile toes could be useful I sup-

pose!any orientable three-dimensional manifold.
The general scheme of surgery is to first write a manifold as the union

of two manifolds-with-boundary sewed along their common boundaries.
If we have a closed manifold M that we would like to alter, we first split
it into two pieces M1 and M2 such that they are sewed together along
their common boundary ∂M1 = ∂M∗

2. So we have

M = M1 ∪∂M1
M2

We then find another manifold with boundary M′
2 whose boundary

matches M2, i.e,
∂M2 = ∂M′

2

We can then replace M2 with M′
2, to construct a new closed manifold

M′ as
M′ = M1 ∪∂M1

M′
2

We say that we have performed surgery on M to obtain M′. In other
words, we have simply thrown out the M2 part of the manifold and
replaced it with M′

2.

2Many important results on three dimensional manifolds have been discovered re-
cently. Perelman’s3 proof of the Poincaré Conjecture, along with the methods he
used are apparently extremely revolutionary and powerful. But this is way outside
the scope of our book!
3Grigori Perelman is a brilliant, but startlingly puzzling character. He famously
declined the million dollar Millenium Prize offered to him for proving the Poincaré
conjecture in three dimensions. He turned down the Fields Medal as well.



196 Surgery and More Complicated Manifolds

= ∪
S1 ∪ S1
( )∪

S2 = [S2 − (D2 ∪D2)] (D2 ∪D2)∪
S1 ∪ S1

Fig. 19.1 Writing a sphere M = S2 as the union of two manifolds glued along their

boundaries. M2 is the union of two disks D2 ∪ D2. M1 = S2 − (D2 ∪ D2) is the
remainder. The two manifolds are glued along their common boundary S1 ∪ S1.

19.1 Simple example of surgery on a

2-manifold

To give an example of surgery consider the sphere M = S2 as shown
in Fig. 19.1. Here we write the sphere as the union of two disks M2 =
D2 ∪D2 and the remainder of the sphere M1 = S2 − (D2 ∪D2). These
are glued along their common boundary S1 ∪ S1.
Now we ask the question of what other 2-manifolds have the same

boundary S1 ∪ S1. There is a very obvious one, the cylinder surface!
Let us choose the cylinder surface M′

2 = S1 × I where I is the interval
(or D1). It also has boundary ∂M′

2 = S1 ∪ S1 as shown in Fig. 19.2.

∪∪∪∂ = ∂( ) =

∂(S1 × I) = ∂(D2 ∪D2) = S1 ∪ S1

Fig. 19.2 The boundaries of the cylinder surface is the same as the boundary of
the two disks. Both boundaries are two circles. This means that we can remove two
disks from a manifold and sew in the cylinder.

Thus we can sew the cylinder surface in place where we removed
M2 = D2 ∪ D2, as shown in Fig. 19.3. The resulting manifold M′

is the torus T 2

Thus we have surgered a sphere and turned it into a torus. Note
that there is another way to think of this procedure. If M = ∂N then
surgery on M is the same as attaching a handle to N . In the case we
just considered we would take N = B3 the 3-ball (sometimes denoted



19.2 Surgery on 3-manifolds 197

∪
S1 ∪ S1

=

[S2 − (D2 ∪D2)] ∪ [S1 × I] = T 2

S1 ∪ S1

Fig. 19.3 Gluing the cylinder surface M′
2 = S1 × I to the manifold M1 = S2 −

(D2 ∪D2) along their common boundary S1 ∪ S1 gives the torus T 2.

D3), and we attach a handle D2 × I, the solid cylinder. We obtain the
new manifold N ′ which is the solid torus, whose boundary is T 2 the
torus surface. This is written out in the diagram Fig. 19.4

N = B3 ∂N = M = S2

↓ Add Handle ↓ Surgery

Solid Torus ∂(Solid Torus) = T 2

Fig. 19.4 Handle attaching on the manifold N is the same as surgery on a manifold
M = ∂N .

19.2 Surgery on 3-manifolds

We can also perform surgery on three-dimensional manifolds.5 Start with 5This is the part that is guaranteed to
make your head explode.a 3-manifold M, such as perhaps the R3 space around us, or maybe S3.

Now consider a solid torus

M2 = D2 × S1

embedded in this manifold. The surface ∂M2 = S1×S1 = T 2 is a torus
surface. Now, there is another solid torus with exactly the same surface.
It is

M′
2 = S1 ×D2

These two solid tori differ in that they have opposite circles filled in.
Both have the same S1 × S1 surface, but M2 has the first S1 filled in
whereas M′

2 has the second S1 filled in.
The idea of surgery is to remove M2 and replace it with M′

2 to gen-
erate a new manifold M′ with no boundary.6 The reason this is difficult 6Stop here, think about what we have

done. Collect the pieces of your ex-
ploded head.

to visualize is because the new structure is not embeddable within the
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original R3. This is torus surgery on a 3-manifold, and it is called Dehn
surgery. Another way to describe what we have done is that we have
removed a solid torus, switched the meridian and longitude (switched
the filled-contractable and the unfilled-uncontractable) and then glued
it back in. In fact, one can make more complicated transformations on
the torus before gluing it back in (and it is still called Dehn surgery)
but we will not need this.
It is worth noting that the solid torus we removed could be embedded

in a very complicated way within the original manifold — i.e, it could
follow a complicated, even knotted, path, as in the figure on the right of
Fig. 7.10.

19.2.1 Lickorish-Wallace Theorem

An important theorem7 of topology is due to Lickorish [1962] and Wal-7In Witten’s groundbreaking paper on
the Jones polynomial (Witten [1989]),
he states the theorem without citation
and just says “It is a not too deep re-
sult..”. Ha!

lace [1960].

Theorem: Starting with S3 one can obtain any closed connected
orientable 3-manifold by performing successive torus surgeries, where
these tori may be nontrivially embedded in the manifold (i.e., they may
folllow some knotted path).

One has the following procedure. We start with a link (some knot
possibly of several strands), embedded in S3. Thicken each line to a
solid torus. Excise each of these solid tori, and replace them by tori
with longitude and meridian switched8. Any possible 3-manifold can

8See appendix *** for a more precise
definition of this prescription

be obtained in this way by surgering an appropriately chosen link. We
summarize with

Link in S3 surger−→ Some M3

We can thus represent any three dimensional manifold in terms of a
link. If we think of a topological quantum field theory as being a way to
assign a complex number to a three dimensional manifold, i.e., Z(M) we
realize that what we are now looking for is essentially a knot invariant
— a way to assign a number to a knot. We explore this connection
further when we discuss Witten-Reshitikhin-Turaev invariant below in
this section.

19.2.2 Kirby Calculus

It is not the case that all topologically different links, when surgered, give
topologically different manifolds. Fortunately, the rules for which knots
give the same manifolds have been worked out. These rules, known
as Kirby calculus, are stated as a set of transformation moves on a
link which change the link, but leave the resulting manifold unchanged.
There are several different sets of moves that can be taken as “elemen-
tary” moves which can be combined together to make more complicated
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transformations. Perhaps the simplest set of two elementary basic moves
are known as Kirby moves:9

Fig. 19.5 A circumcision. Both
strings can be removed. This is a third
Kirby move which is implied by the first
two only if you start with a knot em-
bedded in S3. Otherwise it is an inde-
pendent move that is required. See ***

(1) Blow up/ Blow Down:10 One can add or remove an unlinked
10The nomenclature is obscure when
discussing 3-manifolds, but makes sense
when one discusses 4-manifolds. See
any of the books on 4-manifold topol-
ogy listed at the end of the chapter.

loop with a single twist, as shown in Fig. 19.6.

orAddition or Removal of

Fig. 19.6 Blow up/ Blow down. Addition or removal of an unlinked loop with a
single twist leaves the 3-manifold represented by surgery on the knot unchanged.

(2) Handle-Slide:11 A string can be broken open and pulled along
11The nomenclature “handle slide”
comes from an interpretation of this
move as sliding handles around on a
manifold. Consider the example used in
section 19.1 where we attached a han-
dle to a ball and obtained a solid torus.
We could also attach two handles and
get a two-handled solid torus. Here it
doesn’t matter where the handles are
attached to the sphere – they can be
slid around. Indeed, they can even be
slid over each other, which is what the
handle-slide represents.

the full path of another string, and then reconnected. See Fig. 19.7.

↔

Fig. 19.7 A handle-slide move. (See Fig. 19.9 for another example.) Both left and
right sides of this pictures represent the same 3-manifold after surgery. Note that the
knot that is slid over (the right of the two pieces on the left) is 0-framed, meaning
that it has self-twisting (writhe) of zero. If this were not the case the strand that
slides over it would also twist around it. See *** for details.

Two links in S3 describe the same 3-manifold if and only if one link
can be turned into the other by a sequence of these Kirby moves. While
these moves may seem strange, it is possible to develop some geometric
intuition for what these mean. This is addressed roughly in the appendix
to this chapter.

19.2.3 Witten-Reshitikhin-Turaev Invariant

Here we are interested in constructing what is known as a manifold
invariant. Similar to a knot invariant, this is a mapping from a manifold
to some output that depends only on the topological properties of the
input manifold.
Our strategy of building a manifold invarient is to describe the man-

ifold by using surgery on a link. Given knowledge of the rules of Kirby
calculus, to construct a manifold invariant for three manifolds, we need
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only construct a knot invariant that is invariant under Kirby moves. Be-
ing that the Chern-Simons path integral is not really well defined as a
path integral, it turns out that this scheme is a way to make the manifold
invariants of Chern-Simons theory mathematically rigorous [Reshetikhin
and Turaev, 1991; Lickorish, 1993; Witten, 1989].
Without ever saying the words “path integral” or “Chern-Simons ac-

tion” we can think of an anyon theory as simply a way to turn a link
of labeled world lines into a number (like evaluating a knot invariant,
but with rules for labeled links). Thus each anyon theory gives us a way
(many ways, actually) to construct knot invariants. It turns out that
for any well behaved anyon theory one can put together a combination
of world-line types that will obey the Kirby calculus and therefore allow
one to construct a manifold invariant.
The first Kirby move (The blow up/blow down) does not sound so

hard to finagle just by using some normalization factor for each twist
and loop (We will show details of this later in ***). The second Kirby
move seems harder to achieve, but can be achieved if one uses the so-
called Kirby color combination (sometimes known as an Ω string)

|Ω〉 =
∑

a

S0a|a〉

where here we mean that we are summing over particle types a, and S
is the modular S-matrix, and the subscript 0 refers to the vacuum or
identity particle. Diagrammatically we have Fig. 19.8. It turns out (See

=
∑

a S0a a

Fig. 19.8 A String of Kirby color is a weighted superposition of all anyon string
types. Note that the Kirby color string does not have an arrow on it since it is an
equal sum over all pairs of particles and their antiparticles.

exercise 18.2) that the corresponding knot invariant that comes from
evaluating a knot of Kirby color is invariant under handle-slides. The
manifold invariant that results from evaluating the corresponding knot
invariant of the Kirby-color string is known as the Witten-Reshitikhin-
Turaev invariant and it gives a rigorous re-definition of the Chern-Simons
manifold invariants defined by Witten. (See chapter *** for more de-
tails).
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19.3 Appendix: Details of Surgery and

Meaning of Kirby Moves

The point of this appendix is give a bit more detail of the surgery pre-
scription and to give some geometric intuition for why Kirby moves on
a link leave the resulting manifold described by the link unchanged.
First let us bit a bit more precise about the surgery prescription.

Given a link, we think of this link as being a ribbon (usually we draw
it with blackboard framing, see section ***). Thicken each strand into
a solid torus, and draw a line around the surface of this torus that
follows one of the edges of the ribbon. Remove this solid torus, but the
torus surface that remains still has the line drawn around it. Reattach
a new solid torus where the new meridian (the circle surrounding the
contractable direction) follows precisely this line.
Blow Up / Blow Down: Consider the twisted loop in Fig. 19.6

embedded in S3. We would like to perform surgery on this loop and we
claim we still obtain S3. As described in Fig. 2.7 a string with a small
twist loop as in Fig. 19.6 can be thought of as a ribbon with a twist (but
no loop) in it. Let us use this description instead. Thicken the loop to a
torus, and then the ribbon traces out a line as shown in Fig. 19.9 on the
torus surface. We remove the solid torus and insert a new torus where
the meridian follows the twisted line on the surface of the hole that is
left behind. Since this line goes around each handle once, this results in
precisely the construction of L(1, 1) = S3 as described in 7.4.

Fig. 19.9 A line that wraps both the
longitude and meridian of the torus. If
we thicken the knot shown in Fig. 19.6
to a torus and draw a line around
the longitude of the torus, then try to
straighten the torus out to remove the
twist, the straight line ends up looking
like this.

↔

Fig. 19.10 An example of a simple handle-slide move.

Handle-Slide: It is fairly easy to describe why the handle-slide is an
allowed move. Consider the simple handle-slide shown in Fig. 19.9. Let
us think about what happens when we surger the horizontal loop. First
we thicken the horizontal loop into a torus (as shown), then we exchange
the contractable and non-contractable directions. In this procedure, the
longitudinal direction (The long direction) of the torus is made into
something contractable. This means (after surgery) we can pull the far
left vertical line through this torus without touching the three verti-
cal blue lines. This remains true even if the torus is embedded in the
manifold in a complicated way, as in Fig. 19.7.
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Further Reading

For more detailed discussion of Surgery and Kirby Calculus, as well as
a nice discussion of manifold invariants, see

• V. V. Prasolov and A. B. Sossinsky, Knots, Links, Braids and 3-

Manifolds: An introduction to the New Invariants in Low-Dimensional

Topology, Translations of Mathematical Monographs, v 154, Amer-
ican Mathematical Society, Providence RI, (1996).

The following references are standards for Surgery and Kirby Calculus,
although they emphasize four dimensional topology.

• Robert E. Gompf and András I. Stipsicz, 4-Manifolds and Kirby

Calculus, American Mathematical Society, Graduate Studies in
Mathematics Volume: 20 (1999).

• Robion Kirby, The Topology of 4-Manifolds, Springer (1989).

• Selman Akbulut, 4 manifolds, Oxford Graduate Texts in Mathe-
matics (2016).

Exercises

Exercise 19.1 Surgery
(a) Beginning with the three-sphere S3, consider the so-called “unknot”

(a simple unknotted circle S1 with no twists) embedded in this S3. Thicken
the circle into a solid torus (S1 × D2) which has boundary S1 × S1. Now
perform surgery on this torus by excising the solid torus from the manifold S3

and replacing it with another solid torus that has the longitude and meridian
switched. I.e., replace S1 ×D2 with D2 ×S1. Note that both of the two solid
tori have the same boundary S1 × S1 so that the new torus can be smoothly
sewed back in where the old one was removed. What is the new manifold you
obtain? (This should be easy because it is in the book!)

(b) [Not hard if you think about it right!] Consider two linked rings, known
as the Hopf link (See Fig. 19.11). Consider starting with S3 and embedding

Fig. 19.11 Hopf Link

the Hopf link within the S3 with “blackboard framing” (i.e., don’t introduce
any additional twists when you embed it). Thicken both strands into solid
tori and perform surgery on each of the two links exactly as we did above.
Argue that the resulting manifold is S3.

Fig. 19.12 Borromean Rings. Cutting
any one strand disconnects the other
two.

(c) [Hard] Consider the link shown in Fig. 19.12 known as the Borromean
rings12 This is an interesting link because no two strands are actually linked

12 The rings are named for the crest of
the royal Borromeo family of Italy, who
rose to fame in the fourteenth century.
However the knot (in the form of three
linking triangles) was popular among
Scandinavian runestones five hundred
years earlier and were known as “Wal-
knot”, or “the knot of the slain.”

with each other, but the three links are still tied together. If you remove any
one strand the remaining two come apart.

Consider starting with S3 and embedding the Borromean rings within the
S3 with “blackboard framing”. Thicken all three strands into solid tori and
perform surgery on each of the three links exactly as we did above. What
manifold do you obtain? Hint 1: Think about the group of topologically
different loops through the manifold starting and ending at the same point,
the so-called “fundamental group” or first homotopy group. (See section 28.3).
Hint 2: If we say a path around the meridian of one of the three Borromean
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rings (i.e., threading though the loop) is called a and the path around the
meridian of the second ring is called b, then notice that the third ring is
topologiclly equivalent to aba−1b−1. Hint 3: In some cases the fundamental
group completely defines the manifold! (Don’t try to prove this, just accept
this as true in this particular case.)





Quantum Error Correction and
The Toric Code 20
We now change subjects a bit towards quantum error correction and the
toric code. While initially the ideas may seem somewhat different from
what we have been discussing, we will see that it is extremely closely
related and brings us to an extremely important application of many of
the ideas we have been discussing.

20.1 Classical Versus Quantum Information

20.1.1 Memories All alone in the moonlight!

Classical Memory

The unit of classical information is a bit — a classical two state system
which can take the values 0 or 1. A memory with N bits can be in any
one of 2N states — each state corresponding to a particular bit-string,
such as 011100111.

Quantum Memory

The unit of quantum information is the quantum bit or qubit2 which is 2Sometimes q-bit, but never cubit.

a quantum two state system — i.e. a two-dimensional complex Hilbert
space spanned by vectors which we usually call |0〉 and |1〉. A qubit can
be in any state

|ψ〉 = α|0〉+ β|1〉

with arbitary complex prefactor α, β (where we normalize wavefunctions
so |α|2 + |β|2 = 1).
A quantum memory with N qubits is a vector within the 2N dimen-

sional complex Hilbert space. So for example, with 2 qubits the general
state of a system is specified by four complex parameters

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉 (20.1)

with the normalization condition |α|2 + |β|2 + |γ|2 + |δ|2 = 1. So to
specify the state of a quantum memory with 2 bits, you have to specify
four complex parameters, rather than, in the classical case just stating
which of the four states the system is in!
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20.1.2 Errors

An error is some process which accidentally changes the state of the
memory away from the intended state. Often we take as an error model
the case where only one bit or one qubit is effected at a time (a “minimal”
error) although more complicated errors can occur.

Classical Error Correction

There is a simple way to correct small errors for a classical memory.
Instead of storing a single bit 0 or 1, instead store multiple copies of the
bit (say, three copies). Here we use three “physical” bits to store one
“logical” bit of information.

logical bit physical bits

0 000
1 111

Table 20.1 Three bit repetition code. Stores a single logical bit of information
using three physical bits.

Our memory should either be in the state 000 or 111 — we call these
two possibilities the code space. If we detect the system being in any
other state of the three bits (i.e., not in the code space) we know an
error has occured. If an error does occurs on one of the physical bits
(i.e,, if one of the bits is accidentally fliped) we can easily find it, because
it would leave our memory with not all of the physical bits being the
same. For example, if our system starts as 000, an error introduced on
the second bit would leave it in the form 010. But then, by just using a
majority-rule correction system, it is easy to figure out what happened
and flip the mistaken bit back. So our error correction protocol would be
to continuously compare all three bits, if they don’t match, switch the
one back which would bring them back to matching. Assuming errors
are rare enough (and only occur on one bit at a time) this scheme is an
effective way to prevent errors. For added protection one can use more
redundant physical bits, such as 5 physical bits or 7 physical bits for a
single logical bit.
One might think the same sort of approach would work in the quantum

world: make several copies of the qubit you want to protect, and then
compare them to see if one has changed. Unfortunately, there are two
big problems with this. The first is the so-called no-cloning theorem —
it is not possible to make a perfect clone of a qubit. The second reason
is that measuring a state inevitably changes it.

Quantum No Cloning Theorem

(Zurek et al 1982). The result is such a straightforward result of quantum
mechanics some people have argued whether it deserves to be called a



20.2 The Toric Code 207

theorem. The statement of the “theorem” is as follows:

Theorem: Given a qubit in an arbitrary unknown state |φ1〉 and another qubit in
an initial state |φ2〉, there does not exist any unitary operator U (i.e., any quantum
mecahnical evolution) such that

U(|φ1〉 ⊗ |φ2〉) = eiχ|φ1〉 ⊗ |φ1〉

for all possible input |φ1〉.

The point here is that we do not have a way to copy |φ1〉 into the
auxiliary qubit |φ2〉.

Proof of Theorem: Suppose we have two states |0〉 and |1〉 which
are properly copied (we allow some arbitrary phase χ in the copying
process).

U(|0〉 ⊗ |φ2〉) = eiχ|0〉 ⊗ |0〉
U(|1〉 ⊗ |φ2〉) = eiχ|1〉 ⊗ |1〉

Quantum mechanical operators are linear so we can try applying this
operator to the linear superposition α|0〉+ β|1〉 and we must get

U([α|0〉+ β|1〉]⊗ |φ2〉) = eiχ(α|0〉 ⊗ |0〉+ β|1〉 ⊗ |1〉)

but this is now not what a putative cloning device must give. Instead a
clone of the bit should have given the outcome

eiχ[α|0〉+ β|1〉]⊗ [α|0〉+ β|1〉]

which is not generally the same result. Thus no cloning device is con-
sistent with the linearity inherent in quantum mechanical evolution.

20.2 The Toric Code

Perhaps the most surprising thing about quantum error correction is
that it is possible at all! This was discovered by Peter Shor in 1995 (and
shortly thereafter by Andrew Steane). We will describe the Toric code
approach to error correction which is potentially the conceptually most
simple error correction scheme, as well as being very possibly the most
practical to implement in real systems3!

3The statement that it is the most
practical is based on the fact that the
so-called surface codes (which is es-
sentially the toric code) has the high-
est known error threshold — meaning
you can successfully correct even highly
faulty qubits with this technique com-
pared to other techniques which require
your qubits to be much closer to perfect
to begin with. To evaluate the quality
of a code one must make reasonable as-
sumptions about how likely a physical
qubit is to fail and compare this to how
quickly one can test for errors and cor-
rect them. NEED CITATION HERE?

As with so many great ideas in this field, the Toric code was invented
by Kitaev (Kitaev 1997).

20.2.1 Toric Code Hilbert Space

We imagine an Nx by Ny square lattice with spins on each edge, where
the edges of the lattice are made periodic hence forming a torus (hence
the name “toric”). The total number of spins is N = 2NxNy and corre-
spondingly the dimension of the Hilbert space is 2N .
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Fig. 20.1 The Hilbert space of the toric code — an Nx by Ny square lattice with
spins (dots) on each edge wrapped up to make it periodic in both directions — i.e.,
a torus. Hence the name. There are 32 spins in this picture so the Hilbert space has
dimension 232.

We will work with a basis in our Hilbert space of up and down spins4.4Caution: In the literature about half
of the world uses the up-down or σz
eigenstates as a basis, and half of the
world uses the σx eigenstates as a basis.

A convenient notation is then to color in the edges containing down spins
but leave uncolored the edges with up spins. See Fig. 20.2.

Fig. 20.2 A particular basis state of the Hilbert space, working in the up-dpwn
basis (z-eigenstates). Here we denote down spins by thick (red) lines. And up spins
are denoted by not coloring in the edges.

Note that it is not crucial that we are working with a square lattice,
or that we are even working on a torus (although it is crucial that the
surface has noncontractable loops). We could work with other types
of lattices — the honeycomb will be useful later. In fact even irregular
lattices (which are not really lattices, since they are irregular, and should
be called ‘graphs’) can be used. However it is a lot easier to continue
the discussion on this simple square-lattice-torus geometry.

20.2.2 Vertex and Plaquette Operators

Let us now define some simple operators on this Hilbert space.
First, given a vertex α which consists of four incident edges i ∈ α, we
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define the vertex operator

Vα =
∏

i∈vertex α
σzi

This operator simply counts the parity of the number of down spins
(number of colored edges) incident on the vertex. It returns +1 if there
are an even number of incident down spins at that vertex and returns −1
if there are an odd number. (And in either case, as is obvious, V 2

α = 1).
This is depicted graphically in Fig. 20.3. Note that there are a total of
NxNy vertex operators.

Fig. 20.3 The vertex operator returns +1 if there are an even number of incident
down spins at that vertex and returns −1 if there are an odd number.

Note that it is possible (and useful) to define a corresponding projec-
tion operator

Ṽα =
1

2
(1− Vα) (20.2)

which has eigenvalues 0 for an even number of incident down spins or 1
for an odd number. This is a projection operator because Ṽα = Ṽ 2

α .
We now define a slightly more complicated operator known as the

plaquette operator. Given a plaquette β which contains four edges in a
square i ∈ β we define

Pβ =
∏

i∈plaquette β
σxi

which flips the state of the spins on all of the edges of the plaquette as
depicted in Fig. 20.4. There are a total of NxNy plaquette operators.
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Fig. 20.4 The plaquette operator flips the state of the spin on the four edges of a
plaquette.

As with the vertex operator, P 2
β = 1 meaning Pβ has eigenvalues +1

and −1. We can similarly define a projector

P̃β =
1

2
(1− Pβ) (20.3)

which satisfies P 2
β = Pβ .

It is a bit more difficult to describe what the eigenstates of the pla-
quette operators are. In the basis we are using, the spin-up/spin-down
basis corresponding to uncolored and colored edges, the Pβ operator is
off-diagonal — it flips spins around a plquette. As such, the 0 eigenstate
of P̃β operator (i.e, the 1 eigenstate of Pβ) is obtained by adding the
state of a plaquette to the flipped state of the plaquette as shown in Fig.
20.5. The orthogonal superposition (adding the two states with a - sign)
will give the other eigenstate.

Fig. 20.5 A linear superposition of
a flipped and unflipped plaquette is a
+1 eigenstate of Pβ or equivalently a 0
eigenstate of P̃β . The -1 eigenstate is
given by the orthogonal superposition,
i..e, the superposition with a - sign be-
tween the two terms.

Operators Commute

I claim all of the plaquette operators and all of the vertex operators
commute with each other. It is obvious that

[Vα, Vα′ ] = 0

since Vα’s are only made of σz operators and all of these commute with
each other. Similarly

[Pβ , Pβ′ ] = 0

since Pβ ’s are made only of σx operators and all of these commute with
each other.
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The nontrivial statement is that

[Vα, Pβ ] = 0

for all α and β. The obvious case is when Vα and Pβ do not share any
edges — then the two operators obviously commute. When they do
share edges, geometrically they must share exactly two edges, in which
case the commutation between each shared σxi and σzi accumulates a
minus sign, and there are exactly two shared edges so that the net sign
accumulated is +1 meaning that the two operators commute.

Is the set of operators complete?

We have NxNy vertex operators and NxNy plaquette operators — all of
these operators commute, and each of these operators has 2 eigenvalues.
This appears to match the fact that there are 2NxNy spins in the system.
So is our set of V and P operators a complete set of operators on this
Hilbert space? (I.e., is it true that describing the eigenvalue of each of
these operators must determine a unique state of the Hilbert space?)
It turns out that the V and P operators do not quite form a complete

set of operators on the Hilbert space. The reason for this is that there
are two constraints on these operators

∏

α

Vα = 1

∏

β

Pβ = 1

To see that these are true, note that each edge occurs in exactly two
operators Vα. Thus when we multiply all the Vα’s together, each σzi
occurs exactly twice, and (σzi )

2 = 1. Thus the product of all the Vα’s is
the identity. The argument is precisely the same for multiplying together
all of the Pβ ’s.
Thus we can freely specify the eigenvalues of (NxNy−1) operators Vα,

but then the value of the one remaining Vα is then fixed by the values
chosen for the other (NxNy − 1) of them. Similarly with the Pβ ’s. So
specifying the eigenvalues of these commuting operators specifies only
2(NxNy−1) degrees of freedom, and since we started with 2NxNy spins,
we still have 2 degrees of freedom remaining. These two degrees of
freedom are going to be two error protected qubits in this scheme for
building a quantum error correcting code.
Note that this result, of having two degrees of freedom that remain

unspecified by the plaquette and vertex opertaors, is not unique to hav-
ing used a square lattice (we can use triangular lattice, honeycomb, or
even irregular grids), but depends only on having used a torus. If we use
a g-handled torus we will have 2g degrees of freedom (i.e., 2g qubits)
remaining. To see this we use the famous Euler characteristic. For
any decompositon of an orientable 2-manifold into a grid, we have the
formula

2−2g = (Number of Vertices)−(Number of Edges)+(Number of Faces)
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where g is the number of handles on the manifold. Since there is one
spin on each edge we have

Number of Vertex Ops + Number of Plaquette Ops− 2 + 2g

= Number of Spins

We can read this as follows. The right hand side is the total number of
degrees of freedom. On the left we can specify all the eigenvalues of the
vertex and plaquette operators, then there are 2 constraints, so subtract
two, and this leaves us with 2g unspecified degrees of freedom.

20.2.3 Building the code space

We are going to state two rules for constructing our code. We are imag-
ining here that we have a great deal of control over the spins (the mi-
croscopic qubits) making up our system and we can impose these rules
by fiat.

Rule 1: Specify that Vα = 1 for every vertex (or equivalently Ṽα =
0.).

This assures that there are an even number of down spins (red lines)
incident on every vertex. It is easy to see that this can be interpreted
as a constraint that one must consider only loop configurations of these
red lines. There can be no ends of lines, and no branching of lines. See,
for example, fig. 20.6

Fig. 20.6 A loop configuration consis-
tent with the constraint that Vα = 1 on
every vertex. There must be an even
number of red lines incident on every
vertex.

The idea of an error correcting code is that once we construct our
code, we will have some way to check that this Rule 1 is satisfied and if
it is not satisfied we should have some way to fix it without destroying
our encoded quantum information.

Rule 2: Specify that Pβ = 1 for every plaquette (or equivalently
P̃β = 0.).

As mentioned above in Fig. 20.5 this assures that every plaquette is
in an equal superpositon of flipped and unflipped states with a plus sign
between the two pieces. Note in particular that, because the Pβ and Vα
operators commute, the action of flipping a plaquette will not ruin the
fact that Rule 1 is satisfied (that is, that we are in a loop configuration).
The quantities Vα and Pβ are known as the stabiizers of the code —

they are meant to stay constant and are checked for any errors which
are indicated by the fact that their value has changed.
We thus have the following prescription for constructing a wavefucn-

tion that satisfies both Rule 1 and Rule 2: First start in any state of
spins up and spins down which satisfies rule 1, i.e., is a loop configura-
tion. Then add to this in a superposition every configuration that can
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be obtained by flipping plaquettes. We thus have

|ψ〉 =
∑

all loop configs that can
be obtained by flipping pla-
quettes from a reference
loop config

|loop config〉 (20.4)

By adding up all such configurations, we assure that every plaquette is
in the correct superpositon of flipped and upflipped and we satisfy Rule
2.
The key queston is whether one can obtain all loop configurations

by starting in a referecnce configuratation and flipping plaquettes. The
answer is that you cannot: Flipping plaquettes never changes the parity
of the number of loops running around the handle. To see this, try
making a cut around a handle of the torus, as shown in Fig. 20.7. If one
flips a plaquette (blue in the fig) along this cut (green inn the fig), it
does not change the parity of the number of red bonds that the cut goes
through. Thus there are four independent wavefunctions of the form

Fig. 20.7 Making a cut around one of
the handles of torus, one can see that
flipping a plaqutte, such as the blue
one, does not change the parity of the
number of red bonds cutting the green
line. Further, it does not matter where
(at which y-coordinate) the green cut is
made, the number of red bonds it cuts
is always even.

of Eq. 20.4, which are different in whether the reference configuration
has an even or an odd number of red bonds going around each handle.
All of these states satisfy the constraints rules that all Vα = 1 and all
Pβ = 1 . We will call these states

|ψee〉 |ψeo〉 |ψoe〉 |ψoo〉
where e and o stand for an even or an odd number of red lines going
around a given handle. So for example, we have

|ψee〉 =
∑

all loop configs that have
an even number of red
bonds around both handles

|loop config〉

Or graphically, we have Fig. 20.8

Fig. 20.8 Graphical depiction of |ψee〉 which has an even number of strings running
around each handle, and |ψeo〉 which is even around the first handle odd around the
second.
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The most general wavefunction we can write that satisfies the two
above rules, that all Vα = 1 and all Pβ = 1 is thus of the form

|ψ〉 = Aee|ψee〉+Aeo|ψeo〉+Aoe|ψoe〉+Aoo|ψoo〉 (20.5)

for arbitrary coefficients Aee, Aeo, Aoe, Aoo. It is these coefficients which
are the two qubits of quantum information that we are trying to protect
with this coding scheme (exactly like Eq. 20.1). We will refer to wave-
functions of the form of Eq. 20.5 as the “code-space”. We refer to these
two bits as being the ”logical” qubits – the information we are trying to
protect. The underlying spins on the lattice that make up the code are
sometimes called the ”physical” qubits.
Note that in order to turn the |ψee〉 wavefunction into the |ψeo〉 we

need to insert a single loop around a handle — this involves flipping
an entire row of spins at once. If one were to try to flip only some
of these spins, we would have an incomplete loop — or an endpoint –
which violates the rule that Vα = 1 for all vertex sites — i.e, not in the
code-space. It is this fact that allows us to test for errors and correct
them efficiently, as we shall see.

20.3 Errors and Error Correction

Let us now turn to study possible errors in more detail. What does an er-
ror look like in this system? Imagine a demon arrives and, unbeknownst
to us, applies an operator to one of the spins in the system.

20.3.1 σx errors

Let us first consider the case where that operator happens to be a σx

on bond i. This operator commutes with all the plaquette operators
Pβ but anticommutes with the vertex operators Vα which intersect that
bond. This means, if we start in the code space (all Vα = +1), and
apply this error operator σxi , we then end up in a situation where the
the two vertices attached to the bond i are now in the wrong eigenstate
Vα = −1. To see this more clearly starting in the original state |ψ〉 we
have

Vα|ψ〉 = |ψ〉
meaning we start in the +1 eigenstate, now apply the error operator σxi
to both sides

σxi |ψ〉 = σxVα|ψ〉 = −Vασxi |ψ〉
or

Vα[σ
x
i |ψ〉] = −[σxi |ψ〉]

showing we end up in the −1 eigenstate of the vertex operator.
To show these errors graphically we will no longer draw the up and

down spins (the red bonds) but instead we just draw the σx operator as
a blue line, and the vertices which are in the −1 eigenstate as a red X
as shown in Fig. 20.9.

Fig. 20.9 A σx operator applied to the
bond creates two vertices in the Vα =
−1 eigenstate.
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So it is clear what our error correction protocol must do. It must
frequently measure the state of the Vα operators, and if it finds a pair
in the V = −1 state, we know that a σx has been applied on the inter-
vening bond. Once we have identified the error it is easy to correct it by
applying σx on the same bond, thus returning the system to its original
state and to the code space.
Now suppose that the demon is very fast and manages to make several

such errors very quickly. If these errors are well separated from each
other, we will easily find multiple pairs of vertices in the V = −1 state,
with the pair separated from each other by one bond distance. These
can similarly be caught by our correction scheme and repaired, returing
us to the code space again.
However, it could be the case that two errors are on bonds that share

a vertex , as shown on the left of Fig. 20.10, the vertex that is shared
gets hit by σx twice and is thus in the V = +1 state. Only the two
vertices at the end of the ”string” are in the V = −1 state and are then
detectable as errors.

Fig. 20.10 Left: When two σx errors are made on bonds that share a vertex, the
shared vertex is hit with σxi twice, and thus becomes V = +1 again. Only the two
vertices at the end of the ”string” are in the V = −1 state. Middle: A longer string
of errors. Note that we can only measure the endpoints of the string, not where the
errors were made, so we cannot tell if the error string goes down two steps then two
steps to the right, or if goes two steps to the right then down two steps. Right

If we detect the errors as in the middle panel and we try to correct it by dragging
the errors back together, but we choose the incorrect path for the string, we end up
making a closed loop of σx operators – which acts as the identity on the code space,
so we still successfully correct the error!

Nonetheless, the error correction scheme is still fairly straightforward.
One frequently checks the state of all the vertices and when V = −1
is found, one tries to find the closest other error to pair it with – and
then apply σx operators to correct these errors (you can think of this
as dragging the errors back together and annihilating them with each
other again).
It is important to realize that we cannot see the error operators (which

we have drawn as a blue string) themselves by making measurements on
the system – we can only detect the endpoints of string, the vertices
where V = −1. For example, in the middle panel of figure 20.10 we
cannot tell if the error string goes down two step and then to the right,
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or if it goes to the right one step and then down two steps. We only
know where the endpoints of the string are.
Now if we detect the two errors in the middle panel of Fig. 20.10,

we may try to correct these errors by guessing where the blue string is
and applying σx along this path to bring the endpoints back together
and reannihilate them. However, it is possible we guess incorrectly as
shown in the right panel of Fig. 20.10. In this case we will have ended
up producing a closed loop of σx operators applied to the original state.
However, a product of σx operators around a closed loop is precisely
equal to the product of the plaquette operators Pβ enclosed in the loop.
Since the code space is defined such that all of hte plaquettes operators
are in the +1 eigenstate, this loop of σx acts as the identity on the code
space, and we still successfully correct the error.
On the other hand, if a loop of errors occurs which extends around

a handle , and the V = −1 errors annihilate again (think of this as
dragging the error all the way around the handle and re-annihilating it
again) then, although we return to the code-space (there are no V = −1
vertices) we have changed the parity of the number of down spins around
a handle thus scrambling the quantum information and make an error
in the logical bits. In fact what we get in this case is the transform that
switches the even and odd sectors around one handle :

Aee|ψee〉+Aeo|ψeo〉+Aoe|ψoe〉+Aoo|ψoo〉 −→
Aoe|ψee〉+Aoo|ψeo〉+Aee|ψoe〉+Aeo|ψoo〉

However, the general idea of the toric code is that by having a very
large torus, it requires a very large number of errors to make this loop
around the handle and actually scramble the quantum information (the
logical qubits). If we are continuously checking for V = −1 errors we
can presumably correct these errors before a logical error can arise.

20.3.2 σz errors

We can also consider what happens if the error is not a σx operator
applied to the system, but rather a σz operator. Much of the argument
in this case is similar to that above.
Since the σz operator on an edge anticommutes with the two neigh-

boring plaquettes Pβ which share that edge, the resulting state will have
Pβ = −1 for these two plaquettes as shown on the left of Fig. 20.11. Re-
call that this eigenstate of the plaquette operator is a superposition of
the flipped and unflipped plquettes similar to that shown in Fig. 20.5
but with a minus sign between the two terms.
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Fig. 20.11 Left: When a σz error is applied to a bond, the plaquettes on either side
end up in the P = −1 state Middle: A string of several σz errors. Right A closed
loop of σz errors. This is equal to the product of all of the enclosed Vα operators.
In the code space, this is equal to +1.

Analogous to the above discussion, our σz error correction proto-
col should frequently check for pairs of neighboring plaquettes where
Pβ = −1 and if these are found the protocol should correct the error by
applying σz to the intervening edge. As above, if several σz errors are
created, they can form a string, as shown as blue bonds in the middle of
Fig. 20.11. As above, one is not able to actually detect the string, but
can only see the endpoints as plaquettes where P = −1. Analogous to
the above case, if from errors, or from an attempt to correct errors, the
σz error string forms a closed loop as in the right of Fig. 20.11, this loop
of σz operators is equal to the product of the enclosed Vα operators.
Since within the code space, Vα = 1, a closed loop returns the system
its original state. Another way of seeing this is to think in terms of the
red loops of down spins discussed above. The σz operators register −1
each time they intersect a red loop. On the other hand the red loops
must be closed so the number of intersections between a red loop and a
dlow3e loop of the blue σz error string in the figure must be even (since
a red loop going into the region surrounded by the string must also come
out), thus forcing the product of the blue σz operators to have a value
of 1.
On the other hand, if the loop of σz operators goes all the way around

the handle, it then scrambles the logical qubits. In particular, one can
see that if there is a string of σz going all the way around a handle as
shown as the blue bonds in Fig. 20.12, this operator then counts the
parity of the number of red bonds going around the dual handle, as
shown in the figure. Thus, applying the string of σz operators around

Fig. 20.12 If a string of σz goes
around a handle, it measures the par-
ity of the number of red strings going
around the dual handle.

the handle makes the transformation

Aee|ψee〉+Aeo|ψeo〉+Aoe|ψoe〉+Aoo|ψoo〉 −→
Aee|ψee〉+Aeo|ψeo〉 −Aoe|ψoe〉 −Aoo|ψoo〉

20.3.3 σy errors

A basis for a complete set of operators applied to a single spin is given
by σx, σy, and σz (as well as the identity). We have discussed errors
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created by σx and σz , but what about σy . Here we simply use the fact
that

σy = iσxσz

So if we have an error correction protocol that removes both σx and σz

errors, being that the two procedures don’t interfere with each other, we
will automatically correct σy errors in the process!

20.3.4 More Comments on Errors

(1) A key point to take away here is that the only process which can
cause logical erorrs is if an error string goes all the way around one of the
handles. Further (and this is a related statement) the only operator that
can distinguish the different elements of the code space from each other
are string operators that go all the way around the handles. The latter
(related) statement is qutie necessary, since being able to distinguish the
different wavefunctions from each other is equivalent to causing an error
since it amounts to a measurement of the logical bits.
(2) As mentioned above, the toric code as a method of storing quantum
information is considered the “best” quantum error correcting code. We
define the quality of a code as follows: We define a time unit as the
amount of time it takes us to make a measurement of a quantity such as
Vα or Pβ . Then we assume there is some rate of errors being introduced
to the underlying physical bits (the spins) per time unit. Given these
parameters, the toric code is able to reliably correct the largest possible
error rate per time unit of any known quantum error correcting code.
(CITE)
(3) While we have introduced the toric code on a torus (hence the name)
so that it stores 2 logical qubits of information, as mentioned above, if
we go to a higher genus surface (either a closed manifold with handles,
or a surface with holes cut in it) we can store 2g qubits where g is the
genus of the surface.

20.4 Toric Code as Topological Matter

We have introduced the toric code as a way to store quantum infor-
mation — being stabilized by an error correction protocol that actively
checks the value of the vertex and plaquette operators. However, it is
quite easy to convert this story to a a realization of topologically or-
dered quantum matter — a physical system that is described at low
temperature and long wavelength by a topological quantum field theory.
In this case the physical system will be stabilized by the existence of an
energy gap to excitations and the fact that our system will be kept at
low temperature.
To recast the toric code as topologically ordered matter, we simply

write a Hamiltonian which is a sum of commuting operators

H = −
∑

vertices α

Vα −
∑

plaquettes β

Pβ (20.6)
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Here we have set the energy unit to unity. The Hamiltonian is made
of a sum of commuting projectors with eigenvalues ±1 so the ground
state space is described by simply setting all of the Vα = 1 and Pβ = 1.
I.e., the ground state space is exactly the code space. There will be a
four-fold degenerate ground state corresponding to the four orthogonal
wavefunctions in the code space. If Vα = −1 or Pβ = −1 this corresponds
to a particle excited out of the ground state.
It is sometimes more convenient to work with the projectors Ṽα and

P̃β defined by Eqs. 20.2 and 20.3. Writing

H̃ =
∑

vertices α

Ṽα +
∑

plaquettes β

P̃β (20.7)

which differs from Eq. 20.6 only be a factor of 2 and an overall constant.
The advantage of H̃ is that it is a sum of commuting projection oper-
ators. This is often convenient because it means that the ground state
has energy 0 and each excitatation has unit energy.

20.4.1 Excitations

The types of particle-excitations we can have are given as follows:
(1) We can have a vertex where Vα = −1 instead of Vα = +1. We call

this an “electric particle” which we write as e.
(2) We can have a plaquette where Pβ = −1 instead of Pβ = +1. We

call this a “magnetic particle” which we write as m.
The nomenclature for these particles due to a relationship with lattice

gauge theories which we will discuss below.
Since vertex defects e’s are produced in pairs, and can be brought

back together and annihilted in pairs, we know we must have

e × e = I

Similarly since plaquette defects m are produced in pairs, and can be
brought back together and annihilated in pairs we must also have

m×m = I

We might then wonder what happens if we bring together a vertex and a
plaquette defect. They certainly do not annihilate, so we define another
particle type, called f , which is the fusion of the two

e×m = f

We then have
f × f = I

which we can see by associativity and commutativity

f × f = (e ×m)× (e ×m) = (e× e)× (m×m) = I × I = I

These are the only particle types there are. Note that they form a closed
set under the fusion rules. There are no non-abelian fusions here so we
assume we have an abelian model of some sort.
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Note that there are exactly four particle types (including the identity),
and there are exactly four ground states!
The full fusion relations are given by the table in Fig. ??.

× I e m f

I I e m f
e e I f m
m m f I e
f f m e I

Fig. 20.13 Fusion Table for the Toric
Code

20.4.2 Braiding Properties

e is a boson

Let us first consider the e particles. These are both created and moved
around by applying σx operators. All of the σx operators commute with
each other, so there should be no difference in what order we create,
move, and annihilate the e particles. This necessarily implies that the
e particles are bosons. There are several ”experiments” we can do to
sow this fact. For example, we can create a pair of e’s move one around
in a circle and reannihilate, then compare this to what happens if we
put another e inside the loop before the experiment. We see that the
presence of another e inside the loop does not alter the phase of moving
the e around in a circle5.

5The experiment just described, while quite clear only tells us that e is either a boson
or a fermion (since a fermion taken in a loop all the way around another fermion also
accumulates no phase since it is equivalent to two exchanges).
To determine the phase of an exchange, we are going to attempt to do a twist in a
world line as in Fig. 2.6 or 17.1. Considering Fig. 20.14

Fig. 20.14 Vertices are labeled with letters and bonds are labeled with numbers.

Now suppose there is initially an e particle at position a. One experiment we can
do is to apply (reading right to left) σx1σ

x
7σ

x
6σ

x
5σ

x
4σ

x
3σ

x
2σ

x
1 . This just moves the

particle starting at a around in a loop (reading right to left abgfedcba) and brings
it back to the original position. We can compare this to the following operations
σx1σ

x
2σ

x
1σ

x
7σ

x
6σ

x
5σ

x
4σ

x
3 . This instead creates a pair of e particles at positons c and d,

moves the particle at d in a loop (bgfe) around c and anihilates it with the particle
at a, then finally moves the particle from e to replace the particle initially at a. This
process is precisely the twist factor process from Fig. 2.6 or 17.1. However, since the
σx operators all commute, it must also be equal to the previously described process
which just moves one particle around in a loop without introducing any twist. Hence
we conclude that the e particle is a boson.



20.4 Toric Code as Topological Matter 221

m is a boson

Entirely analogously we can argue that m is also a boson. m is both
created and moved by the σz operator and all of these operators com-
mute with each other. The exact same argument (here without detail)
shows us that m must be a boson.

Braiding e and m

Here is where it gets interesting. Suppose we create an e particle and
move it around in a circle then reannihilate. This is exactly the process
shown in the right panel of Fig. 20.10 and is the product of a string of
σx operators. Recall that the reason this process does not accumulate a
phase is because the string of σx operators around the loop is equivalent
to the product of the Pβ plaquette operators enclosed — and in the
ground state, the Pβ operators are in the +1 state. However, if there is
one m particle inside the loop, this means that one of the Pβ operators
is actually in the −1 state. In this case the phase of taking the e particle
around in a loop is actually −1. So there is a phase of -1 for taking e
around m.
We can check that it is precisely equivalent if we take an m particle

around an e. Taking an m around in a loop is the process shown on the
right of Fig. 20.11 and is the product of a string of σz operators. Recall
that the reason this process does not accumulate a phase is because the
string of σz operators around the loop is equivalent to the product of
the Vα vertex operators enclosed — and in the ground state, the Vα
operators are in the +1 state. However, if there is one e particle inside
the loop, this means that one of the Vα operators is actually in the −1
state. In this case the phase of taking the m particle around in a loop
is actually −1. So there is a phase of -1 for taking m around e.

Properties of f , the fermion

Since f is made up of an m bound to an e, it is easy to see that taking
e around f accumulates a phase of -1 and taking m around f also accu-
mulates a phsae of -1. More interesting is the properties of a single f .
We claim that f is a fermion. The easiest way to see this is to check its
phase under a twist as shown in Fig. 20.15

Fig. 20.15 The f = e×m particle is a fermion, since e braiding around m gives a
-1 sign.
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Note that taking f all the way around f will result in a net + sign.

20.4.3 Modular S-matrix

We can summarize these findings with a modular Sij matrix, which lists
the braiding result obtained by taking particle i around particle j as
shown in Fig.7.13. Listing the particles in the order I, e,m, f we can
write S as in

S =
1

D




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




where unitarity fixes the total quantum dimension D = 2.

20.4.4 Flux Binding Description

We can describe the physics of the toric code phase in a flux binding
description somewhat analogous to Chern-Simons theory. Here let us
define

electric particle = e = particle bound to 1 unit of electric charge

magnetic particle = m = particle bound to π units of magnetic flux

fermion = f = particle bound to 1 unit of electric charge and π units
of magnetic flux

It is easy to see that this charge and flux will correctly give the +1
and -1 phases accumulated from braiding particles.

20.5 Robustness of the Toric Code Phase of
Matter – Example of Topologically

Ordered Matter

The excitation gap in of the toric code “protects” it from small pertur-
bations and changes in the Hamiltonian. Indeed, the phase is “robust”
against any small variations in the details of the Hamiltonian. To see
this, let us suppose we have

H = Htoric code + λδH

where H is the toric code Hamiltonian defined above, and δH is some
arbitrary Hamiltonian (with local terms only) and λ is some small pa-
rameter. The claim is that for small enough λ, the topological properties
of the phase of matter (such as the 4-fold degenerate ground state, and
the exitations with their braiding statistics) will remain unchanged.
The easiest fact that we can test is that the four ground states remain

robust and unmixed by the perturbation. To see this, let us pick some
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particular form for the δH such as a sum of σx on all edges

δH =
∑

i

σxi

(we will realize that the actual form we choose won’t matter for the
argument we make here). Now let us treat δH in perturbation the-
ory. In the absence of the perturbation, we have four ground states
|ψee〉, |ψeo〉, |ψoe〉, |ψoo〉. Then if we add the perturbation order by or-
der to one of these ground states, qualitatively we obtain6 6This is a Brillouin-Wigner perturba-

tion theory, where successive terms are
rigorously λ/∆ smaller.|ψ̃〉 = |ψ〉+ (GδH)|ψ〉+ (GδH)2|ψ〉+ . . .

and the energy modified by the perturbing Hamiltonian is then

E = 〈ψ̃|Htoric + δH |ψ̃〉

where here G is the greens function, which includes an energy denomi-
nator at least as big as the excitation gap ∆, so that successive terms in
the expansion are smaller by order λ/∆. The point here is that at M th

order in perturbation theory, we can only generate wavefunctions that
differ from the original ground state by M applications of δH . Now re-
call that one cannot even distinguish the ground state sectors from each
other unless one has a string operator that wraps all the way around the
torus. Thus, the result of this calculation is identical for the four ground
states out to very high order of perturbation theory, and any splitting
of the four ground state sectors (or any mixing of the sectors) will be
suppressed exponentially as (λ/∆)L which can be made arbitrarily small
for a big system. It is clear that this general argument is not specific to
the particular form of δH we have chosen.
One can go further and ask what happens to the excited particles

when a perturbation is applied to the system. Similarly, we can per-
form a perturbation series. Here what happens is that the particles —
which started as point defects — develop a nonzero length scale. As
one moves a distance x further away from the particle, the influence of
the presence of that particle decays as (λ/∆)x. Again, if λ is small,
then from a sufficiently far distance away, the particle again looks like a
point. In particular, if one particle is braided around another at a suf-
ficient distance away, it accumulates the expected phase that the pure
toric code would have predicted. There are several strong arguments for
this. First, we can explicitly write an expression for the braiding phase
and show that the corrections do indeed drop exponentially by exactly
the same arguments. Secondly, we recall the idea of rigidity presented
in section 17.4 — it is not possible that the braiding phases in a theory
change an arbitrarily small amount.

20.6 The Notion of Topological Order

The type of protection from small perturbations that we have just dis-
covered is the basis for a very useful definition of topological order. A
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topologically ordered system will have multiple degenerate ground states
when put on a surface with nonzero genus (i.e., a a torus, or a system
with a hole cut in it) which we call |ψα〉. To have topological order we
should expect

〈ψi|any local operator|ψj〉 = Cδij

where C depends on the particular operator and there may be corrections
that are only exponentially small in the size of the system. In other
words, the multiple ground states locally look just like each other, but
are mutually orthogonal.



Kitaev’s Generalized Toric Code:
The Quantum Double of a
Group — Lattice Gauge Theory 21
Kitaev constructed an ingenious way to build a topological model from
an arbitrary group G on a lattice. This is very much the generalization
of the toric code, except that instead of using simple spins on edges,
we give the edges values of elements of the group. The construction is
based on lattice gauge theory, and will include the toric code as a simple
example, where the group is Z2, the group with two elements1.

1I present this model on the “dual”
graph compared to Kitaev’s presenta-
tion.

We begin by defining a graph (which could be a regular lattice, or
could be disordered). We define an orientation to each edge as an arrow
as given in Fig. 21.1

Fig. 21.1 Part of a directed graph.

We choose a group G with group elements g ∈ G. The Hilbert space
is defined by labeling edges with the group elements g. Inverting the
arrow on an edge has the effect of inverting the group element g → g−1

as shown in Fig. 21.2.

Fig. 21.2 Inverting the direction on
an edge inverts the group element.

We now define a vertex operator Vα for a vertex α with all arrows
pointed in as a projector which enforces that the product of group el-
ements around the vertex to be the identity e, as shown in Fig. 21.3.
This is the string-net vertex fusion rule.2

2Note that if we have three edges com-
ing into a vertex labeled g1, g2, g3 the
condition g1g2g3 = e is equivalent to
g2g3g1 = e and g3g1g2 = e.

Fig. 21.3 Definition of Vα when all arrows are directed into the vertex (if a vertex
is directed out, one can invert the arrow and invert the group element). The vertex
operator gives zero unless the product of group elements around the plaquette gives
the identity element e

We can then define a plaquette operator Pβ(h) to premultiply the
(clockwise orientied) group elements around a plaquette β by the group
element h, as shown in Fig. 21.4.
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Fig. 21.4 The plaquette operator Pβ(h) premultiplies all of the clockwise oriented
bonds by the element h.

The total plaquette operator (the one that will enter the Hamiltonian)
is then defined to be

Pβ =
∑

g∈G
Pβ(g)

It is easy to see that the plaquette operator and the vertex operator
commute.

Relation to toric code

How does this related to the toric code? Consider the group Z2 of two
elements where we write the two elements as {1,−1}. We can think of
these as being spin up and spin down on the lattice. Since g = g−1 for
every element we don’t need to put arrows on the lattice.

Pβ(1) = identity operator

Pβ(−1) = multiply all edges by -1. (i.e. flip all edges)

and we have
Pβ = Pβ(1) + Pβ(−1)

whereas the vertex operator is given by

Vα =

{
1 if an even number of edges are spin down
0 if an odd number

we see that (up to the constants being added which are not interesting)
these are simply the toric code vertex and plaquette operators.
Working with abelian groups, this new toric code is a fairly straightfor-

ward generalization of the toric code we have already studied. However,
the generalization to nonabelian groups is more nontrivial, and requires
some amount of group theory to understand. The resulting TQFT is
known as the quantum double (or Drinfeld double) of the group. The
particles types of the TQFT are given by (C, χ) where C is a conju-
gacy class and χ is an irreducible representation of the centralizer of the
conjugacy class3. Generically one will have nonabelian anyons. I will

3Two elements g and h of a group are

called conjugate if g = uhu−1 for some
u in the group. A conjugacy class is
a set of elements of a group that are
all conjugate to each other. A group is
naturally partitioned into nonintersect-
ing conjugacy classes. A centralizer of
an element g is the set of all elements
of the group u that commute with it
ug = gu. not go through this argument in detail. See Kitaev for more. (Also cite

Propitius)
This model by Kitaev is essentially a lattice gauge theory. Essen-

tially the wavefunction is given by a unique state plus everything that
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is “gauge equivalent” (meaning can be obtained by plaquette flips). Let
us think in terms of the dual lattice for a moment (so plaquettes become
dual-vertices and vertices become dual-plaquettes). The sum over group
elements of Pβ(h) enforces gauge invariance of the theory at the dual
vertices. The vertex operator Vα then assures there is no magnetic flux
penetrating the dual plaquette.

21.0.1 ZN toric code

The generalization of the toric code to theories built on the group ZN

(group of integers under addition modulo n) is rather straightforward,
and also results in an abelian TQFT. The electric and magentic particles
then have ZN fusion rules instead of Z2 as in the toric code. We can
think of this still as being a string net — with the new string net fusion
rules at the vertex being now given by the structure of the group G.
Merge these
Perhaps the most simple generalization of the toric code is the ZN

toric code. Here each edge of the lattice is labeled with an element of
the group ZN , i.e., an integer modulo N with the group operation of
addition. It is easy to work out that one obtains a correpsonding ZN

electric charge at the vertices and ZN magnetic charge on the plaquettes.
Let us call the elementary electric charge e, and the elmentary magnetic
charge m. These have the property that eN = mN = I. We then have
N2 particle types that we can label as

(i, j) = ei ×mj

with i and j being chosen from 0, . . . (N − 1), with the fusion rules
corresponding to just addition of the i and j indices modulo N . The e
and m particles again are bosons (they braid trivially with themselves).
However, as in the Z2 case braiding an e around an m is nontrivial4: 4One might wonder where we have bro-

ken time reversal to get a complex
phase. In fact we have not broken time
reversal — however, we did have to
make a choice as to which particle we
would call e. If we had chosen the par-
ticle eN−1 = e−1 instead to be the el-
ementary particle, the phase would be
reversed.

here it gives a phase of e2πi/N .

21.1 Ground State Degeneracy in the General

Nonabelian Case

While the full particle spectrum for the Quantum Double of a nonabelian
group is tricky to calculate, it is not too difficult to calculate the ground
state degeneracy on a torus (and hence determine the number of anyons
in the theory). Here we use to our advantage that we can use any lattice
we like to cover the torus, so we might as well choose a simple one like
that shown in Fig. 21.5. In that lattice covering of the torus, there are
two vertices, and the vertex operator then requires that abc = I and
a−1b−1c−1 = I. This then implies that

ab = ba = c−1

and in particlular a and b must commute.
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a
b

bc c

Fig. 21.5 The simplest possible decomposition of a torus into a single plaquette with
three edges and two trivalent vertices. Here the dotted lines are periodic boundary
conditions on the torus. The edges are labeled with particle types. The vertex
conditions require abc = I and a−1b−1c−1 = I.

g

Fig. 21.6 The simplest possible decomposition of a torus into a single plaquette with
three edges and two trivalent vertices. Here the dotted lines are periodic boundary
conditions on the torus. The edges are labeled with particle types. The vertex
conditions require abc = I and a−1b−1c−1 = I.
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Now let us think about the plaquette operator. In this lattice three is
only a single
Use Burnsides lemma (otherwsie known as the lemma not by Burn-

sides)





More Generalizing The Toric
Code: Loop Gases and String
Nets 22
The general ideas presented with the toric code can be further gener-
alized topologically ordered phases of matter. They key generalizations
were made by Levin and Wen. Also we will discuss in some of the lan-
guage of the work of Freedman et al. And for the doubled fibonacci
model, Fidkowski et al.
A key idea is that the underlying lattice is not very crucial to the

details of the toric code. Indeed, we can write the toric code on any
lattice structure and even on an irregular lattice, so it is often useful to
dispense with the lattice altogether. This simplifies a lot of the thinking
and allows us to generalize the model fairly simply. In fact it will allow us
to manipulate our loop gas using the same sort of diagrammatic algebra
we have been using all along! If we want to put the model back on a
lattice at the end of the day, we can do this (we show an example in the
double semion model) although it can start to look a bit more ugly.

22.1 Toric Code Loop Gas

We start by abstracting the toric code to simply a gas of fluctuating
non-intersecting loops — no longer paying attention to a lattice. An
example of a loop gas configuration is shown in Fig. 22.1 Note, since

Fig. 22.1 A loop gas in 2d. We can
think of this as particle world-lines in
1+1 d.

this is in 2d, there are no over and under crossings — we can think about
this picture as being some sort of world-lines for particles in 1+1d.
We can write the toric code wavefunction in the form of

|ψ〉 =
∑

all loop configs that can be
obtained from a reference
loop config

|loop config〉 (22.1)

Where the types of “moves” one can make are similar to the diagram-
matic moves we have been discussing for world lines in 2+1 d previously.
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Move 1: ”Isotopy” = smooth deformation of a loop. As shown in
Fig. 22.2. We have always allowed smooth deformations in our diagram-
mmatic algebras.

Fig. 22.2 Isotopy (Top) Off the lattice this is just deformation of a line. (Bottom)
on the lattice, this is implemented by flipping over the blue plaquettes.

Move 2: ”Adding or removing a loop”. As shown in Fig. 22.3

Fig. 22.3 Adding or Removing a loop (Top) Off the lattice (Bottom) On the
lattice we flip the shown plaquettes.
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Move 3: ”Surgery” or reconnection of loops. As shown in Fig. 22.4

Fig. 22.4 Loop Surgery (Top) Off lattice surgery (Bottom) On lattice, flip the
shown plaquettes

We can summarize these rules with simple skein-like relations as shown
in Fig. 22.5

Fig. 22.5 ”Skein” relations for the toric-code loop gas. The unity on the right of the
top line means that the amplitude in the superposition that forms the wavefunciton
is unchanged (multiplied by unity) under removal or addition of a loop.

The ground state obviously decomposes into four sectors on a torus
depending on the parity of the number of loops going around the handles
of the torus.
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22.1.1 Excitations of the Loop Gas

An end of a string in a loop gas corresponds to some sort of excitation
(like a vertex excitation on the lattice). However, on the lattice, the
vertex excitation could be either e or f , so how do we distinguish these
off the lattice?
First we note that the string can end in many ways as shown in

Fig. 22.6.

Fig. 22.6 Ends of strings can be wrapped either way, and multiple times. a and b
are different, c is equivalent to b by surgery. Similarly d and e are both the equivalent
to a.

However, it turns out, due to the surgery rule, that there are actually
only two inequivalent endings, a, and b from this list. To see this

Fig. 22.7 Loop equivalences. Surgery is done inside the light green circles. The
final equality on the lower right is just pulling the string tight.

We now attempt to figure out the nature of these excitations by ap-
plying the twist operator θ̂ which rotates the excitation by 2π. This
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rotation wraps an untwisted particle’s string into a loop as shown in
Fig. 22.8

Fig. 22.8 Rotation

From these relations we can determine that the eigenvalues of the
rotation operator are +1, correpsonding to the e particle and −1 corre-
sponing to the f particle, as shown in Fig. 22.9.

Fig. 22.9 The eigenvectors of the rotation operator θ̂

Thus, the electric particle is the superposition of a straight line and a
twisted line. This may seem surprising, because on the lattice it seems
that we can make a pair of e particles flipping a single bond, which might
seem like just a straight line between the two endpoints. However, we
must also consider the possibility that the endpoint is surrounded by a
loop when the defect line is created!
The magnetic particle m can be constructed by fusing together e× f .

The result should be the same as our prior definition of the magnetic par-
ticle. Recall that the ground state should be a superposition of no-loop
and loop (with a positive sign). This is what we learned from considering
a plaquette operator to be a minimal loop. If we take a superposition
with a minus sign, we get something orthogonal to the ground state,
which should be the magnetic particle, as shown in Fig. 22.10.
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Fig. 22.10 The black disk is some region of our model. Forming a superposition
of this region, and this region with a loop around it, with a minus sign between the
two pieces, must be orthogonal to the ground state — it puts a magnetic excitation
m in the region.

22.2 The Double Semion Loop Gas

A rather minor modification of the skein rules for the loop gas results
in a somewhat different topological phase of matter. Consider changing
the rules so that each loop removal/addition, and each surgery, incurs
a minus sign. Note that these two minus signs are consistent with each
other because each surgery changes the parity of the number of loops in
the system.

Fig. 22.11 ”Skein” relations for the double-semion loop gas. Each loop re-
moval/addition and each surgery incurs a minus sign. Note that these are the same
as the Kauffman rules when we considered semions.

Note that these rules were precisely the skein rules we used for the
Kauffman invariant when we considered semions!
From these rules we expect wavefunctions of the form

|ψ〉 =
∑

all loop configs that can be
obtained from a reference
loop config

(−1)Number of Loops|loop config〉

(22.2)
We can think of the prefactor (−1) to the number of loops, as being the
wavefunction written in the basis of loop configurations.
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As with the toric code, there should be four ground states on the torus
corresponding to the different possible parities around the two handles.

22.2.1 Microscopic Model of Doubled Semions

We now turn to try to build a microscopic hamiltonian for the doubled
semion loop gas. First, however, we realize that there is a problem with
constructing this on a square lattice. When four red lines touch at a
corner we cannot tell if we have a single loop or two loops (See right of
Fig.22.12). To avoid this problem we switch to using a trivalent network
(the word ”lattice” is not really appropriate, despite the fact that most
people in condensd matter would call it a trivalent lattice). The simplest
trivalent network is the honeycomb.

Honeycomb’s Good

A rather trivial generalization is to change the lattice to a honeycomb
as shown in Fig. 22.12. The advantage of this structure is that loops
cannot intersect as they can (at the 4-fold corner) on the the square
lattice.

Fig. 22.12 Left: Toric code on a honeycomb, loops are nonintersecting. Right: On
the square lattice loops can intersect at corners and one cannot tell if this picture
represents one loop or two.

As in the previous square case, the vertex operator must assure that
an even number of red bonds intersect at each vertex, and the plaquette
operator now flips all six spins around a plaquette.
In fact, any trivalent network will be suitable. In all cases the vertex

operator enforces that we are considering only loop gases – now with
no self-intersections allowed. The plaquette operators will flip all of the
bonds around a plaquette, as in the toric code, but will now assign signs
such that creating or destroying a loop incurs a minus sign.
To see how this can be achieved consider Fig. 22.13. Depending on the

initial state, when the plaquette is flipped, one may or may not obtain
a minus sign.
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Fig. 22.13 Some plaquette flips for the double semion model on the hexagon. The
top line obviously adds a loop, so should get a minus sign. The second line just
stretches a loop over a plaquette, so does not get a minus sign. The third line is a
surgery so gets a minus sign. The fourth line is a double surgery, so gets no minus
sign.

One way of determining if one should or should not get a minus sign
is to count the number of red bonds touching the outside of the hexagon
(sometimes called the outside ”legs”). Because red bonds form closed
loops, the number of red legs of a hexagon must be even. If the number
of red legs is a multiple of four, then one gets a minus sign in the flip.
One can thus write a plaquette operator for the hexagon as

P ′
β =


 ∏

i∈ plaquette β
σxi


 (−1)

1
4

∑
j∈ legs of β (σzj+1)

The overall Hamiltonian for this model is then

H = −
∑

vertices α

Vα −
∑

plaquettes β

P ′
β

This Hamiltonian was first written down by Levin and Wen.

22.2.2 Double Semion Excitations

The addition of the sign in the surgery rule changes the effect of ro-
tations. We now have the added sign in Fig. 22.14 Resulting in the

Fig. 22.14 Surgery incurs a minus
sign. Compare to fig. 22.7

effect of rotation being Fig. 22.15 Again we can use these to give us the

Fig. 22.15 Surgery incurs a minus
sign. Compare to fig. 22.7

eigenstates of the rotation operator as shown in Fig. 22.16
Thus we have two particle types with twist factors i and −i. These

are right and left-handed semions. It is interesting that we used the
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skein rules for a model of semions to build our loop gas, and we got out
two types of particles — Both right and left handed semions. This is
perhaps to be expected, since nowhere in our input rules did we ever
break “time-reversal” or say whether the original theory was right or
left handed — it comes out to be both!

Fig. 22.16 Eigenstates of the rotation operator for the doubles semion model.

As with the toric code, there is also a magnetic particle which can be
thought of as a fusion between the left and right handed particle — or
could just be considered as a superposition analagous to Fig. 22.10, ex-
cept now with a plus sign (since the ground state now is a superposition
with a minus sign, being that a loop addition now incurs a minus sign).
Thus the duouble semion model has four particles I, φ, φ∗,m where φ
and φ∗ are the right and lefthanded semions. The full fusion rules are
given in Fig. 22.17.

× I φ φ∗ m

I I φ φ∗ m
φ φ I m φ∗

φ∗ φ∗ m I φ
m m φ∗ φ I

Fig. 22.17 Fusion Table for Double
Semion Model

Quantum Doubling: We emphasize again that we started with a
theory having the kauffman rules of a model of semions (but we did not
need to put in the braiding by hand) and we got out a theory that has
both right and left handed semions. This priniciple is very general. If
we start with any theory of anyons and build a quantum loop gas from it
(not putting in any of the braiding relations) we will get out the doubled
theory, meaning it has both right and left handed versions of the theory.
As mentioned above the ground state should be thought of a the

positive eigenstate of the operator shown in Fig. 22.10 (including the
minus sign). Note that this combination of identity minus the string
with a prefactor of 1/D = 1/

√
2 is precisely the Ω strand (or Kirby

color) of the original semion theory (which has only two particles, the
identity or vacuum, and the semion or single string)1 If we think in three 1To check that this is indeed the

Kirby color, show that a loop of this
Kirby string will annihilate a flux go-
ing through the loop as in Section 18.4,
and gives D on the vacuum.

dimensions, the ground state is defined as having no flux through any
loops.

22.3 General String Net

Given our success with the loop gases, we would like to generalize the
idea to more general so-called ”string-nets”. In the case of the double
semion model as discussed above, we can really think of the loops as
being particle world-lines living in the plane (but with no crossings al-
lowed). We would like to upgrade this idea to a set of world-lines, still
living in a plane, but where different types of particles are allowed, and
they can fuse and split (but again, we allow no braiding). This type
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of multi-valued loop gas should look familiar from Kitaev’s generalized
toric code, although the construction here is more general still since the
edge labels need not form a group.
Thus in these string net models, we allow branching of loops, and we

allow strings of different colors as shown in Fig. 22.18. We can think of
this as being similar to the fusion diagrams we have encountered before
– the allowed branchings being given by the allowed fusions of the string
types. (We do not allow strings to go over or under each other though!).
We would like to similarly define a wavefunction to be of the form

Fig. 22.18 A general string net, that
allows branching, here with two colors. |ψ〉 =

∑

string
nets

Φ(net config) |net config〉

where the prefactors Φ(net config) satisfy some graphical rules as shown
in Fig. 22.19.

Fig. 22.19 Rules for a string net. The grey regions are meant to be the same on
both the left and the right of the diagram. Figure stolen from Levin and Wen.

The meaning of these rules are as follows: The first rule is simply
saying that we can deform one of the strings without chaning the value
of the prefactor Φ. The second rule says that removal of a loop multiplies
the prefactor Φ by a constant which we call the quantum dimension of
the loop da. The third rule is just our ”locality” principle — if a quantum
number i enters a region, that quantum number must also come out of
the region. This rule is irrelevant in the case of teh the toric code and
the double semion theory, because loops are not allowed to branch. The
final rule is a more complicated one which allows for the possibility of
making an “F-move” on a diagram – relating the prefector on the left to
a sum of prefactors of diagrams on the right. The analogue F move in
the toric code and double semion model are the second lines of Fig. 22.5
and Fig. 22.11.
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It is important to note that the F -matrix used to define define the
string net (last line of Fig. 22.19) must satisfy the pentagon equations
for consistency. It is crucial to note that one need not have define any
R matrices, since the string net model is defined entirely in 2d without
having any crossings of strings — so the F matrices do not have to
correspond to an actual anyon theory. The theory that results is known
as a Drinfeld double or quantum double.
Note however, certain F -matrices do have corresponding R matrices

which solve the hexagon equations. In this case, it is possible to think of
the string net model as being built from an underlying anyon theory —
the resuling topological theory is the simple ”double” of the underlying
anyon theory (i.e, just a right handed and a left handed copy of the
theory). The ground state will then be the D eigenstate of the Kirby
color loop – which makes it fairly easy to write a Hamiltonian on a lattice
for this string net model.

22.4 Doubled Fibonacci Model

As an example, let us try to build a string net model from from the Fi-
bonacci anyon theory. Again we will not put in the braiding information,
we only put in the fusion algebra.
We will write the identity (or vacuum) particle as no-line and the

fibonacci particle τ as a red line, Since τ × τ can fuse to τ we expect
that this loop gas will allow our (red) loops to branch. We thus call this
version of a loop gas a “string net” (or a branching loop gas) as in Fig.
22.20.

Fig. 22.20 A branching string net for
the doubled Fibonacci model.

Starting with Eq. 9.1, we consider the following F -moves as shown in
Fig. 22.21

Fig. 22.21 Rules for building the doubled fibonacci model.

Where here φ = (1+
√
5)/2 and (the values of these coefficients come

from the values of the F -matrix in Eq. 9.1.
We also expect to have rules of the form of Fig. 22.22 The first and

Fig. 22.22 Rules for building the dou-
bled fibonacci model.

second rules2 are results of locality. The final rule is the usual rule that a

2In fact we can prove that the tadpole
rule must be zero. This is a homework
problem!
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loop can be removed and replaced by a number. This final rule also tells
us that the ground state should be a D eigenstate of the Kirby string
operator — since the Kirby Ω string is a sum of 1/D times the identity
operator and d/D times a loop of τ , whose value is now d, adding a
Kirby string give 1/D + d2/D = D
We can then pin down the values of d and X in these equations. To do

this, we connect the strings on the right of Fig. 22.21 to give Fig. 22.23.

Fig. 22.23 Starting with Fig. 22.21 and closing strings to the right hand. The black
strings should be imagined to be red — they are drawn black so one can see what is
added compared to Fig. 22.21

Using the laws above we these equations are translated to

d = φ−1 + φ−1/2X

0 = φ−1/2 − φ−1X

which we solve to obtain

X = φ1/2

d = φ−1 + 1 = φ

The fact that d = φ is not surprising being that this is the expected
quantum dimension for a Fibonacci particle.
With the values we obtain for X and d, we now have a full set of rules

in Fig. 22.21 and 22.22. We can then write a ground state wavefunction
of the form

|ψ〉 =
∑

all string net configs that
can be obtained from a ref-
erence config

Φ(net config) |net config〉

This looks quite similar to our above toric code loop gas, except now
we allow branching string nets instead of just loops, and also the kets
have a prefactor Φ. These prefactors are chosen such that the algebraic
rules described above are satisfied. I.e., removing a loop increases Φ by
a factor of d. Removing a bubble (as in the upper left of 22.22) increases
Φ by a factor of X . Then F tell us the relationship between three values
of Φ where changes in the diagram are made as shown in Fig. 22.21.
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22.4.1 Excitations

As with the double-semion model we should be able to determine the
quasiparticle eigenstates by looking at how a single line can end in a
defect. We claim that all possible line endings can be reduced, by F -
moves, to one of the three possible endings shown in Fig. 22.24 Just

Fig. 22.24 Possible string endings in
the doubled fibonacci string net model.

as an example, consider the ending shown on the left of Fig. 22.25. By
using an F -move, it is reduced to a combination of the three presented
above.

Fig. 22.25 An example of reducing a more complicated string ending into one fo
the three endings shown in Fig. 22.24.

As in the case of the toric code and the double semion model, we
can figure out the twist factors by rotating these diagrams as shown in
Fig. 22.26 and then using F -matrices to reduce the result back to linear
combinations of the same three possible endings.



244 More Generalizing The Toric Code: Loop Gases and String Nets

Fig. 22.26 The rotation operator Θ̂ applied to the possible string endings. Then
using F matrices we reduce the results to linear combinations of the same endings.

We can write these diagrammatic equations more algebraically by

Θ̂




a
b
c


 =




0 φ−1 φ−1/2

1 0 0
0 φ−1/2 −φ−1






a
b
c




The eigenvectors of this matrix are the particle types with definite twist
factrors given by their eigenvalues under rotation.
With a bit of algebra it can be shown that the eigenvalues of this

matrix are given by

θ = eiπ4/5, e−iπ4/5, 1,

The first two correspond to the expected spin factors for a right-handed
fibonacci anyon τ or left-handed fibonacci anyon τ∗ (recall that we
worked out the spin factor using the hexagon equation earlier. See 17.3.).
The final possibility represents the fusion of these two objects τ×τ∗. In-
deed, these are all of the possible particle types in the doubled-fibonacci
theory. Since the theory was based on a full anyon theory with braiding
fully defined, we expected to get both a right- and left-handed copy of
the Fibonacci model and indeed we did. (We never broke time rever-
sal in the definition of the model so we should get both hands of the
theory!).

22.4.2 Ground State Degeneracy

It is a bit tricky to figure out the ground state degeneracy here. Using
the above skein rules, any configuration can be reduced to a linear com-
bination of four simple configuation – corresponding to the possibilities
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of having a loop, or not having a loop, around each handle. An example
of reducing two loops around a handle to a linear combination of zero
and one loop is given in Fig. 22.27

Fig. 22.27 Reducing two loops around a handle to a linear combination of one loops
and zero loops.

22.5 Add details of Levin Wen Model on the
lattice?

22.6 Appendix: S-matrix for Fibonacci Anyons

Without doing much work, we can figure out the S-matrix for Fibonacci
anyons. There are only 2 particles in the theory I and τ . Further we
know that the quantum dimension of τ is φ = (1 +

√
5)/2. Thus, the

total quantum dimension is D2 = 1+φ2 = 2+φ and the S matrix must
be of the form

S =
1

D

(
1 φ
φ y

)

where the constraint of unitarity immediately fixes y = −1.
We can check this by using F and R matrices to determine the value

of two linked rings explicitly as shown in Fig. 22.28
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Fig. 22.28 Calculating the nontrivial element of the Fibonacci anyon S-matrix.

Exercises

Exercise 22.1 Quasiparticles in Toric Code Loop Gas
As discussed in lecture, the toric code ground state can be considered to be

a loop gas with the rules given in Fig. 22.29

Fig. 22.29 Loop gas rules for the toric
code

Certain quasiparticle excitations can be indicated as ends of strings in the
loop gas.

(a) Show that the linear combinations of string ends shown in the figure
22.30 are eigenstates of the rotation operator – with the boson accumulating
no phase under rotation and the fermion accumulating a minus sign. (We did
this in lecture so it should be easy).

Fig. 22.30 Boson and Fermion quasiparticles as string ends in the toric code loop
gas

(b) Consider exchanging two such quasiparticles. To get a general idea of
how the calculation goes, you will have to evaluate diagrams of the form of



Exercises 247

Fig. 22.31. Show that one obtains bosonic or fermionic exchange statistics
respectively for the two linear combinations shown above.

Fig. 22.31 Braiding defects

(c) [Harder] Consider fusing the boson (the electric particle e) and the
fermion together. Show that this creates a magnetic defect which does not
have a trailing string. You will have to recall that the operator that creates a
magnetic particle is sum of the identity operator and minus an operator that
draws a loop all the way around the region. (This operator is a projector that
forces a magnetic defect into a region; the orthogonal projector assures that
there is no magnetic defect within the region).

Exercise 22.2 Quasiparticles in Double Semion Loop Gas
As discussed in lecture, the doubled semion model ground state can be

considered to be a loop gas with the rules given in Fig. 22.32. Note that these
rules are the same as the semion rules from the problem “Abelian Kauffman
Anyons” which we considered earlier (although in that model there is only one
chirality of semion particle!)

Fig. 22.32 Loop gas rules for the dou-
bled semion model

Again certain quasiparticle excitaitons can be indicated as ends of strings
in the loop gas.

(a) Show that the linear combinations of string ends shown in the figure
22.33 are eigenstates of the rotation operator – with the two particles accu-
mulating a factor of i or −i under rotation (We also did this in lecture so it
should be easy).

Fig. 22.33 Semion and anti-semion string ends in the doubled semion loop gas

(b) Consider exchanging two such quasiparticles. Show that under exchange
one obtains factor of i or −i as expected for semions and anti-semions. Note:
The anti-semion is not the antiparticle of the semion (I know it is bad nomen-
clature!) – The antisemion is the opposite handed particle. The semion is its
own antiparticle.

(c) [Harder] Consider fusing the semion and anti-semion together. Show
that this creates a “magnetic defect.” What is the projector that produces a
magnetic defect in a region?

Exercise 22.3 Double Fibonacci String Net
(a) As discussed in lecture, the double Fibonacci model ground state can

be viewed as a branching string net with graphical rules given by Fig. 22.34
(Compare to the problem on Fibonacci pentagon relation) where φ−1 = (

√
5−

1)/2. In the ground state no endpoints of strings are allowed, but branching
is allowed.

To complete the graphical rules we must also use the rules shown in Fig. 22.35
for some values of the variables, d, X and T .
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Fig. 22.34 String net rules for the doubled Fibonacci model

Fig. 22.35 Additionnal string net rules for the doubled Fibonacci model

(a) Show that the consistent solutions is d = φ with X = φ1/2 and T = 0.
We did much of this in lecture. What was left out is proving that any T 6= 0
solution is not self-consistent. Hint: Try evaluating a circle with three legs
coming out of it. That should enable you to derive a useful identity. Then see
if you can use this identity to derive a contradiction when T 6= 0.

(b) Consider quasiparticles which are the ends of strings. The general form
of a quasiparticle is as shown in Fig 22.36 with coefficients a, b, c that need
to be determined. Find the eigenvalues/eigenvectors of the rotation operator
to determine the quasiparticle types and their spins. (We did most of this in
lecture except the explicit evaluation of the eigenvalue problem!) Compare
your result to the result of the problem “Fibonacci Hexagon Equation”.
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Fig. 22.36 Combination of defect types for the doubled Fibonacci model





Introduction to Quantum Hall
— The Integer Effect 23
The fractional quantum Hall effect is the best studied of all topologically
ordered states of matter. In fact it is the only system which is extremely
convincingly observed to be topologically ordered in experiment1. We 1There are a good number of other

contenders now. Probably the most
convincing other case is 3HeA phase
2d films. Although very few experi-
ments have actually been done on this.
Other strong contenders include Majo-
rana wires, certain exotic superconduc-
tors, and a few frustrated quantum spin
systems.

will thus spend quite a bit of time discussing quantum Hall effects in
detail. Before we can discuss fractional quantum Hall effect we need to
discuss the basics, i.e., the integer quantum Hall effect.

23.1 Classical Hall Effect

In 1879 Edwin Hall discovered that when a current is run perpendicular
to a magenetic field, a voltage is generated perpendicular to both field
and current, and proportional to both (See Fig. 23.1). This voltage is
now known as the Hall voltage. Drude theory, treating a metal as a gas
of electrons, explains the Hall voltage as being a simple result of the
Lorentz force on electrons.

Fig. 23.1 Hall voltage VH perpendicular to both magnetic field and current, and
proportional to both. Also one measures a longitudinal voltage in the same direction
as the current, roughly independent of magnetic field.

23.2 Two-Dimensional Electrons

In the late 1960s and early 70s semiconductor technology made it possi-
ble to do experiments with electrons that live in two dimensions. First
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MOSFETs2 and later quantum wells were used to provide a confining2Metal Oxide Semiconductor Field Ef-
fect Transistors potential for electrons in one direction3, leaving motion only in the two
3More recently people have been able
to produce materials like graphene
which are literally one atom thick!

remaining dimensions. As an example we will consider a quantum well
structure, which is layered in the ẑ direction as shown in Fig. 23.2.

Fig. 23.2 Top A quantum well structure is a quasi-two-dimensional layer of one
semiconductor sandwiched between two other semiconductors. Bottom The po-
tential felt by an electron is like a particle in a box. If the energy is low enough,
the electron is stuck in the lowest particle-in-box wavefunction ϕ0(z) giving a total
wavefunction Ψ = ϕ0(z)ψ(x, y) and having strictly two dimensional motion.

The electron moving in the z-direction experiences a strong confine-
ment, such as the particle-in-box confinement shown in Fig. 23.2. The
wavefunction of the electron then takes the form ϕ(z) in the z-direction.
If the energy (i.e. the temperature and coulomb interaction) is very
low compared to the gap between the particle-in-box states, then the
electron is frozen in the lowest particle-in-box state ϕ0(z) and the total
wavefunction of the electron is Ψ(x, y, z) = ϕ0(z)ψ(x, y) leaving only the
x and y degrees of freedom. Thus we have a strictly two dimensional
electron.
More recently two dimensional electronic systems have also been ob-

served in single-layer atomic systems such as graphene. (Although even
then, the same argument needs to be used — that the motion of the
electron is “frozen” in the z-direction and only has freedom to move in
x and y).
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23.3 Phenomenology of Integer Quantum Hall

Effect

In 1980 Klaus von Klitzing, having just left a postdoctoral position at
Oxford, went to a new job at Grenoble carrying some new high mobility4

two dimensional electron samples grown by (now Sir) Michael Pepper at
Cambridge. He put them in high magnetic field and cooled them down
to a few degrees Kelvin temperature where he discovered something very
different from what Hall had seen a hundred years earlier. An example
of this type of experiment is shown in Fig. 23.3.

Fig. 23.3 An example of an Integer Quantum Hall experiment. The plateaus in

VH are such that VH = (1/i)(h/e2)I with i the integer displayed over the plateau
— where h is Planck’s constant and e is the electron charge. At the same magnetic
field where a plateau occurs in VH the longitudinal voltage drops to zero. Note
that at very low field, the Hall voltage is linear in B and the longitudinal voltage is
independent of B, as would be predicted by Drude theory.

At low magnetic field, the longitudinal voltage is relatively constant
whereas the Hall voltage is linear in magnetic field — both of these are
precisely what would be predicted by Drude theory. However, at high
magnetic field, plateaus form in the Hall voltage with concomitant zeros
of the longitudinal voltages. The plateaus have precisely the value

VH =
1

i

h

e2
I

4Meaning very clean
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where I is the current, h is Planck’s constant and e is the electron charge.
Here i is an integer as shown in the figure. Or equivalently we have

RH =
1

i

h

e2
= 1/GH (23.1)

with RH the Hall resistance where GH the Hall conductance. Where
we have plateaus in the Hall voltage, we have zeros in the longitudinal
voltage and resitstance

RL = 0

which implies we have a dissipationless state — similar to a superfluid.
These statements become increasingly precise as the temperature is low-
ered.
We should remember that conductivity and resistivities are both 2

by 2 matrices and are inverses of each other5. In this quantum Hall5These are 2 by 2 matrices because they
relate the vector electric field E to the
vector current j

state, these matrices are both purely off-diagonal. Thus we have the
interesting situation that both the diagonal part of the conductivity (the
longtidinal conductivity) is zero, and the diagonal part of the resistivity
(the longitudinal resistivity) is also zero.
The plateau RH = (1/i)(h/e2) occurs near the magnetic field such

that the so-called filling fraction ratio

ν =
nφ0
B

is roughly the integer i. Here n is the 2d electron density and φ0 is the
quantum of magnetic flux

φ0 = h/e

When von Klitzing discovered this effect he noticed mainly that the
plateaus in the Hall resistance are extremely precisely given by Eq. 23.1
and the plateaus are extremely flat. He submitted his manuscript to
PRL claiming that this would be a useful way to make a new resis-
tance standard6,7. In fact the result has been shown to be precise and6The referee mentioned that at the

time they already had resistance stan-
dards which were better than his ini-
tial measurement of one part in 106,
but proposed would be a uniquely good
measurement of the ratio h/e2. The pa-
per was resubmitted proposing to use
the effect as a precise measurement of
the fine structure constant. The paper
was accepted and the Nobel Prize for
von Klitzing followed in 1985.

7The quantum Hall effect is used as a
metrological resistance standard, and it
is proposed that the Ohm will soon be
defined in terms of the result of quan-
tum Hall experiments.

reproducible to better than a part in 1010. This is like measuring the
distance from London to Los Angeles to within a fraction of a millimeter.
This accuracy should be extremely surprising. The samples are dirty,
the electrical contacts are soldered on with big blobs of metal, and the
shape of the sample is not very precisely defined.

23.4 Transport in Zero Disorder

In strictly zero disorder it is easy to show that the longitudinal resistance
is zero and the Hall resistance is precisely linear in the magnetic field.
This is a simple result of Galilean/Lorentz invariance. Suppose we have
a two dimensional disorder-free system of electrons in the x, y plane and
a magnetic field B = Bẑ in the ẑ-direction perpendicular to the plane.
The Lorentz force on an electron will be

F = −e (E+ v ×B)
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If we then boost into a moving frame where

v =
E× ẑ

|B|
in this new frame we obtain F = 0, so the ground state must be station-
ary in this frame.
Then we boost back into the lab frame, and we obtain a current

j = −env =
−enE× ẑ

|B|
thus giving us

RL = 0

RH =
B

ne

which is exactly the prediction that Drude would have made for a dis-
order free system.
While this calculation is rigorous even with the effects of quantum

mechanics and interactions, it relies on having strictly zero disorder.

23.5 The Landau Problem

In order to understand quantum Hall effect, we should start by under-
standing the physics of a charge particle in a Magnetic field — a prob-
lem first studied by Landau. For simplicity we assume our electrons are
spinless (indeed, the spins tend to be polarized by the magnetic field
anyway.) We will consider an electron in the x, y plane, with a magnetic
field of magnitude B in the z direction. We will assume the system is
periodic in the y direction with length Ly, but opern in the x direction,
with length Ly (i.e., we are working on a cylinder actually). We will
eventually consider a small amount of disorder (as we showed above this
is crucial!), but for now let us assume the system has no disorder.
The Hamiltonian is

H0 =
(p+ eA)2

2m
where e and m are the electron charge and mass, and A is the vector po-
tential. We then have to choose a particular gauge to work in. Later on
we will want to work in symmetric gauge (there is a homework problem
on this!) For now we will work in the so-called “Landau” gauge

A = Bxŷ

which does indeed satisfy

B = ∇×A = Bẑ

as desired. The Hamiltonian is thus

H0 =
1

2m

(
(p2x + (py + eBx)2

)
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where pj = −i~∂j.
The Hamiltonian is then translationally invarient in the ŷ direction,

so we can write the wavefunction as

ψ(x, y) = φky (x)e
ikyy

and due to the periodicity in the y-direction, we have

ky =
2πn

Ly

for some integer n. Plugging in this form gives a familiar Schroedinger
equation

(
p2x
2m

+
1

2
mω2

c (kyℓ
2 + x)2

)
φky (x) = Eφky (x) (23.2)

where ℓ is the so-called magentic length

ℓ =
√
~/(eB)

and ωc is the cyclotron frequency

ωc = eB/m.

We recognize this Schroedinger equation as being just a harmonic oscil-
lator where the center of the harmonic potential is shifted to x = −kyℓ2.
Thus the eigenenergies are of the usual harmonic oscillator form

Ep = ~ωc

(
p+

1

2

)
(23.3)

where p is an integer. These quantized energy states are known as Lan-
dau levels. The form of the wavefunction will be harmonic oscillator on
the x direction and plane-wave in the y-direction as shown in Fig. 23.4.

Fig. 23.4 The shape of the wavefunction of an electron in a magnetic field using
Landau gauge. The form of the wavefunction will be harmonic oscillator on the x
direction and plane-wave in the y-direction
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Fixing the energy by fixing p in Eq. 23.3, the value of ky is quantized
in units of 2π/Ly. Further, the position x ranges over Lx, meaning that
ky ranges over Lx/ℓ

2. Thus the total number of possible values of ky is

Number of states in a Landau level =
LxLy
2πℓ2

=
Area B

φ0

where
φ0 = h/e

is the magnetic flux quantum. Thus, the number of states in a Landau
level is equal to the number of magnetic flux quanta of magnetic field
incident on the plane.
We can plot the density of states for electrons in a magnetic field, as

shown in Fig. 23.5

Fig. 23.5 The density of states for
spin-polarized (or spinless) electrons in
a magnetic field. At energies equal
to half-odd integer multiples of the
cyclotron frequency, there is a spike
of degenerate states, with degeneracy
Area B

φ0 .

When there are multiple electrons present, we define the filling frac-
tion to be the number of these Landau levels which are completely filled
with electrons.

ν =
nφ0
B

where n is the density of electrons. Or equivalently we can write a
relationship between the number of electrons in the system, Ne and the
number of magnetic flux Nφ

Ne = νNφ

Incompressility of Integer Number of Filled Landau Levels:

When some integer number of Landau levels is filled, the chemical poten-
tial lies in the middle of the gap between the filled and unfilled states —
analogous to a band insulator. In this case the the system is incompress-
ible. This means there is a finite energy gap to creating any excitations
— i.e., all excitations must involve removing an electron from a filled
Landau level, promoting it above the energy gap to place it in an empty
state. In particular excitations which change the density (compressions)
are gapped. Further, at this precise integer filling fraction, the longi-
tudinal conductivity is zero, and the Hall conductivity is precisely the
quantized value RH = ne/B = (1/i)(h/e2).
If we were to control the chemical potential in the experiment, we

would have our answer as to why the Hall conductivity shows plateaus
— for any value of the chemical potential, except for the special values
µ = (~ωc)(p + 1/2) with integer p, the electron number is pinned to
N = Nφ/i where i is an integer, precisely i Landau levels are filled,
there is a gap to excitations, and the Hall conductivity would be precisely
quantized. However, in real experiments, it is actually the density that
is fixed — which means that generically the chemical potential does
sit in the degenerate band µ = (~ωc)(p + 1/2) for some integer p and
generically the filling fraction is tuned continuously and is not quantized.
Thus the incompressible state is very fine tuned. It occurs only for a

very precise (integer) value of the filling fraction —for all other values
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of the filling fraction, some Landau level is partially filled and (at least
neglecting interactions) the system would be extremely compressible, as
there are many zero energy excitations corresponding to rearrangements
of the electrons (which orbitals are filled and which are empty) within
the partially filled Landau level.
While the system does have a gap under fine tuning, we will need

something that will preserve the special properties of the fine tuned state
even when we move away from the filling fraction which is precisely an
integer. What does this is actually disorder — it will provide a reservoir
for excess electrons (or holes) added (or subtracted) from the integer
filled state. With disorder, the special properties of the quantized state
are made robust.

What Does Disorder Do?

As mentioned above, we will need to add disorder to the system in order
to achieved quantized Hall effect. What is the effect of this disorder?
Disorder will spread out the energies in the band by having some regions
where the potential is higher than average and some regions where the
potential is lower than average. This spreads the sharp peak in the
density of states into a broader band, as shown in Fig. 23.6.

Fig. 23.6 The density of states for
spin-polarized (or spinless) electrons in
a magnetic field with disoder. The
Landau bands are spread out, with lo-
calized eigenstates in the tails and ex-
tended eigenstates near the middle.

Since current tends to flow perpendicular to potential gradients (i.e., it
is hall current), eigenstates tend to follow contours of constant potential.
Thus many of the eigenstates at high and low energy will be trapped in
local minima or maxima — isolated in a hill or valley and circling the
peak or bottom. The result is that the eigenstates in the edge of the
band experience localization, whereas (at least some) eigenstates near
the center of the band as shown in Fig. 23.6.
When the chemical potential is anywhere in the localized states, then

at low enough temperature, the electrons cannot move at all. Although
there are states at this energy, they are all localized and electrons cannot
jump between them. Hence we expect in this case that the DC dissipi-
tave conductance goes to zero. (For dissipitive conductance to occur, an
electron has to be excited up to the next delocalized band.) The state
remains incompressible for filling fractions even away from the precise
integer value of ν.
What is not obvious is (a) that the Hall conductance should be pre-

cisely quantized, and (b) that we should have Hall conductance at all.

23.6 Laughlin’s Quantization Argument

In 1981, shortly after von Klitzing’s discovery of quantum Hall effect,
Bob Laughlin8 presented an argument as to why the Hall conductance8Laughlin would later go on to win a

Nobel Prize for his explanation of frac-
tional quantum Hall effect, which we
will start discussing in chapter ***.

must be precisely quantized. The argument relies on gauge invariance.
We first need to present a key theorem which comes from gauge invari-
ance.
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23.6.1 Byers and Yang Theorem

Consider any system (made of electrons and protons and neutrons) with
a hole cut in it, as in Fig. 23.7. Now put some magnetic flux Φ through

Fig. 23.7 The Byers-Yang theorem
states that threading any integer num-
ber of flux quanta through a hole in
a system leaves the eigenspectrum un-
changed.

the hole in such a way that the flux does not touch any piece of the
system, but just goes through the hole. By the Aharanov-Bohm effect,
the charged particles in the system cannot detect the flux if it is an
integer multiple of the flux quantum φ0. In fact the statement can be
made stronger: The eigenspectrum of the system is precisely the same
when an integer number of flux is inserted through the hole. This result
is known as the Byers9-Yang10 theorem (1961).

9Nina Byers was just starting as an
assistant professor at UCLA when she
proved this theorem. In the late 60s
and early 70s she oscillated between
Oxford (Somerville college) and UCLA,
but eventually converged to UCLA. She
told me personally that she regretted
leaving Oxford. She passed away in
2014.
10Yang is C.N.Yang, who won a No-
bel Prize in 1957 along with T. D.
Lee for his prediction of parity non-
conservation of the weak interaction.

To prove this theorem we use gauge invariance. One is always free to
make a gauge transformation

A′(r) = A(r) + (~/e)∇χ(r)

Ψ′(r1, . . . rN ) =



N∏

j=1

eiχ(rj)


Ψ(r1, . . . rN )

which leave the physical electromagentic field completely unchanged and
changes the gauge of the wavefunction. The meaning of gauge invariance
is that if we have a solution to the Schroedinger equation for Ψ and A
at energy E, then we also have a solution at the same energy E for Ψ′

and A′.
When the physical geometry we are concerned with is non-simply

connected, we can make gauge transforms which are non-single-valued,
such as

χ(r) = mθ(r)

wnere θ is the angle around the center. Making this gauge transform
leaves the eigenspectrum of the system unchanged. However, the flux
enclosed

Φ′ =

∮
A′ · dl =

∮
A · dl+ 2πm~/e = Φ+mφ0

has changed by an integer number of flux quanta.

23.6.2 Quantization of Hall Conductance

Laughlin’s argument applys the Byers-Yang theorem to the Quantum
Hall case. Consider a two dimensional electron system cut in an annulus11

11For studying current flow in mag-
netic fields, the annulus is knowni
as ”Corbino” geometry, after O. M.
Corbino, who studied this in 1911.

as shown in Fig. 23.8. Here we put the entire system in a uniform mag-
netic field (so that we have Landau levels) and we arrange such that the
chemical potential is in the localized part of the band so that at low
enough temperature the longitudinal (dissipitive) conductivity is zero.
We then adiabatically insert an additional flux Φ(t) through the center

of the annulus and turn it on slowly from zero to one flux quantum. Due
to the Faraday’s law, an EMF is generated around the annulus

E = −dΦ
dt

=

∮
dl · E
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If there is a Hall conductance, GH then this generates a radial current

J = GHE

Fig. 23.8 Insertion of Flux Φ(t)
through the center of an annulus of
two-dimensional electrons in a uniform
magnetic field. Adiabatically increas-
ing the flux creates an electric field in
the annular direction which then, by
the Hall conductivity, creates current in
the radial direction.

As we slowly increase the flux by an amount ∆Φ we have a total
charge ∆Q moved from the inside to the outside of the annulus given by

∆Q =

∫
dtJ(t) = GH

∫
dt E(t) = −GH

∫
dt
dΦ(t)

dt
= −GH∆Φ

Now the key to the argument is the Byers-Yang theorem. If we choose
∆Φ = φ0 a single flux quantum, then the final eigenstates of the sys-
tem must be precisely the same as the initial eigenstates of the system.
Since we have changed the system adiabatically (and there is a gap to
excitations when the states at the chemical potential are localized due
to disorder) the system must stay in the ground state12 and the inser-

12There is a subtlely here. With disor-
der, there are actually low energy ex-
citations, but they require very long
range hops of localized electrons which
cannot be made. So the system is “lo-
cally” gapped.

tion of the flux quantum must take us from the ground state back to
the very same ground state. The only thing that might have changed
during this process is that an integer number p of electrons may have
been transferred from the inside of the annulus to the outside. Thus we
have

−pe = ∆Q = −GH∆Φ = −GHφ0 = −GH(h/e)

Thus we obtain the quantized Hall conductance

GH = p(e2/h)

with p an integer!
Thus we see that the Hall conductance experiment is really some sort

of ”spectroscopy” to measure the charge on the electron! (hence the
precision of the effect).
Although we have shown the the Hall conductance must be quantized,

what we have not shown is that it must be nonzero! Afterall, since the
chemical potential is in a localized band, it looks like electrons simply
can’t move at all. We will return to this issue in section 23.8 below.

23.7 Edge States

The bulk of a quantum Hall system is gapped, but on a finite system
there are always low energy modes on the edges. (This is always true
for any chiral topological system. Although achiral systems can have
fully gapped edges). Even though the bulk is incompressible, the shape
of the edge can be deformed as suggested in Fig. 23.9. Now let us

Fig. 23.9 A deformation of the edge
is a low energy edge excitation which
moves along the edge due to E×B drift.

think about the dynamics of a bump on the edge. On the edge of the
system we always have an electric field (this is the potential that holds
the electrons in the system— otherwise they would just leak out!). Since
we have E × B, we expect a drift velocity for all the electrons on the
edge. Thus we expect edge dynamics to be basically just movement of
charge along the edge.
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23.7.1 Landau Gauge Edge Picture for Integer
Quantum Hall

Recall in Landau gauge (See section 23.5) the wavefunctions are plane
waves in the y direction, but are harmonic oscillator states in the x
direction. We now impose an additional confining potential in the x
direction near the edges of the system as shown in Fig. 23.10.

Fig. 23.10 Low energy edge excitations

The addition of the confining potential V (x) simply adds this poten-
tial to the 1-d schroedinger equation 23.2. If the confining potential
is fairly smooth, it simply increases the energy of the eigenstates when
the position x = −kyℓ2 gets near the edge of the system as shown in
Fig. 23.10.
In the case of the integer quantum Hall effect, all of the eigenstates of

some particular Landau level (the lowest Landau level in the figure) are
filled within the bulk. At some point near the edge, the Landau level
crosses through the chemical potential and this defines the position of
the edge. Since the eigenstates are labeled by the quantum number ky
it is possible to create a low energy excitation by moving an electron
from a filled state near the edge just below the chemical potential to
an emtpy state near the edge just above the chemical potential. The
excitation will have momentum ~∆ky.

13 We thus have a 1-d system

13The change in energy will be

∆E =
∂V

∂x
∆x =

∂V

∂x
ℓ2∆ky

Thus the edge velocity is given by

v =
1

~

∂E

∂k
=

1

~

∂V

∂x
ℓ2

If the chemical potential along the one edge is raised by ∆µ, a range of k-states

∆k =
∆µ

ℓ2 ∂V
∂x

will be filled. Since the spacing between adjacent k states is 2π/Ly this corresponds
to an increase in electrons per unit length along the edge of

∆n1d =
2π∆µ

ℓ2 ∂V
∂x
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of fermions filled up to a chemical potential and they flow only in one
direction along each edge — i.e., they are chiral fermions.

23.8 The Halperin Refinement of Laughlin’s
Argument

A more careful version of Laughlin’s argument was made by Halperin
immediately after Laughlin’s initial work. The key here is to think of a
geometry where much of the system is free of disoder. In particular we
consider the geometry shown in Fig. 23.11.

Fig. 23.11 The Halperin geometry. The same as the Laughlin annulus geometry,
except here we add disorder only in part of the annulus. We have also shown (dark
blue) a single particle eigenstate in the clean region, which forms a circle (with a
small gaussian cross-section).

Here, the disorder is confined to only part of the annulus, the inner-
most and outer-most regions of the annulus being disorder-free. Within
the clean regions we can solve for the eigenstates using symmetric gauge
(this is a homework problem, but we will also discuss further in the next
chapter). The eigenstates are indexed by their angular momentum m,
and in the Lowest Landau level, for example, they are given by

ϕm ∼ zme−|z|2/(4ℓ2)

where z = x+ iy is the complex representation of the position. A radial
cut of one of these eigenstates gives a gaussian wavepacket14 at radius14Just find the maximum of |ψm|2.

These then carry a net 1d electron current density

j = −ev∆n1d = −e( 1
~

∂V

∂x
ℓ2)

2π∆µ

ℓ2 ∂V
∂x

= −(e/h)∆µ

which is precisely the expected quantized Hall current flowing along the edge. (∆µ =
−e∆V ).
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ℓ
√
2m— very similar to what we had in Landau gauge, but now these

eigenstates are indexed by angular momenta instead of linear momenta,
and they go around in circle instead of going straight.
Let us imagine the chemical potential above the middle of a Landau

level (say above the middle of the lowest Landau level) until it sits in a
localized piece (at least within the disordered region the wavefunctions
are localized). Since this is above the middle of the Landau level, the
Landau level is completely filled in the clean region. The only low energy
excitations are the edge states!
Now, let us track what happens to the eigenstates as we change the

flux through the hole. If the flux through the hole is an integer (in
units of the flux quantum φ0), then the angular momentum is also an
integer. However, if the flux through the hole is an integer plus some
fraction α, then the angular momentum quantum number must also be
an integer plus α. Thus, as we adiabatically increase the flux by one
flux quantum, we adiabatically turn each m eigenstate to m+ 1. Thus
we are continuously pushing out electrons to the next further out radial
wavefunction.
Now when we are in the disordered region of the annulus, we do not

know any details of the shape of the eigenstates. All we know is that
after insertion of a full flux quantum we must get back to the same many
body eigenstate that we started with. However, we also know that an
additional electron is being pushed into the disordered region from the
clean region on the inside, whereas an electron is also being extracted
into the clean region on the outside. Thus the disordered region must
also convey exactly one electron (per Landau level) when a flux quantum
is inserted adiabatically. An electron state is moved from one edge state
on the inside to an edge state on the outside.
This argument pins down that the Hall conductance is not zero, but

is h/e2 times the number of Landau levels that are filled (in the clean
regions).

Exercises

Exercise 23.1 Quantum Hall Conductivity vs Conductance
Consider a two dimensional electron gas (2DEG) of arbitrary shape in the

plane with four contacts (1,2,3,4) attached at its perimeter in a clockwise order
as shown in Fig. 23.12. The conductivity tensor σij relates the electric field
to the current via

ji = σijEj (23.4)

where indices i and j take values x̂ and ŷ (and sum over j is implied). Assume
that this is a quantized hall system with quantized hall conductance s. In
other words, assume that

σ =

(

0 s
−s 0

)

(23.5)

Show that the following two statements are true independent of the shape of
the sample.
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Fig. 23.12 A 2D electron gas of arbitrary shape with contacts 1,2,3,4 attached on
its perimeter in clockwise order

(a) Suppose current I is run from contact 1 to contact 2, show that the
voltage measured between contact 3 and 4 is zero.

(b) Suppose current I is run from contact 1 to contact 3, show that the
voltage measured between contact 2 and 4 is V = I/s.

Note: The physical measurements proposed here measure the conductance
of the sample, the microscopic quantity σ is the conductivity.

Exercise 23.2 About the Lowest Landau Level
If you have never before actually solved the problem of an electron in two

dimensions in a magnetic field, it is worth doing. Even if you have done it
before, it is worth doing again.

Consider a two dimensional plane with a perpendicular magnetic field ~B.
Work in symmetric gauge ~A = 1

2
~r × ~B.

(a) (This is the hard part, see below for hints if you need them.) Show that
the single electron Hamiltonian can be rewritten as

H = ~ωc(a
†a +

1

2
) (23.6)

where ωc = eB/m and

a =
√
2ℓ

(

∂̄ +
1

4ℓ2
z

)

(23.7)

with z = x+ iy and ∂̄ = ∂/∂z̄ with the overbar meaning complex conjugation.
Here ℓ is the magnetic length ℓ =

√

~/eB.
(b) Confirm that

[a, a†] = 1 (23.8)

and therefore that the energy spectrum is that of the harmonic oscillator

En = ~ωc(n+
1

2
) (23.9)

(c) Once you obtain Eq. 23.6, show that any wavefunction

ψ = f(z)e−|z|2/4ℓ2 (23.10)

with f any analytic function is an eigenstate with energy E0 = 1
2
~ωc. Show

that an orthogonal basis of wavefunctions in the lowest Landau level (i.e., with
eigenenergy E0) is given by

ψm = Nmz
me−|z|2/4ℓ2 (23.11)
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where Nm is a normalization constant. Show that the maximum amplitude
of the wavefunction ψm is a ring of radius |z| = ℓ

√
2m and calculate roughly

how the amplitude of the wavefunction decays as the radius is changed away
from this value.

(d) Defining further

b =
√
2ℓ

(

∂ +
1

4ℓ2
z̄

)

(23.12)

with ∂ = ∂/∂z, Show that the operator b also has canonical commutations

[b, b†] = 1 (23.13)

but both b and b† commute with a and a†. Conclude that applying b or b† to
a wavefunction does not change the energy of the wavefunction.

(e) show that the ẑ component of angular momentum (angular momentum
perpendicular to the plane) is given by

L = ẑ · (~r × ~p) = ~(b†b − a†a ) (23.14)

Conclude that applying b or b† to a wavefunction changes its angular momen-
tum, but not its energy.

(f) [Harder] Let us write an arbitrary wavefunction (not necessarily lowest
Landau level) as a polynomial in z and z̄, times the usual gaussian factor.
Show that projection of this wavefunction to the lowest Landau level can be
performed by moving all of the z̄ factors all the way to the left and replacing
each z̄ with 2ℓ2∂z.

Hints to part a: First, define the antisymmetric tensor ǫij , so that the vector
potential may be written as Ai =

1
2
Bǫijrj . We have variables pi and ri that

have canonical commutations (four scalar variables total). It is useful to work
with a new basis of variables. Consider the coordinates

π
(α)
i = pi + α

~

2ℓ2
ǫijri (23.15)

=
~

ℓ2
ǫijξj (23.16)

defined for α = ±1. Here α = +1 gives the canonical momentum. Show that

[

π
(α)
i , π

(β)
j

]

= iαǫijδαβ
~
2

ℓ2
(23.17)

The Hamiltonian

H =
1

2m
(pi + eAi)(pi + eAi) (23.18)

can then be rewritten as

H =
1

2m
π
(+1)
i π

(+1)
i (23.19)

with a sum on i = x̂, ŷ implied. Finally use

a = (−π(+1)
y + iπ(+1)

x )
ℓ√
2~

(23.20)

b = (π(−1)
y + iπ(−1)

x )
ℓ√
2~

(23.21)

to confirm that a and b are given by Eqs. 23.7 and 23.12 respectively. Finally
confirm Eq. 23.6 by rewriting Eq. 23.19 using Eqs. 23.20 and 23.21.
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A typical Place to get confused is the definition of ∂. Note that

∂z = ∂̄z̄ = 1 (23.22)

∂̄z = ∂z̄ = 0 (23.23)

Hints to part f: Rewrite the operators a, a†, b, b† such that they operate on
polynomials, but not on the Gaussian factor. Construct z̄ in terms of these
operators. Then project.
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Topological Insulators 24
The integer quantum Hall effect is one of the simplest examples of what
is now called a “topological insulator”. To explain what this is, and why
it is interesting, let us review some basic facts about band structure and
non-interacting electrons.1 1In this chapter we are thinking about

non-interacting electrons in periodic
potentials!

24.1 Topological Phases of Matter

We will consider systems of electrons in some periodic environment —
which is what an electron would experience in a real material crystal2. 2Some of the ideas discussed here do

not depend too much on the system be-
ing precisely periodic.

We can thus describe our system as some single electron kinetic energy
and some periodic potential — or equivalently as some tight-binding
model. Bloch’s theorem tells us that the eigenstates of such a periodic
Hamiltonian can be written in the form

|Ψαk〉 = eik·r|uαk〉
where α is the band index, and uα

k
(x) is a function periodic in the unit

cell.
The eigen-spectrum breaks up into bands of electron states. If a (va-

lence) band is completely filled and there is a gap to next (conduction)
band which is empty, we generally call the system a band insulator. The
conventional wisdom in most solid state physics books is that such band
insulators carry no current. This wisdom, however, is not correct. A
prime example of this is the integer quantum hall effect! As we have
just seen for the integer quantum Hall effect we have a filled band and
a gap in the single electron spectrum. And while such a system carries
no longitudinal current (and correspondingly has σxx = 0) it does carry
Hall current with σxy = ne2/h.
One might object that the integer quantum Hall effect is not really a

valid example, because it does not have a periodic potential. However,
it is certainly possible to add a very weak periodic potential to the
quantum Hall system and maintain the gap.
It turns out that there is a topological distinction in the wavefunctions

for the quantum Hall effect versus what we think of as a traditional band
insulator. One way to describe this is to think of the band structure as
being a mapping from the Brillouin zone (inequivalent values of k) to
the space of possible wavefunctions

k → uα
k
(x). (24.1)
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Once we have such a mapping we can ask about whether there are topo-
logically different mappings, or whether one mapping can be continu-
ously deformed to another.
An analogy is to consider a mapping from a circle S1 to a circle S1,

eiθ → eif(θ)

Here, one can topologically classify the mapping by its winding number.
One such mapping cannot be continuously deformed into another if the
two mappings have different winding numbers.
Similarly we can define a “winding number” (known as a “Chern”

number) of the band structure map Eq. 24.1 for two dimensional systems.
This integer topological quantity turns out to be precisely the quantized
Hall conductance in units of e2/h. We give an explicit expression for
this quantity in section *** below. Similar topological definitions of
“winding numbers” of the map Eq. 24.1 can be given in any dimension.
If we imagine continously changing the physical Hamiltonian, this

Chern number, which must be an integer, cannot change continously.
It can only change by making it impossible to define a Chern number.
This happens when if the system becomes a metal — i.e, if the gap be-
tween the filled and empty state closes. Thus we cannot deform between
different topological classes without closing the gap.
Indeed, this general picture gives us a simple rule for topological clas-

sification:

Definition of Topological Phase: Two gapped states of matter
are in the same topological phase of matter if and only if you can
continuously deform the Hamiltonian to get from one state to the
other without closing the excitation gap.

Although in this chapter we are concerned with non-interacting electrons
only, this sort of definition can obviously be used much more generally
to distinguish different phases of matter. Further this definition fits with
our intuition about topology

Two objects are topologically equivalent if and only if you can con-
tinuously deform one to the other.

In the context of noninteracting electron band structure, one can de-
fine topologically “trivial” phases of matter to be those that can be
continuously deformed without closing the gap into individual atomic
sites with electrons that do not hop between sites. (A ”trivial” band
structure). Phases of matter that cannot be continuously deformed to
this trivial band structure without closing a gap are known as topologi-
cally nontrivial.

24.1.1 Gapless Edges

The existence of gapless edge states on the edge of integer quantum Hall
samples is one of the fundamental properties of topologically nontrivial
phases of matter (at least when one is considering topological properties
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of noninteracting electron band structure). We can give a rough argu-
ment about why edge states always come with topologically nontrivial
phases.
Suppose we have a Hamiltonian that is almost periodic, but the poten-

tial is a very function of position, say in the x-direction. In other words
if we move very far in the x-direction the Hamiltonian changes smoothly
from H(x1) to H(x2), but locally both of these look like simple periodic
Hamiltonians. If H(x1) and H(x2) are not in the same topological phase
of matter, than for some x between x1 and x2, we have H(x) describing
some gapless system — i.e., an edge state between the two phases.
For example, in the case of the integer quantum Hall effect, we can

think of H(x1) as being the Hamiltonian of the system in the bulk which
has nonzero Chern number, and H(x2) as being the Hamiltonian outside
of the system, or the vacuum, which is topologically trivial and has zero
Chern number. Somewhere between the two, the gap must close to give
a metal where the Chern number changes. This is the edge state.

24.2 Curvature and Chern Number

The Gauss-Bonnet theorem give an beautiful connection exists between
topology and geometry. The statement of the theorem is that for any
closed two dimensional orientable surface the integral of the Gaussian
curvature K over the surface gives 2π(2− 2g) where g is the number of
handles of the surface. Or mathematically3 3The definition of Gaussian curvature

K at a point is 1/K = ±rmaxrmin
where rmax and rmin are the maximum
and minimum radii of curvatures of the
surface at that point. The sign of K
is taken to be negative if the surface
is saddle-like at that point rather than
dome-like.

2π(2− 2g) =

∫

M

KdS

One can check, for example, with a sphere of radius R we haveK = 1/R2

and g = 0, so that both sides give 4π independent of R. The interesting
point here is that if you dent the sphere, you increase the curvature at
some points, but you decrease it at other points such that the integral
of the curvature over the surface remains the same. The only way to
change this quantity is to rip the surface and add a handle!
It turns out that we can define a similar curvature that describes the

topological index (the Chern-number) of the band structure. Let us
define what is known as the Berry curvature of the αth band

Fα(k) = ǫij〈∂kiuαk|∂kjuαk〉

The topological Chern-number of the αth filled band is then given by
the integral of the Berry curvature over the Brillouin zone,

Cα =
1

2π

∫

BZ

dk Fα(k)

which is analogously quantized to be an integer.
In appendix *** we use the Kubo formula to calculate the Hall con-

ductivity and we find that it is related to the Chern number by4

4The realization that the Hall conduc-
tance is the topological Chern number
in 1982 was made in a famous paper
known as TKNN. This is one of key
contributions that earned a Nobel Prize
for David Thouless in 2016.
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σxy =
e2

h

∑

filled bands α

Cα

Considering Laughlin’s proof that the Hall conductance is quantized,
this might be considered a sufficient proof that the Chern number must
be quantized as well. To see how this occurs mathematically, see ap-
pendix ***.

24.3 Symmetry Protection

Symmetry is one of the most fundamental ideas in modern physics. We
often think about how physics changes when a symmetry is forced on a
system. Considering the above definition of topological phases of matter
in section 24.1, one may generalize this idea to systems with symmetry.

Definition of Symmetry Protected Topological Phase: Two
gapped states of matter are in the same symmetry protected topo-
logical phase of matter if and only if you can continuously deform
the Hamiltonian to get from one state to the other without closing
the excitation gap or breaking the given symmetry.

The most interesting example of this is time reversal symmetry. Sys-
tems without magnetism and without magnetic impurities are time-
reversal symmetric. In three dimensions, it turns out that there are no
band structures that satisfy the above definition of a nontrivial topolog-
ical phase of matter. In other words, all gapped periodic single-electron
Hamiltonians can be deformd to a trivial Hamiltonian without closing
the gap. However, if we enforce time reversal invariance, it turns out
that there are band structures that cannot be deformed into the trivial
band structure without closing the gap or breaking symmetry. These are
known as “topological insulators” and are formally symmetry protected
topological phases, where the symmetry is time reversal.

24.4 Appendix: Chern Number is Hall
Conductivity

Here we calculate the Hall conductivity by simple time dependent per-
turbation theory and demonstrate that it is the same as the Chern num-
ber.
The general rule of time dependent perturbation theory is that if a

system is exposed to a perturbation δH(t) the expectation of an operator
O at some later time is given by

〈O(t)〉 = i

~

∫ t

−∞
dt′〈[O(t), H(t′)]〉

If we consider an electric field at frequency ω we write this in terms of
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the vector potential. Applying a perturbing vector potential we have

δH =

∫
dxA(x, t) · j(x, t)

From perturbation theory we then have

〈ja(x, t)〉 =
i

~

∫ t

−∞
dt′
∫
dx′〈[ja(x, t), jb(x′, t′)]Ab(x′, t′)
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Quantum Hall Effect 25
charge-flux
Having determined that the quantum Hall effect is some sort of spec-

troscopy on the charge of the electron, it was particularly surprising
in 1982 when Dan Tsui and Horst Stormer1 discovered quantum Hall 1Stormer had recently invented the

idea of “modulation doping” semicon-
ductors, which is a technique to obtain
extremely clean two dimensional elec-
tron systems — a prerequisite for ob-
serving fractional quantum Hall effect.

plateaus at fractional values of the filling fraction

ν = p/q

with Hall resistance

RH =
h

e2
q

p

with p and q small integers. This effect is appropriately called the Frac-
tional quantum Hall effect.
The first plateau observed was the ν = 1/3 plateau2 , but soon there- 2The legend is that Tsui very pre-

sciently looked at the data the moment
it was taken and said “quarks!” realiz-
ing that the fractional plateau implied
charge fractionalization!

after many more plateaus were discovered3. The Nobel Prize for this

3Over 60 different fractional quantum
Hall plateaus have been discovered!

discovery was awarded in 1998.
Given our prior gauge invariance argument that quantum Hall effect is

measuring the charge of the electron — and that this is enforced by the
principle of gauge invariance, it is hard to understand how the fractional
effect can get around our prior calculation.
Two things must be true in order to have quantized Hall effect

(a) Charge must fractionalize into quasiparticles with
charge e∗ = e/q, for example in the case of ν = 1/q.

(b) The ground state on an annulus must be degenerate,
with q different ground states (in the case of ν = 1/q)
which cycle into each other by flux insertion through the
annulus.

We should not lose sight of the fact that these things are surprising
— even though the idea of degenerate ground states, and possibly even
fractionalized charges, is something we have perhaps gotten used to in
our studies of topological systems.
Given the Laughlin argument that inserting a flux though the annulus

pumps an integer number of electrons from one side to the other, it is
perhaps not surprising that fractional quantization of the Hall conduc-
tance must imply that a fractional charge has been pumped from one
side of the annulus to the other (hence point (a) above). The way we
get around the gauge invariance argument that implies the charge must
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be an integer is by having multiple degenerate ground states. In our
argument for the Integer quantum hall effect we used adiabaticity, and
the existence of a gap, to argue that we must stay in the ground state.
However when there are multiple ground states (point (b) above) we
can only argue that we must always be in some ground state. Thus, for
example, in the case of ν = 1/3 where there are three ground states, the
cycle of inserting flux is

insert φ0−→ |GS1〉 insert φ0−→ |GS2〉 insert φ0−→ |GS3〉 insert φ0−→ |GS1〉 insert φ0−→

where GS here means ground state. Each insertion of flux pumps
e∗ = e/3 charge from one side to the other. After three fractionally
charged particles move from one side to the other, this amounts to a
single electron being moved from one side to the other, and we return
to exactly the same ground state as we started with.
So now we need only figure out how it is that this unusual situation of

fractionalized charges, and multiple ground states (indeed, this situation
of a topological quantum field theory!) comes about.

Want an incompressible state: Ignore disorder for now

We need to understand how we have an incompressible state when a
Landau level is partially filled. As with the integer case, disorder will
be important in allowing us to have plateaus of finite width, but the
fundamental physics of the fracitonal quantum Hall effect comes from the
fact that we have a gapped incompressible systems at a particular filling
fraction. We can thus choose to consider a system free from disorder
with the understanding that localization of excitations will be crucial to
actually observe a plateau.

Why This is a Hard Problem: Massive Degeneracy

We restrict our attention to a clean system with a partially filled (say,
1/3 filled) Landau level. If there are Ne electrons in the system, there
3Ne available single electron orbitals in which to place these electrons.
Thus in the absence of disorder, and in the absence of interaction, there
are (

3Ne
Ne

)
∼ (27/4)Ne

multiparticle states to choose from — and all of these states have the
same energy! In the thermodynamic limit this is an insanely enormous
degeneracy4. This enormous degeneracy is broken by the interaction

4For example, if our system of size 1

square cm has a typically 1011 electrons
in it, the number of degenerate states at
ν = 1/3 is roughly 10 to the 100 billion
power! Way way way more than the
number of atoms in the universe.

between the electrons, which will pick out a very small ground state
manifold (in this case being just 3 degenerate ground states), and will
leave the rest of this enormous Hilbert space with higher energy.
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25.0.1 Our Model Hamiltonian

Since we are to neglect disorder, we can write the Hamiltonian for our
system of interacting electrons as

H =
∑

i

(pi + eA(ri))
2

2m
+
∑

i<j

V (ri − rj)

where the first term is just the kinetic energy of the electrons in the
magnetic field, as discussed in Section 23.5, and the second term is
the interaction beween the electrons, which we might take to be of 1/r
Coulomb form, or perhaps a modified Coulomb form depending on the
physical situation we are concerned with5. 5For example, we could have a screened

Coulomb potential if there are polariz-
able electrons nearby. The finite width
of the quantum well also alters the ef-
fective Coulomb interaction.

Now we have already analyzed the first term in this Hamiltonian back
in Eq. 23.5, resulting in the structure of Landau levels. If we further
assume that the cyclotron energy ~ωc (the energy gap between Landau
levels) is very large compared to the interacton energy scale V , then
we can assume that there is very little effect of higher Landau levels
— the interaction simply breaks the massive degeneracy of the par-
tially filled Landau level without mixing in the higher Landau levels (or
putting holes in any completely filled Landau levels below the chemical
potential). Another way to say this is that we are pursuing degenerate
perturbation theory. The kinetic energy is completely determined (we
just fill up Landau levels from the bottom up) and interaction only plays
a role to break the degeneracy of the partially filled level.
The effective Hamiltonian is then just

H =
∑

i<j

V (ri − rj) (25.1)

where the Hilbert state is now restricted to a single partially filled Lan-
dau level. But here it might look like we are completely stuck. We
have an enormously degenerate Hilbert space — and we have no small
parameter for any sort of expansion.
Laughlin’s insight was to simply guess the correct wavefunction for

the system!6. In order to describe this wavefunction we need to have

6Decades of experience doing compli-
cated perturbation theory led many
people off on the wrong path — towards
complicated calculations — when they
should have been looking for something
simple!a bit more elementary information about wavefunctions in a magnetic

field (some of this is a homework problem!).

25.1 Landau Level Wavefunctions in
Symmetric Gauge

We will now work in the symmetric gauge where the vector potential is
written as

A =
1

2
r×B

where the magnetic field is perpendicular to the plane of the sample.
(We can check that this gives ∇×A = B.
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In this gauge, lowest Landau level wavefunctions (as mentioned before
in section 23.8) take the form77We will ignore the spin degree of free-

dom as before.

ϕm(z) = Cmz
me−|z|2/(4ℓ2) (25.2)

where

z = x+ iy = reiθ

is the complex representation of the particle coordinate, ℓ =
√
~/eB is

the magnetic length, Cm is a normaliztion constant and here m ≥ 0 is
an integer. The most general lowest Landau level wavefunction for a
single particle would be f(z) times the gaussian factor for any analytic
function f .
Note that the higher Landau level wavefunctions can all be obtained

by application of a raising operator (which involve some prefactors of z∗)
to the lowest Landau level wavefunctions. This algebra is discussed in a
homework problem, so we will not belabor it here. A key point is that
all Landau levels are effectively equivalent and any partially filled higher
Landau level is equivalent to a partially filled lowest Landau level with
an appropriately modified interaction. As such, we will focus exclusively
on the lowest Landau level from here on.
Let us take a close look at the structure of the wavefunctions in

Eq. 25.2. First we note that ϕm is an eigenstate of the angular mo-
mentum operator L̂ (centered around the point z = 0)

L̂ ϕm = ~mϕm

Secondly we should examine the spatial structure of ϕm. Writing |φm|2 ∼
r2m exp(−r2/(2ℓ2)) and differentiating with respect to r we find that the
maximum of this function is at radius

r = ℓ
√
2m

Thus the function roughly forms a gaussian ring at this radius. The
area enclosed by this ring is πr2 = 2πmℓ2 = mφ0/B, which contains
precisely m quanta of magentic flux.

25.1.1 What We Want in a Trial Wavefunction

In building a trial wavefunction for fractional quantum Hall effect, sev-
eral rules will be important to follow

(1) Analytic Wavefunction: The wavefunction in the lowest Lan-
dau level should be comprised of single particle wavefunctions ϕm —
that is, it must be a polynomial in z (with no z∗’s) times the gaussian
factors. In other words we should have88The polynomial can also be chosen so

as to have all real coefficients. This
is becuase the Hamiltonian, once pro-
jected to a single Landau level, i.e.,
Eq. 25.1, is time reversal symmetric.

Ψ(r1, . . . , rN ) = (Polynomial in z1, . . . zN)
N∏

i=1

e−|zi|2/(4ℓ2)
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(2) Homogeneous in Degree: Since the Hamiltonian is rotationally
invariant, we can expect that the eigenstates will be angular momentum
eigenstates. Since the L̂ operator counts powers of z, this means that
the (Polynomial in z1, . . . zN ) part of the wavefunction must be homo-
geneous of degree.

(3) Maximum Power of zi is Nφ = Ne/ν: Since the radius of
the wavefunction is set by the exponent of zm, the full radius of the
quantum Hall droplet is given by the largest power of any z that occurs
in the wavefunction. Since the area enclosed by the wavefunction should
correspond to Nφ fluxes, this should be the maximum power.

(4) Symmetry: The wavefunction should be fully antisymmetric due
to Fermi statistics, assuming we are considering fractional quantum Hall
effect of electrons. It is actually very useful theoretically (and does
not seem out of the question experimentally!9) to consider fractional 9While no one has yet produced frac-

tional quantum Hall effect of bosons in
the laboratory, proposals for how to do
this with cold atoms or interacting pho-
tons are plentiful, and it seems very
likely that this will be achieved in the
next few years.

quantum Hall effect of bosons as well — in which case the wavefunction
should be fully symmetric.

Even given these conditions we still have an enormous freedom in
what wavefunction we might write down. In principle this wavefunc-
tion should depend on the particular interaction V (r) that we put in
our Hamiltonian. The miracle here is that, in fact, the details of the
interaction often do not matter that much!

25.2 Laughlin’s Ansatz

Laughlin simply guessed that a good wavefunction would be of the
form10 10Note that this wavefunction is not

normalized in any sense. The issue of
normalization becomes important later
in ***.

Ψ
(m)
Laughlin =

∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

The proposed wavefunction is properly analytic and homogeneous in
degree. The maximum power of the wavefunction is

Nφ = m(N − 1)

thus corresponding to a filling fraction

ν = N/Nφ → 1/m in large N limit

And the wavefunction is properly antisymmetric for m odd, and is sym-
metric for m even.
It is worth noting that for m = 1 the Laughlin wavefunction corre-

sponds to a filled Landau level — that is, a single slater determinant
filling all of the orbitals from m = 0 to m = Nφ = N − 1. (This is a
homework problem!)
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It is also worth noting that the density of the Laughlin wavefunction
is completely constant in a disk up to its radius (and then the density
falls quickly to zero). This constancy of density is proven by plasma
analogy (which is another homework problem)11.
Why should we think this wavefunction is particularly good? As two

particles approach each other, the wavefunction vanishes as m powers.
This means that the particles have low probability of coming close to
each other — thus keeping the interaction energy low.
Being that the polynomial in each variable is of fixed degree Nφ, the

polynomial has a fixed number of analytic zeros. For the Laughlin wave-
function all of these zeros are on the positions of the other particles —
thus the wavefunction arranges that the particles stay as far away from
each other as possible in some sense.

25.2.1 Exact statements about Laughlin
Wavefunction

It turns out that the Laughlin wavefunciton is actually the exact ground
state of a special inter-particle interaction12.12This was discovered by Haldane in

1983, then again by Trugman and
Kivelson and also Pokrovski and Ta-
lapov in 1985. Bosons at ν = 1/2

Consider a system of bosons with the interparticle interaction given by1313Actually this is a very realistic inter-
action for cold atom bosonic quantum
Hall effect, should it be produced in the
future.

V = V0
∑

i<j

δ(ri − rj)

with V0 > 0. This is a non-negative definite interaction.
It is clear that the ν = 1/2 Laughlin state of bosons Ψ

(m=2)
Laughlin has

zero energy for this interaction, since there is zero amplitude of any two
particles coming to the same point. Further, however, the Laughlin state
is the highest density wavefunction (lowest degree polynomial) that has
this property14. For example, the Laughlin state times any polynomial14Although with some thought this fact

seems obvious, proving it rigorously is
tricky.

is also a zero energy state of this interaction, but since it has been mul-
tiplied by a polynomial, the total degree of the wavefunction is higher,
meaning the wavefunction extends to higher radius, making the system
less dense. A schematic of the ground state energy as a function of filling
fraction for this case is shown in Fig. 25.1.

11Roughly the story is as follows. The probability |Ψ(z1, . . . , zN )| of finding particles
at position z1, . . . , zN can be phrased as a classical stat mech problem of a one-
component 2d coulomb plasma in a background charge, by writing

|Ψ|2 = e−βU(z1,...,zN )

with β = 2/m and

U = −m2
∑

i<j

log(|zi − zj |) +
m

4

∑

i

|zi|2

where the first term is the coulomb interaction in 2d, and the second term is a
background charge — which happens to be the charge associated with a uniform
positve background (an easy thing to check using gauss’s law). Assuming this plasma
screens the background charge, it will be of uniform density up to a constant radius.
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Fig. 25.1 Schematic of the ground state energy as a function of filling fraction for
bosons with delta function interaction.

The key point is that the ground state energy has a cusp, which means
there is a jump in the chemical potential

µ =
∂E

∂N
This is precisely the same “incompressibility” as we have in the case of
noninteracting electrons — where the chemical potential jumps between
Landau levels! As in that case we presume that the presence of a cusp
in the free energy, in the absence of disorder, will be enough to give us
a plateau when disorder is added back in.
Now while we can easily show that there is a change of behavior at

ν = 1/2 in this plot, it is somewhat more difficult to be convincing that
the slope coming from the right is finite — i.e., that the gap is actually
finite. In order to do that, we would need to think about the elementary
excitations, or resort to numerics.

Fermions at ν = 1/3

The arguments given for bosons at ν = 1/2 can be easily generalized to
the case of fermions (i..e, electrons) at ν = 1/3 (and more generally to
any ν = 1/m.) Obviously a δ-function interaction will no longer do the
job, since for fermions Pauli exclusion prevents any two fermions from
coming to the same point already. However, consider an interaction of
the form

V = V0
∑

i<j

∇2δ(ri − rj)

Given a wavefunction Ψ(r1, . . . , rN ) the interaction energy will be

E =
∑

i<j

∫
dr1 . . .drN |Ψ|2 ∇2δ(ri − rj)

Writing

Ψ(dr1 . . .drN ) = φ(z1 . . . zN )
N∏

i=1

e−|zi|2/(4ℓ2) (25.3)
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with φ meaing the analytic polynomial part, for fermionic wavefunctions
(that must vanish when ri = rj) the expression for the energy can be
integrated by parts15 using ∇2 = 4∂z∂z∗ to give15Generally one would expect deriva-

tives of the gaussian part as well when
we integrate by parts. However, be-
cause the polynomial is antisymmetric,
the derivitive must act on the poly-
nomial part to prevent the wavefunc-
tion from vanishing when particle coor-
dinates coincide.

E =
∑

i<j

∫
dr1 . . .drN |∂ziφ|2 δ(ri − rj)

N∏

i=1

e−|zi|2/(2ℓ2)

Thus we have a non-negative definite interaction. Further, if the
wavefunction vanishes as a single power when two particles come to-
gether, then ∂zφ will be nonzero and we will get a postive result (Since
∂zi(zi − zj) is nonzero). However, if the wavefunction vanishes as three
powers ∂zφ will remain zero (since ∂zi(zi − zj)

3 goes to zero when
zi = zj)

16.16Note that by antisymmetry the wave-
function must vanish as an odd number
of powers as two particle positions ap-
proach each other.

Thus, entirely analously to the above case of ν = 1/2 with the δ-
function interaction, the Laughlin m = 3 (ν = 1/3) wavefunction is the
exact ground state (unique highest density zero energy wavefunction)
of the ∇2δ-function interaction. With similar ideas, one can construct
interactions for which any ν = 1/m Laughlin wavefunction is exact.

25.2.2 Real Interactions

Obviously electrons do not interact via a ∇2δ interaction. They inter-
act via a Coulomb interaction17 What is perhaps surprising is that the17In higher Landau levels, although the

interaction is Coulomb, when the single
Landau level problem is mapped to a
single partly filled lowest Landau level
(See the comments after Eq. 25.2), the
interaction gets modified – this mainly
effects the short range behavior.

Laughlin wavefunction is an almost perfect representation of the actual
ground state. This statement comes from numerical tests. For exam-
ple, for 9 electrons (on a spherical geometry to remove edge effects) the
dimension of the fully symmetry reduced Hilbert space18 is 84, and yet

18The full Hilbert space is 45207 di-
mensional!

the Laughlin trial wavefunction has an overlap squared of .988 with the
exact ground state of the Coulomb interaction. This is absurdly accu-
rate! The energy of the Laughlin wavefunction differs from the energy of
the exact Coulomb ground state by less than a part in two thousand19.

25.3 Quasiparticles

The Laughlin quantum hall ground state is a uniform density fluid (we
will actually show this as a homework problem). Density perturbations
are made in discrete units of charge known as quasiparticles. Positively
charged bumps of charge (opposite the charge of the electron) are known
as quasiholes and negatively charged bumps of charge (same charge of
the electron) are quasielectrons.

25.3.1 Quasiholes

For the quasiholes, it is fairly easy to guess their wavefunction (and
indeed this was done by Laughlin). We start by considering adding a

19I need to recheck this number***.
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quasihole at postion 0. This leaves the system rotationally invariant.
We guess the solution

Ψqh(0) =

[
N∏

i=1

zi

]
ΨLaughlin

where 0 indicates we have put the quasihole at position 0. Here the
degree of the polynomial is increased by one for every variable, so each
filled orbital gets pushed out to the next orbital. This leaves precisly one
empty orbtial open at positon 0. Since our wavefunction has filling frac-
tion ν, this means that on average a fraction ν of the orbitals are filled.
Thus leaving the orbital at the center completely empty corresponds to
a positive charge of +ν, and our quasihole has a positive charge

e∗ = νe.

Another way to think about the same wavefunction is to imagine
adiabatically inserting a quantum of flux φ0 at positon 0. Analogous
to the Laughlin argument for integer quantum Hall effect, This creates
an azimuthal EMF. Since the system has quantized Hall conductance
σxy = νe2/h, the total charge created is νe = σxyφ0. Then once we
have inserted the flux, the flux quantum can be gauged away leaving
only the quasihole behind.
One can make quasiholes at any location w analogously,

Ψqh(w) =

[
N∏

i=1

(zi − w)

]
ΨLaughlin

although this is no longer an angular momentum eigenstate. We can
similarly consider multiple quasiholes the same way

Ψqhs(w1, . . . , wM ) =

[
M∏

α=1

N∏

i=1

(zi − wα)

]
ΨLaughlin

Several interesting comments at this point:

(1) While the z’s are physical electron coordinates, the w parameters
are simply parameters of the wavefunction and can be chosen and fixed
to any value we like. The wavefunction Ψ(w1, . . . wM ; z1, . . . zN) is then
the wavefunction of electrons z in the presence of quasiholes at fixed w
positions.

(2) Note that the phase of the wavefunction wraps by 2π when any
electron moves around the position of a quasihole.

(3) For the special ultra-short-range wavefunctions for which the Laugh-
lin ground state is an exact zero energy eigenstate, then this Laughlin
quasihole is also an exact zero energy eigenstate (albeit one with lower
density than the ground state since a hole has been inserted). Take for
example the case of ν = 1/2. With a δ-function interaction, the energy is
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zero because no two particles come to the same point. Multiplying this
wavefunction by any polynomial (as we have done to insert quasiholes)
maintains this property and we still have a zero energy eigenstate. As
is the case for the Laughlin ground state, the quasihole is not exact for
the Coulomb interaction, but is extremely accurate numerically.

(4) At ν = 1/m, if we insert m quasiholes at the same point w, then
the wavefunction is just the same as if we were to have an electron e at
the point w (although the electron is not there). Thus we expect that
“fusing” m quasiholes together should precisely make an anti-electron
(or a real hole).

25.3.2 Quasielectrons

The quasi-electron is a bump of negative charge (i.e, same charge as the
electron). Unlike the case of quasiholes, there are no exact wavefunctions
that we know of for quasi-electrons (not even for special short range
interactions).
Whereas the quasi-hole increases the total degree of the polynomial

wavefunction (thereby decreasing the density of the system) the quasi-
electron should decrease the total degree of the wavefunction. Again,
Laughlin made a very good guess of what the wavefunction for the quasi-
electron should be. Considering a quasi-electron at the origin, we can
write

Ψqe(0) =

([
N∏

i=1

∂

∂zi

]
φ

)
N∏

i=1

e−|zi|2/(4ℓ2)

where as in Eq. 25.3 we have written the Laughlin wavefunction as the
polynomial part φ times the gaussian factors. Obviously the derivative
correctly reduces the degree of the polynomial by one in each varaible z,
thus reducing the net angular momentum of each paricle by one. Each
particle moves to lower radius by one orbital, thus giving a pile-up of
charge of e∗ = −eν at the origin.
In analogy to (but opposite that of) the quasihole, we might have

looked for a quasi-electron where electrons accumulate a phase of −2π
when an electron moves around the quasiparticle. One might think of
the operator z∗, but this operator does not live in the lowest Landau
level. However, the projection of this operator to the lowet Landau level
is given by

PLLLz
∗ = 2ℓ2

∂

∂z

(This is a homework assignment!).
As mentioned above, the Laughlin quasi-electron is not exact for any

known system. However, it is a fairly good trial wavefunction numeri-
cally for the Coulomb interaction. Note however, that other forms for
the quasi-electron wavefunction have been found to be somewhat more
accurate.
One can move the quasielectron to any position in a similar way as
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for quasiholes giving a wavefunction of the form

Ψqes(w) =

([
N∏

i=1

(
2ℓ2

∂

∂zi
− w∗

)]
φ

)
N∏

i=1

e−|zi|2/(4ℓ2)

25.3.3 Fractional Charge and Statistics?

The quasiparticles of the Laughlin state thus have fractional charge.
One should not lose sight of how surprising this is — that particles can
emerge that are a fraction of the “elementary” particles of the system.
If we lived at very low energy, we would experience these quasiparticles
as the fundamental particles of the system and would not know of the
existence of the underlying electron.
Once one accepts fractionalized charge, it is perhaps not surprising

to discover that they also have fractional statistics. Proving this state-
ment is nontrivial, and we will do it in several ways. Note that since
the quasiparticles are charged, moving them around in a magentic field
incurs phases. We would like thus like to compare the phase of moving
a particle in a loop versus moving a particle in a loop when another
particle might be inside the loop, see fig. 25.2

Fig. 25.2 To find the statistical phase, we compare moving a particle in a loop
versus moving it in the same loop when another particle is inside the loop.

We shall perform this comparison next after we introduce Berry’s
phase, which is the effect which produces the statistical phase we are
interested in.

25.4 Digression on Berry’s Phase

The Berry phase20 is one of the most fundamental ideas of modern 20Berry’s work on Berry Phase in 1984
had a number of precursors, most no-
tably the work of Pancharatnam in
1956.

physics. We recall the adiabatic theorem. If you start in an eigenstate
and change a Hamiltonian sufficiently slowly, and there are no level
crossings, then the system will just track the eigenstate as it slowly
changes — i.e., it remains in the instantaneous eigenstate. However,
during this process it takes a bit of thought to figure out what happens
to the phase of the wavefunction.
To see how this correction arises, let us consider a Hamiltonian H(R)

which is a function of some general parameters which we will summarize
as the vector R. In our case these parameters are going to represent the
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quasiparticle position — we will insert this information into the Hamilto-
nian by having some trapping potential which induces the quasiparticle
at the point R and we can then move around the trapping potential in
order to move the particle. Let us write the instantaneous (here nor-
malized!) eigenstate as |ψ(R)〉. So we have

H(R)|ψ(R)〉 = E(R)|ψ(R)〉

Now let us write the full, time dependent wavefucntion as

|Ψ(t)〉 = eiγ(t) |ψ(R(t))〉

so we are allowing for an additional phase out front of the instantaneous
eigenstate. The time dependent Schroedinger equation is

i~
∂

∂t
|Ψ(t)〉 = H(R(t))|Ψ(t)〉

[
−~γ̇ + i~

∂

∂t

]
|ψ(R(t))〉 = E(R(t))|ψ(R(t))〉

Projecting this equation onto the bra 〈ψ(R)| we obtain

γ̇ = −E(R(t))/~− i

〈
ψ(R(t))

∣∣∣∣
∂

∂t

∣∣∣∣ψ(R(t))

〉

Integrating over some path R(t) from some initial time ti to some final
time tf gives

γ(tf )− γ(ti) = − 1

~

∫ tf

ti

E(R(t))dt − i

∫
Rf

Ri

dR · 〈ψ(R) |∇R|ψ(R)〉

The first term is the expected dynamical phase — just accumulating a
phase with time proportional to the energy. The second term on the right
is the Berry phase contribution — a line integral along the particular
path that R(t) takes. Note that this term depends only on the geometry
of the path and not on how long one takes to move through this path.
In this sense is it s a geometric phase.

25.5 Arovas-Schrieffer-Wilczek Calculation of
Fractional Statistics

This section follows the approach of Arovas, Schrieffer and Wilczek21.21Wilczek won a Nobel for his work on
assymptotic freedom. Schrieffer won a
Nobel for his work on BCS theory of
superconductivity. Arovas was a grad
student at the time.

Let us consider a ν = 1/m wavefunction for a quasihole

Ψ(w) = N (|w|)
[
N∏

i=1

(zi − w)

]
Ψ

(m)
Laughlin

and we will imagine moving around the position w in a circle of con-
stant radius as shown in the right of Fig. 25.2. Here we have inserted a
normalization constant out front, which can be shown to be a function
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of radius only. (This is argued by plasma analogy, which is part of the
homework). We will then parameterize22 the position of the particle by 22On can choose a more general path

for the particle but we will then need
the detailed form of N (w). See the dis-
cussion below in section ***

the angle θ and w = |w|eiθ .
The Berry phase from moving the particle in a loop will then be

∆γ = −i
∫ 2π

0

dθ 〈Ψ(θ)|∂θ|Ψ(θ)〉

where we have written |Ψ(θ)〉 to mean |Ψ(|w|eiθ)〉. We then have

∂θ|Ψ(θ)〉 = ∂w

∂θ

(
∑

i

−1

zi − w

)
|Ψ(θ)〉

Thus we have

〈Ψ(θ)|∂θ|Ψ(θ)〉 = ∂w

∂θ

∑

i

〈
Ψ(θ)

∣∣∣∣
−1

zi − w

∣∣∣∣Ψ(θ)

〉

Thus from taking w around in a circle we obtain the Berry phase23

∆γ = −i
∮
dθ 〈Ψ(θ)|∂θ |Ψ(θ)〉

= −i
∮
dw
∑

i

〈
Ψ(w)

∣∣∣∣
−1

zi − w

∣∣∣∣Ψ(w)

〉

Now the integral around the loop of 1/(z − w) accumulates 2πi if and
only if zi is inside the loop. Thus we obtain the phase

∆γ = 2π 〈number of electrons in loop〉
= 2π(1/m)Φ/φ0 = γAB

where Φ is the flux enclosed by the loop and φ0 is the flux quantum (and
here we have used ν = 1/m). This is precisely the expected Aharonov-
Bohm phase that we should expect for moving a charge e/m around a
flux Φ.
Now we consider putting another quasiparticle in the center of the

loop as shown in the left of Fig. 25.2. Using a normalization factor that
is again a function of |w| only, the same calculation holds, but now the
number of electrons enclosed has changed by one quasiparticle charge
e/m. Thus the phase is now

∆γ = γAB + γstatistical

where the additional phase for having gone around another quasihole is
given by

γstatistical = 2π/m

or in other words we have fractional statistics! For example, for the
Laughlin state at ν = 1/2, we have semionic statistics.

23The way this is written it is obviously a bit nonsense. Please fix it. I wrote this
footnote, but now I don’t see what is wrong with what I have here! ***
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A more detailed version of this calculation (we will do this below)
shows that the path of the particle does not matter —- the total phase
is always the Aharanov-Bohm phase for taking a particle around flux,
added to the statiscal phase of taking it around another quasiparticle.

Comment on the Fusion/Braiding Rules, and Chern-Simons
theory

For the ν = 1/m Laughlin state thus we have a situation where the
elementary quasi-holes have statistics θ = 2π/m. We can assume that
their antiparticles will have the same statistics (both opposite “charge”
and “flux” in a charge-flux model). We also have that the fusion of m
elementary quasi-electrons or quasi-holes forms an an electron or anti-
electron.
In the case where m is even, the underlying “electron” is a boson, in

which case we can think of this electron as being identical to the vacuum
— it has trivial braiding with all particles and it is essentially condensed
into the ground state as some sort of background superfluid. Thus we
have a simple anyon theory with m particle types.
On the other hand, when m is odd, we have the situation (discussed

in our “charge-flux composite” section ***) where the fusion of m ele-
mentary anyons forms a fermion — and so there are actually 2m par-
ticle types — the fermion full-braids trivially with everything, but has
fermionic statistics with itself. This situtation is “non-modular” — it
does not have as many ground states as it has particle types. There are
only m ground states, despite 2m particle types.

25.6 Gauge Choice and Monodromy

The Laughlin wavefunction with M quasiholes takes the form

Ψ(w1, . . . , wM ; z1, . . . , zN) = (25.4)

N (w1, . . . , wN )

[
M∏

α=1

N∏

i=1

(zi − wα)

]
Ψ

(m)
Laughlin(z1, . . . , zN)

where N is a normalizing factor.
By using a plasma analogy (this is a homework assignment) we find

that the normalization must be of the form

|N (w1, . . . , wM )| = C
∏

α<β

|wα − wβ |1/m
M∏

α=1

e−|wα|2/(4ℓ∗2)

where C is some constant and

ℓ∗ =

√
~

e∗B

is the effective magnetic length for a particle of charge e∗ = e/m. This
choice of normalization assures that

〈Ψ(w1, . . . , wM )|Ψ(w1, . . . , wM )〉
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independent of the position of the quasiholes.
Now, we can choose the phase of the factor N arbitrarily — this

is essentially a gauge choice. In the above Arovas, Schrieffer, Wilczek
calculation above, we chose the phase to be real. However, this is just a
convention. An intersting different convention is to choose

N (w1, . . . , wN ) = C
∏

α<β

(wα − wβ)
1/m

M∏

α=1

e−|wα|2/(4ℓ∗2) (25.5)

which is known as holomorphic or “fractional statistics” gauge – here
the fractional statistics of the quasiparticles are put explicitly into the
wavefunction! Note here that this function is not single valued in the
w-coordinates. In this gauge, we see that the wavefunction has branch
cuts and can be thought of as having Riemann sheets. This may look
problematic, but it is not. While a wavefunction must be single-valued
in the physical electron coordinates, the w’s are just parameters of the
wavefunction, and we are allowed to choose wavefunctions’ phase con-
ventions in any way we like – even in non-single-valued ways as we have
done here.
What we would want to confirm is that the physical phase accumu-

lated in moving one quasihole around another is independent of our
gauge choice. To this end we note that the total phase accumulated
can be decomposed into two pieces, the so-called monodromy and the
Berry phase. The monodromy is the phase explicitly accumulated by
the wavefunction when one coordinate is moved around another.

Total Phase = Monodromy+ Berry Phase

In the above Arovas-Schrieffer-Wilczek calculation, we chose the phase
of the normalization to be everywhere real. So there is no monodromy
— no explicit phase as we move one particle around another. However,
in fractional statistics gauge we see a phase of 2π/m for each particle
which travels counterclockwise around another. In both gauges the total
phase should be the same, so in the holomorphic gauge, the statistical
part of the phase should be absent. Let us see how this happens.

25.6.1 Fractional Statistics Calculation: Redux

Let us consider the case of two quasi-holes and repeat the argument
of Arovas-Schrieffer-Wilczek but in holomorphic gauge. Putting one
quasihole at postition w and another at position w′ the wavefunction is

Ψ(w) = C(w − w′)1/me−(|w|2+|w′|2)/(4ℓ∗2) ×∏

i

(zi − w)(zi − w′)
∏

i<j

(zi − zj)
∏

i

e−|zi|2/(4ℓ2)

with C chosen so that Ψ is normalized independent of the quasihole
coordinates.24 Let us parameterize the path of a quasiparticle as w(τ).

24Strictly speaking the wavefunction is
normalized in this form only if w and
w′ are not too close together — keep-
ing them a few magnetic lengths apart
is sufficient. This all comes from the
plasma analogy calculation.
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We can write the Berry phase as

∆γ = −i
∮
dτ〈Ψ(τ)|∂τ |Ψ(τ)〉

We write
∂

∂τ
=
∂w

∂τ

∂

∂w
+
∂w∗

∂τ

∂

∂w∗ (25.6)

Now, because we are using holomorphic gauge of the wavefunction the
∂/∂w∗ only hits the gaussian factor, so we have

〈Ψ(w)|∂w∗|Ψ(w)〉 = − w

4ℓ∗2
〈Ψ(w)|Ψ(w)〉 = − w

4ℓ∗2

To evaluate the derivative ∂/∂w we integrate by parts so that it acts
on the bra rather than the ket. Now since the bra is completely anti-
holomorphic in w except the gaussian, the derivative acts only on the
gaussian again to give

〈Ψ(w)|∂w |Ψ(w)〉 = ∂w [〈Ψ(w)|Ψ(w)〉] − [∂w〈Ψ(w)|] |Ψ(w)〉
=

w∗

4ℓ∗2
〈Ψ(w)|Ψ(w)〉 = w∗

4ℓ∗2

Note that the derivative on 〈Ψ|Ψ〉 here is zero because the wavefunction
is assumed normalized to unity for every value of w.
We then have the Berry phase given by

∆γ = −i
∮
dτ〈Ψ(τ)|∂τ |Ψ(τ)〉 = −i 1

4ℓ∗2

∮
(dww∗ − dw∗w)

where we have used Eq. 25.6. We now use the complex version of Stokes
theorem25 to obtain25The complex version of Stokes is as

follows. Using w = x+ iy
∫

∂A
(Fdw −Gdw∗)

= 2i

∫

A
(∂w∗F + ∂wG)dxdy

∆γ =
Area

ℓ∗2
= 2π(1/m)Φ/φ0

which is the Aharanov-Bohm phase corresponding to the flux enclosed
in the path – without giving the fractional statistical phase which has
now been moved to the monodromy!
The key point here, which we emphasize, is that if we work with nor-

malized holomorphic wavefunctions (i.e., holomorphic gauge), then the
fractional statitics are fully explicit in the monodromy of the wavefunc-
tion — we can read the statistics off from the wavefunction without
doing any work!

25.7 Appendix: Building an Effective

(Chern-Simons) Field Theory

We can consider writing an effective field theory for this ν = 1/m quan-
tum Hall system. First let us think about how it responds to an exter-
nally applied electromagnetic field. It should have its density locked to



25.8 Appendix: Quantum Hall Hierarchy 289

the magnetic field, so we should have a change of electron density (In
this section we set ~ = e = 1 for simplicity)

δn = j0 =
1

2πm
δB

Similarly we should expect a quantized Hall conductance, here with j
being the current of electrons

ji = − 1

2πm
ǫijEj

Both of these can be summarized as the response to a perturbing vector
potential

jµ =
−1

2πm
ǫµνλ∂νδAλ (25.7)

We must, of course have charge conservation as well. This is easy to
enforce by writing the current in the form

jµ =
1

2π
ǫµνλ∂νaλ (25.8)

which then automatically satisfies

∂µj
µ = 0

In this language, the effective Lagrangian that produces Eq. 25.7 as an
equation of motion is then

L =
−m
4π

ǫµνλaµ∂νaλ +
1

2π
ǫµνλAµ∂νaλ + jµq aµ

where jq is the quasiparticle current. Note that without the Aµ term,
this is the same Chern-Simons theory we used for describing fractional
statistics particles (now the quasiparticles).
To see the coupling to the external vector potential, note that the

general (Noether) current associcated with the local gauge symmetry
will be

jµ =
∂L
∂Aµ

which matches the expression from Eq. 25.8. By differentiating the La-
grangian with respect to aµ we generate the equations of motion Eq. 25.7.
More here

25.8 Appendix: Quantum Hall Hierarchy

Good reference is https://arxiv.org/abs/1601.01697
Shortly after the discovery of the Laughlin ν = 1/3 state additional

fractional quantum Hall plateaus were discovered at filling fractions such
as ν = 2/3, 2/5, 3/7 and so forth. By now over 60 different plateaus have
been observed in experiment!
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The Laughlin theory only describes filling fractions ν = 1/m but it
contains in it the right ideas to build possible theories for many of these
fractions.
There are several approaches to building a hierarchy of quantum Hall

states, however perhaps the most intuition comes from the original ap-
proaches by Haldane and Halperin in 1983.
The general idea is to begin with a Laughlin wavefunction for N elec-

trons with coordinates zi for ν = 1/m then change the magnetic field to
add a large number M of quasiparticles (say in the form of 25.4, in the
case of quasiholes) at coordinates wα. Thus our wavefunction we write
as

Ψ(w1, . . . wM ; z1, . . . zN )

as written in Eq. 25.4. We then write a pseudowavefunction to describe
some dynamics of the quasiholes which we write as

φ(w1, . . . , wM )

An electron wavefunction is generated by integrating out the quasihole
coordinates. Thus we have

Ψ̃(z1, . . . zN ) =

∫
dw1, . . .dwM φ∗(w1, . . . , wM )Ψ(w1, . . . wM ; z1, . . . zN )

The general idea of this scheme is that the pseudo-wavefunction can itself
be of the form of a Laughlin wavefunction. In the original Laughlin
argument we wrote down wavefunctions for both boson and fermion
particles. Here, the particles w are anyons, so we need to write a slightly
different form of a wavefunction. We expect

φ(w1, . . . , wM ) =
∏

α<β

(wα − wβ)
1
m

+p

with p an even integer. The fractional power accounts for the fact
that the anyon wavefunction must be multi-valued as one particle moves
around another. The factor p is to include a “Laughlin” factor repelling
these anyons from each other without further changing the statistics.
The condensation of these quasi-particles into a Laughlin state gener-

ates a wavefunction for the filling fraction

ν =
1

m± 1/p

with the ± corresponding to whether we are condensing quasiparticles
or quasiholes. One can continue the argument starting with these new
fractions and generating further daughter states and so forth. At the
next level for example, we have

ν =
1

m± 1
p± 1

q

By repeating the procedure, any odd denominator fraction ν = p/q can
be obtained.
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Exercises

Exercise 25.1 Filled Lowest Landau Level
Show that the filled Lowest Landau level of non-interacting electrons (a

single slater determinant) can be written as

Ψ0
m = N

∏

1≤i<j≤N
(zi − zj)

1
∏

1≤i≤N
e−|zi|2/4ℓ2 (25.9)

with N some normalization constant. I.e, this is the Laughlin wavefunction
with exponent m = 1.

Exercise 25.2 Laughlin Plasma Analogy
Consider the Laughlin wavefunction for N electrons at positions zi

Ψ0
m = N

∏

1≤i<j≤N
(zi − zj)

m
∏

1≤i≤N
e−|z|2/4ℓ2 (25.10)

with N a normalization constant. The probability of finding particles at po-
sitions {z1, . . . , zN} is given by |Ψm(z1, . . . zN)|2.

Consider now N classical particles at temperature β = 1
kbT

in a plane
interacting with logarithmic interactions v(~ri − ~rj) such that

βv(~ri − ~rj) = −2m log(|~ri − ~rj |) (25.11)

in the presence of a background potential u such that

βu(|~r|) = |~r|2/(2ℓ2) (25.12)

Note that this log interaction is “Coulombic” in 2d (i.e., ∇2v(~r) ∝ δ(~r)).
(a) Show that the probability that these classical particles will take po-

sitions {~r1, . . . , ~rN} is given by |Ψ0
m(z1, . . . zN)|2 where zj = xj + iyj is the

complex representation of position ~ri. Argue that the mean particle density
is constant up to a radius of roughly ℓ

√
Nm. (Hint: Note that u is a neu-

tralizing background. What configuration of charge would fully screen this
background?)

(b) Now consider the same Laughlin wavefunction, but now with M quasi-
holes inserted at positions w1, . . . , wM .

Ψm = N (w1, . . . , wM )





∏

1≤i≤N

∏

1≤α≤M
(zi −wα)



Ψ0
m (25.13)

where N is a normalization constant which may now depend on the positions
of the quasiholes. Using the plasma analogy, show that the w−z factor may be
obtained by adding additional logarithmically interacting charges at positions
wi,with 1/m of the charge of each of the z particles

(c) Note that in this wavefunction the z’s are physical parameters (and the
wavefunction must be single-valued in z’s), but the w’s are just parameters of
the wavefunction – and so the function N could be arbitrary — and is only
fixed by normalization. Argue using the plasma analogy that in order for the
wavefunction to remain normalized (with respect to integration over the z’s)
as the w’s are varied, we must have

|N (w1, . . . , wM )| = K
∏

1≤α<γ≤M
|wα −wγ |1/m

∏

1≤α≤M
e−|wα|2/(4mℓ2) (25.14)
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with K a constant so long as the w′s are not too close to each other. (Hint: a
plasma will screen a charge).



Fractional Quantum Hall Edges 26
26.1 Parabolic Confinement

For studying fractional quantum Hall edge states, it is perhaps most
useful to consider a parabolic confinement potential. Considering the
simple particle Hamiltonian, and adding this confining potential to the
kinetic energy we have

Hconfined = H0 + γr2

where H0 is the single particle Hamiltonian in the asence of the confine-
ment.
Since the confinement is rotationally symmetric, we can still classify

all eigenstates by their angular momemtum quantum numbers. Using
symmetric gauge we can still write the single particle eigenstates as1 1Note that the parabolic confinement

modifies the magnetic length.

ϕm ∼ zme−|z|2/(4ℓ2)

where m is the eigenvalue of the angular momentum2 operator L̂. Since 2We drop the ~ from the angular mo-
mentum operator so its eigenvalues are
just numbers.

the radius of these states is r ≈ ℓ
√
2m it is not surprising that the

confinement energy γr2 of each eigenstate is proportional to m. We
thus have

Hconfined = H0 + αL̂

for some constant α.
For integer filling, the edge excitations are very much like the edge

excitations we discussed above in Landau gauge. A round quantum Hall
droplet fills m states up to a chemical potential along the edge. One
can add a small amount of angular momentum to the edge by exciting
a filled state from an m just below the chemical potential to an empty
state just above the chemical potential.

26.2 Edges of The Laughlin State

We now consider adding an interaction term so as to produce a fractional
quantum Hall state. It is convenient to think about the limit where the
cyclotron energy is huge (so we are restricted to the lowest Landau level),
the interaction energy is large, so we have a very well formed quantum
Hall state, and finally, the edge confinement is weak.
In particular if we choose to consider the special ultra-short range

interaction potentials (such as δ function for bosons at ν = 1/2) we still
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have the ground state given exactly by the Laughlin state

Ψ
(m)
Laughlin =

∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

such that it has zero interaction energy. The angular momentum of the
Laughlin ground state is just the total degree of the polynomial

Lground = m
N(N − 1)

2

with confinement energy

Eground = αm
N(N − 1)

2

While the Laughlin state has zero interaction energy it is also the case
that any polynomial times the Laughlin state also has zero interaction
energy since multipying by a polynomial does not ruin the fact that the
wavefunction vanishes as m or more powers as two particles approach
each other. Thus we can consider all possible wavefunctions of the form

Ψ = (Any Symmetric Polynomial)Ψ
(m)
Laughlin

where we insist that the polynomial is symmetric such that the symmetry
of the wavefunction remains the same (i.e, antisymmetric for fermions
and symmetric for bosons).
If the degree of the symmetric polynomial is ∆L, then we have

L = Lground +∆L

E = Eground + α∆L

We can organize the possible excitations by their value of ∆L. We thus
only need to ennumerate all possible symmetric polynomials that we can
write in N variables of some given degree ∆L.
We thus need some facts from the theory of symmetric polynomials.

The symmetric polynomials on the N variables z1, . . . , zN form a so-
called “ring” (this means you can add and multiply them). A set of
generators for this ring is given by the functions

pm =
N∑

i=1

zmi

This means that any symmetric function on N variables can be written
as sums of products of these functions3. Thus it is extremely easy to3In fact because the interaction Hamil-

tonian that we are studying is purely
real when written in the ϕm basis, we
can take the coefficients in the polyno-
mials to be entirely real too. See foot-
note ****

count symmetric functions. Of degree 1, we have only p1. At degree 2,
we have p21 and also p2. Thus the vector space of symmetric polynomials
of degree two (with real coefficients) is two dimensional. We can build
a corresponding table as shown in Table 26.1.
Thus the number of edge excitations at a given angular momentum

follows a pattern, 1, 2, 3, 5, 7, . . . with energy increasing linearly with the
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L− Lground dimension basis functions Energy

1 1 p1 α
2 2 p2, p1p1 2α
3 3 p3, p2p1, p1p1p1 3α
4 5 p4, p3p1, p2p1p1, p1p1p1p1 4α
5 7 p5, p4p1, p3p2, p3p1p1, p2p2p1, p2p1p1p1, p1p1p1p1p1 5α

Table 26.1 Table of Symmetric Polynomials

added angular momentum. Note that this result holds also for the ν = 1
Laughlin state (i.e., for the integer quantum Hall effect), and matches
the counting for excitations of a chiral fermion (try this exercise!4 )

26.2.1 Edge Mode Field Theory: Chiral Boson

An equivalent description of the edge modes is given by the Hamiltonian

H =
∑

m>0

(αm)b†mbm

where the b†m are boson creation operators satisfying the usual commu-
tations

[bm, b
†
n] = δnm

and we think of these boson creation operators b†m as creating an el-
emetary excitation of angular momentum m on the ground state which
we will call |0〉 for now. We can build a table describing all of the states
in fock space of this Hamiltonian, ordered by their angular momentum as
shown in Table 26.2. We see the fock space is precisely equivalent to the
above table of polynomials. In fact the analogy is extremely precise. In
the thermodynamic limit, up to a known normalization constant, appli-
cation of b†m is precisely equivalent to multiplication of the wavefunction
by pm.
These operators describe a chiral boson – chiral because they only have

positive angular momentum m > 0 not negative angular momentum.5

4To get you started, consider filled states in a line filled up to the chemical potential.
We can think of these as dots in a row. For example, let the ground state be

. . . • • • • • • ◦ ◦ ◦ ◦ . . .
where • means a filled single particle eigenstate and ◦ means empty. Now if we add
one unit of (angular) momentum, we have the unique state

. . . • • • • • ◦ • ◦ ◦ ◦ . . .
adding two units can be done in two ways

. . . • • • • • ◦ ◦ • ◦ ◦ . . .
and

. . . • • • • ◦ • • ◦ ◦ ◦ . . .
thus starting the series 1, 2, 3, 5, 7 . . ..
5An achiral bose field on a circle requires both positive and negative angular mo-
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L− Lground dimension basis fock states Energy

1 1 b†1|0〉 α

2 2 b†2|0〉, b†1b
†
1|0〉 2α

3 3 b†3|0〉, b†2b
†
1|0〉, b†1b

†
1b

†
1|0〉 3α

4 5 b†4|0〉, b†3b
†
1|0〉, b†2b

†
1b

†
1|0〉, b†1b

†
1b

†
1b

†
1|0〉 4α

Table 26.2 Fock Space for Chiral Bosons

26.3 Appendix: Edges and Chern-Simons
theory

The existence of the edge theory could have been predicted from the ef-
fective Chern-Simons Lagrangian of the bulk. As mentioned previously,
the Abelian Chern-Simons action is gauge invariant on a closed mani-
fold. However, for a manifold with boundary, the action is not gauge
invariant. This is what is known as an anomaly. The solution to this
problem is that the action becomes gauge invariant only once it is added
to an action for the low energy edge theory! We will not go through the
detailed argument for this here.

mentum modes).



Conformal Field Theory
Approach to Fractional
Quantum Hall Effect 27
In the last chapter we saw that we have an edge theory which is a chiral
boson — a 1+1 dimensional dynamical theory. We can think of this
theory as being a 2 dimensional cut out of a 3 dimensional space-time
manifold. Now in a well-behaved topological theory, it should not matter
too much how we cut our 3-dimensional space-time manifold. Thus we
expect that the same chiral bose theory should somehow also be able to
describe our 2+0 dimensional wavefunction. Since all chiral topological
theories have gapless edges, this approach can be quite general.
1+1 dimensional gapless theories can all be described by conformal

field theories (CFTs) possibly perturbed by irrelevant operators. And
conformal field theories in 1+1 dimension are particularly powerful in
that they are exactly solvable models, which can be used to describe
either the dynamics of 1+1 dimensional systems or classical statistical
mechanical models in 2 dimensions.
While we cannot provide a complete introduction to CFT here (see

Ginsparg’s lectures, Fendley’s notes, or for a much more complete dis-
cussion, see the Big Yellow Book), it turns out that we need very little of
the machinery to proceed. Furthermore, a large fraction of this machin-
ery will look extremely familiar from our prior study of TQFTs. Indeed,
there is an extremely intimite connection between CFTs and TQFTs —
and much of what we know about TQFTs has grown out of the study
of CFTs.
We will begin by seeing how this works for the chiral boson, which is

perhaps the simplest of all 1+1d CFTs. Below we will show how the
scheme works in more detail in the context of quantum Hall physics.
This approach, first described by Moore and Read, has been extremely
influential in the development of TQFTs and their relationship to the
quantum Hall effect.

27.1 The Chiral Boson and The Laughlin

State

An interesting feature of theories in 1+1d is that they can often be
decomposed (mostly1) cleanly into right moving and left moving pieces.

1There may be issues with the decom-
position, for example, in the case of
the boson, there is a complication as-
sociated with the so-called zero-mode,
which we will ignore for simplicity.

So for example, if we take the simplest possible 1+1 d system, a free
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boson, we can write an achiral Lagrangian density for a field Φ(x, t) as

L ∝ (∂µΦ)(∂
µΦ)

This can be decomposed into right and left moving pieces as

Φ(x, t) = φ(x− vt) + φ̄(x+ vt)

where φ is right-moving and φ̄ is left-moving and these are two different
fields. For simplicity we will set the velocity v = 1.
In the previous chapter we deduced that the edge theory of the Laugh-

lin state could be described by a chiral boson Hamiltonian

H =
∑

m>0

(αm)a†mam

Quantizing the boson lagrangian we find that22We have dropped the zero mode here.

φ(x) =
∑

m>0

i√
m
e2πimx/La†m + h.c. (27.1)

where L is the (periodic) length of the system.
We will often work in complex coordinates x and τ = it, so we have

we write Φ(z, z∗) where z = x+ iτ and z∗ = x− iτ correspond to right
(holomorphic) and left-moving (antiholomorphic) coordinates.
As free bose fields, we can use Wick’s theorem on the fields φ and all

we need to know is the single two point correlator3

3Perhaps the easiest way to see this is
to calculate directly from Eq. 27.1. See
exercise ***. Another way to obtain
this is to aim for the achiral result

〈Φ(z, z∗)Φ(z′, z′∗)〉 = − log(|z − z′|2)
To see where this comes from, it is eas-
iest to think about a 2d classical model
where the action is

S = (8π)−1

∫

dxdy|∇Φ|2

With a partition function

Z =

∫

DΦ e−S[Φ]

It is then quite easy to calculate the cor-
relator 〈ΦkΦk′〉 = δk+k′ |k|−2. Fourier
transforming this then gives the result.

〈φ(z)φ(z′)〉 = − log(z − z′)

Note that we think of this correlation function as a correlation in a 1+1d
theory even though we are working with complex z.
From this chiral φ operator we construct the so-called vertex operators

Vα(z) =: eiαφ(z) :

where : : means normal ordering4 A straightforward exercise (assigned4The usual understanding of normal or-
dering is that when we decompose a
field into creation and annihilation op-
erators, we can normal order by mov-
ing all the annihilation operators to the
right. Another way to understand it
is that when we expand the exponent
eiαφ(z) = 1+ iαφ(z) + (iα)2φ(z)φ(z) +
. . .. There will be many terms where
φ(z) occurs to some high power and
that looks like a divergence because the
correlator of two φ fields at the same
position looks log divergent. Normal
ordering is the same as throwing out
these divergences.

as homework!) using Wick’s theorem then shows that

〈Vα1
(z1)Vα2

(z2) . . . VαN (zN )〉 = e−
∑
i<j αiαj〈φ(zi)φ(zj)〉

=
∏

i<j

(zi − zj)
αiαj (27.2)

so long as ∑

i

αi = 0 (27.3)

(otherwise the correlator vanishes).
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27.1.1 Writing the Laughlin Wavefunction

We then define an “electron operator” to be

ψe(z) = Vα(z)

where we will choose
α =

√
m

This then enables us to write the holomorphic part of the Laughlin
wavefunction as

Ψ
(m)
Laughlin = 〈ψe(z1)ψe(z2) . . . ψe(zN )Q̂〉 =

∏

i<j

(zi − zj)
m

The index α must be chosen such that α2 is an integer such that the
wavefucntion is single valued in the electron coordinates. Note that here
although the correlator means a 1+1d theory, we are constructing a
wavefunction for a 2d system at fixed time!
Here, the operator Q̂ can be chosen in two different ways. One pos-

sibility is to choose Q̂ = V−Nα, i.e., a neutralizing charge at infinity
such that Eq. 27.3 is satisfied and the correlator does not vanish. This
approach is often used if one is only concerned with keeping track of the
holomorphic part of the wavefunction (which we often do). A more phys-
ical (but somewhat more complicated) approach is to smear this charge
uniformly over the system. In this case, the neutralizing charge, almost
magically, reproduces precisely the gaussian factors that we want!5. 5To see how this works, we divide

the background charge into very small
pieces (call them β) to obtain a corre-
lator of the form

em
∑
i<j log(zi−zj)−ǫ

√
m

∑
i,β log(zi−zβ)

the term with ǫ2 we throw away as we
will take the limit of small ǫ. Now here
we realize that we are going to have a
problem with branch cuts around these
small charges — which we can handle
if we work in a funny gauge. Changing
gauge to get rid of the branch cuts we
then get only the real part of the second
term. The second term is then of the
form
∑

i,β

log(|zi − zβ |) →
∫

d2r log(|z − r|)

where we have taken the limit of in-
creasing number of smaller and smaller
charges. We define this integral to be
f(z). It is then easy to check that
f(z) ∼ |z|2 which is most easily done
by taking ∇2f(z) and noting that log is
the coulomb potential in 2d so Gauss’s
law just gives the total charge enclosed.

Thus we obtain e−|z|2 as desired. A
more careful calculation gives the con-
stant correctly as well.

27.1.2 Quasiholes

Let us now look for quasihole operators. We can define another vertex
operator

ψqh(w) = Vβ(w)

and now insert this into the correlator as well to obtain

Ψqh(w) = 〈ψqh(w)ψe(z1)ψe(z2) . . . ψe(zN)Q̂〉 (27.4)

=

[
∏

i

(zi − w)β
√
m

]
Ψ

(m)
Laughlin

Since we must insist that the wavefunction is single valued in the z
coordinates, we must choose

β = p/
√
m

for some positive integer p, where the minimally charged quasiparticle
is then obviously p = 1. (Negative p is not allowed as it would create
poles in the wavefunction).
Further, using this value of the the charge β, along with the smeared

out background charge, we correctly obtain the normalizing gaussian
factor for the quasiparticle

e−|w|2/(4mℓ2)
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This is the correct gaussian factor, with an exponent 1/m times as big
because the charge V1/

√
m is 1/m times as big as that of the electron

charge V√m.
If we are now to add multiple quasiholes, we obtain the wavefunction

Ψ(w1, . . . , wM ) = 〈ψqh(w1) . . . ψqh(wM )ψe(z1) . . . ψe(zN )Q〉 (27.5)

= C
∏

α<β

(wα − wβ)
1/m

M∏

α=1

e−|wα|2/(4ℓ∗2)
[
M∏

α=1

N∏

i=1

(zi − wα)

]
Ψ

(m)
Laughlin

which is properly normalized

〈Ψ(w1, . . . wM )|Ψ(w1, . . . wM )〉 = Constant

and is in holomorphic gauge. As discussed previously in chapter ***
with a normalized holomorphic wavefunction we can simply read off the
fractional statistics as the explicit monodromy.
Note that we can consider fusion of several quasiparticles

V1/
√
m × V1/

√
m → V2/

√
m (27.6)

Fusion of m of these elementary quasiholes produces precisely one elec-
tron operator V√m. Since the electrons are “condensed” into the ground
state, we view them as being essentially the identity operator, at least in
the case of m even, which means we are considering a Laughlin state of
bosons. Thus there are m species of particle in this theory. In the case
of m odd, we run into the situation mentioned in chapter *** where the
electron is a fermion, so really there are 2m species of particles in the
theory.
The idea is that by using conformal field theory vertex operators we

automatically obtain normalized holomorphic wavefunctions and we can
determine the statistics of quasiparticles straightforwarldy. This is a key
feature of the Moore-Read approach. While there is no general proof
that this will always be true (that the resulting wavefunctions will be
properly normalized) it appears to hold up in many important cases.
We hope now to generalize this construction by using more com-

plicated conformal field theories. This then generates more compli-
cated fractional quantum Hall wavefunctions corresponding to more
complcated TQFTs.

27.2 What We Need to Know About
Conformal Field Theory

I can’t possibly explain CFT in a few pages. (See the big yellow book.
Ginsparg’s lectures are nice for introduction. So are Fendley’s notes),
but given what we already know about TQFTs many of the rules are
going to seem very natural. Indeed, much of the math of TQFTs arose
via CFTs.
CFTs are quantum theories in 1+1 dimension6. They are generically

6We will restrict our attention to uni-
tary CFTs so that these are well be-
haved 1+1 d theories. Although certain
2 dimensional stat mech models can be
related to non-unitary CFTs, these do
not correspond to well behaved TQFTs.
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highly interacting theories, and most often it is impossible to write an
explicit Lagrangian for the theory, but due to the special properties
of being in 1+1 and having conformal invariance (guaranteed by being
gapless in 1+1 d) these models are exactly solvable.
A particular CFT is defined by certain information known as con-

formal data, which basically mimics the defining features of a TQFT:

(1) There will be a finite set7 of so-called primary fields, which we 7A nonrational CFT may have an infi-
nite number of particle types, but these
are badly behaved and do not appear to
correspond to nice TQFTs.

might call φi(z) (or we may use other notation). These are analogous
to the particle types in a TQFT. Every CFT has an identity field often
called I (which isn’t really a function of position). Correlators of these
fields

〈φj1 (z1) . . . φjN (zN )〉

are always holomorphic functions of the z arguments, although there
may be branch cuts.

(2) Each primary field has a scaling dimension8 or conformal
weight or conformal spin, which we call hi. The scaling dimension of
I is hI = 0. We have see these quantities before when we discussed twists
in world lines. Often we will only be interested in h modulo 1, since the
twist factor is e2πih. Each primary field has descendant fields which are
like derivatives of the primary and they have scaling dimensions hi plus
an integer (we will typically not need these, but for example, ∂zφi has
scaling dimension hi + 1).

(3) Fusion relations exist for these fields, which are associative and
commutative

φi × φj =
∑

k

Nk
ijφk

where fusion with the identity is trivial

I × φj = φj

As with TQFTs, each particle type has a unique antiparticle. We will
give a clearer meaning to these fusion relations in a moment when we
discuss operator product expansion.

The expectation of any correlator in the theory is zero unless all the
fields inside the correlator fuse to the identity. For example, if we have a
Z3 theory where it requires three ψ particles fuse to the identity, then we
would have 〈ψ(z)ψ(w)〉 = 0. We saw this law previously in the neutrality

8In CFT we have the powerful relation that if we make a coordinate transform w(z)
then any correlator of primary fields transforms as

〈φi1 (w1) . . . φiN (wN )〉 =
[

(

∂w1

∂z1

)−hi1
. . .

(

∂wN

∂zN

)−hiN
]

〈φi1 (z1) . . . φiN (zN )〉

However, we will not need this relationship anywhere for our discussion!
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condition for the chiral boson. The expectation of the identity I is unity.

The fundamental theorem we need, which is beyond the simple anal-
ogy with TQFT is the idea of an operator product expansion. The
idea is that if you take two field operators in a conformal field theory
and you put them close together, the product of the two fields can be
expanded as sum of resulting fields

lim
w→z

φi(w)φj(z) =
∑

k

Ckij(w − z)hk−hi−hjφk(z) + . . .

Here the Ckij are coefficients which crucially are zero when Nk
ij is zero.

In other words, when two fields are taken close together, the result looks
like a sum of all the possible fusion products of these field. On the right
hand side note that by looking at the scaling dimensions of the fields,
we obtain explicit factors of (w − z). The . . . terms are terms that are
smaller (less singular) than the terms shown and are made of descendant
fields and higher powers of (w − z). Crucially, no new types of branch
cuts are introduced except those that differ by integers powers from (and
are less singlar than) those we write explicitly.
The convenient thing about the operator product expansion (or “OPE”)

is that it can be used inside expectation values of a correlator. So for
example

lim
w→z

〈ψa(w)ψb(z) ψc(y1)ψd(y2) . . . ψn(ym)〉 =
∑

k

Ckab(w − z)hk−ha−hb〈ψk(z) ψc(y1)ψd(y2) . . . ψn(ym)〉

27.2.1 Example: Chiral Boson

The free boson vertex Vα has scaling dimension

hα =
α2

2

The fusion rules are

VαVβ = Vα+β

corresponding to the simple addition of “charges”. The resulting oper-
ator product expansion is then

Vα(w)Vβ(z) ∼ (w − z)αβVα+β(z)

where we have used the notation ∼ to mean in the limit where w goes
to z, and where the exponent is here given as

hα+β − hα − hβ =
(α+ β)2

2
− α2

2
− β2

2
= αβ

Note that this fusion law for the chiral boson gives more precise meaning
to the fusion law we wrote in Eq. 27.6. ***(clean this up)**
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27.2.2 Example: Ising CFT

The Ising CFT is actually the CFT corresponding to a 1+1 d free
fermion, so it is particularly simple. The theory has three fields, I, σ, ψ
with scaling dimensions

hI = 0

hσ = 1/16

hψ = 1/2

The fact that hψ = 1/2 is an indication that it is a fermion. The
nontrivial fusion rules are (exactly as in the Ising TQFT *** previously)

ψ × ψ = I

ψ × σ = σ

σ × σ = I + ψ

As in the case of TQFTs, it is the multiple terms on the right hand side
that make a theory nonabelian.
We can write the operator product expansion

ψ(w)ψ(z) ∼ (w − z)hI−hψ−hψI + . . .

∼ I

w − z
+ . . .

The antisymmetry on the right hand side is precisely the behavior one
should expect from fermions. It is crucial to note that within the . . . all
terms are similarly antisymmetric (and are less singular). Similarly, we
have

ψ(w)σ(z) ∼ (w − z)hσ−hσ−hψ σ(z) + . . .

∼ (w − z)−1/2 σ(z) + . . .

where again the . . . indicates terms which have the same branch cut
structure but are less singular . In other words, wrapping w around z
should incur a minus sign for all terms on the right.
Finally we have the most interesing OPE9 9Remember these exponents of 1/8 and

3/8 from the Ising anyon homework
problems? ***σ(w)σ(z) ∼ CIσσ(w − z)−1/8I + Cψσσ(w − z)3/8ψ(z) + . . . (27.7)

where all terms in the . . . must have branch cuts that match one of the
two leading terms.
Let us consider calculating a correlator,

lim
w→z

〈σ(w)σ(z)〉

Since from rule (4) above, the two fields must fuse to the identity, we
must choose the identity fusion channel only from the OPE. We then
obtain

lim
w→z

〈σ(w)σ(z)〉 ∼ (w − z)−1/8 (27.8)
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On the other hand, calculating

lim
w→z

〈σ(w)σ(z)ψ(y)〉

in order to fuse to the identity, we must choose the ψ fusion of the two σ
fields such that this ψ can fuse with ψ(y) to give the identity. We thus
have

lim
w→z

〈σ(w)σ(z)ψ(y)〉 ∼ (w − z)3/8 (27.9)

Similarly one can see that fusion of two σ’s in the presence of any even
number of ψ fields will be similar to Eq. 27.8, whereas in the presence
of any odd number of ψ fields it will be like Eq. 27.9.
Since the Ising CFT is actually a free fermion theory, we can use

Wick’s (fermionic) theorem for correlators of the ψ fermi fields with the
added information that10,1110Insert footnote or appendix that de-

rives this. See Yellow Book for now!
11Add footnote on wick’s theorem?*** 〈ψ(z)ψ(w)〉 = 1

z − w

which is exactly true, not only in the OPE sense. However, we cannot
use Wick’s theorem on correlators of the σ fields which are sometimes
known as “twist” fields — we can think of these as altering the boundary
conditions

27.3 Quantum Hall Wavefunction Based on
Ising CFT: The Moore-Read State

Let us try to build a quantum Hall wavefunction based on the Ising CFT.
We must first choose a field which will represent our electron. One might
guess that we should use the fermion field. However, when two ψ fields
come together the correlator (and hence our wavefunction) diverges, so
this cannot be acceptable. Instead, let us construct an electron field
which is a combination of the Ising ψ field and a chiral bose vertex Vα

ψe(z) = ψ(z)Vα(z)

These two fields are from completely different 1+1d theories and are
simply multiplied together.
We then look at the operator product expansion to see what happens

when two electrons approach each other

ψe(z)ψe(w) ∼
[

I

z − w

] [
(z − w)α

2

V2α

]

where the first bracket is from the Ising part of the theory and the second
bracket is from the bose part of the theory. In order for this to not be
singular, we must have α2 be a positive integer. If we choose

α2 = m
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withm odd we have an overall bosonic operator (ψe(z)ψe(w) = ψe(w)ψe(z))
whereas if we choosem even we have an overall fermionic operator. How-
ever, we cannot choose m = 0 since that leaves a singularity. Thus we
have the electron operator of the form

ψe(z) = ψ(z)V√m(z)

with m ≥ 1. Using this proposed electron operator we build the multi-
particle wavefunction

Ψ = 〈ψe(z1)ψe(z2) . . . ψe(zN )Q〉

where Q is the background charge for the bose field. Since the Ising and
bose fields are completely seperate theories we can take the expectation
for the bose field to give

Ψ = 〈ψ(z1)ψ(z2) . . . ψ(zN)〉
∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

where the correlator is now in the Ising theory alone.
Now the Ising correlator must be zero unless there are an even number

of ψ fields (since we need them to fuse to the identity). If the number
of fermi fields is indeed even, then we can use the fact that ψ is a free
fermi field and we can invoke Wick’s theorem to obtain

〈ψ(z1)ψ(z2) . . . ψ(zN )〉 = A
[

1

z1 − z2

1

z3 − z4
. . .

1

zN−1 − zN

]

≡ Pf

(
1

zi − zj

)
(27.10)

Here A means antisymmetrize over all reordering of the z’s. Here we
have written the usual notation for this antisymmetrized sum Pf which
stands for “Pfaffian”12. Thus we obtain the trial wavefunction based on 12Several interesting facts about the

Pfaffian: A BCS wavefunction for a
spinless superconductor can be written
as Pf[g(ri − rj)] where g is the wave-
function for a pair of particles. Any
antisymmetric matrix Mij has a Pfaf-
fian

Pf[M ] = A[M12M34...].

Also it is useful to know that
(Pf[M ])2 = detM .

the Ising CFT

Ψ = Pf

(
1

zi − zj

)∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

which is known as the Moore-Read wavefunction. For m odd this is a
wavefunction for bosons and form even it is a wavefunction for fermions.
To figure out the filling fraction, we note that the Pfaffian prefactor
only removes a single power in each variable. Thus the filling fraction
is determined entirely by the power m, and is given (like Laughlin) by
ν = 1/m.

27.3.1 Some Exact Statements About the
Moore-Read Wavefunction

For simplicity, let us consider the m = 1 case ν = 1 for bosons, which
is the easiest to think about analytically. The wavefunction does not
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vanish when two particles come to the same point, since the zero of
the (z1 − z2) can be canceled by the pole of the Pfaffian. However, it
is easy to see that the wavefunction must vanish (quadratically) when
three particles come to the same point (three factors from (z − z)1 but
then one factor in the denominator of the Pfaffian).
Note that, even were we to not have an explicit expression for the

Moore-Read wavefunction we would still be able to use the operator
product expansion to demonstrate that the wavefunction (for m = 1)
must vanish quadratically when three particles come to the same point13.13To see this, note that taking the first

two particles to the same point gives

lim
z2→z1

ψe(z1)ψe(z2) ∼ IV2(z1)

Then fusing the third particle

lim
z3→z1

ψe(z3)V2(z1) ∼ (z3−z1)2ψV3(z1)

Analogous to the case of the Laughlin wavefunction, it turns out that
the Moore-Read wavefunction (for m = 1) is the exact (highest density)
zero energy ground state of a three-body delta function interacton

V = V0
∑

i<j<k

δ(ri − rj)δ(ri − rk)

Similarly one can construct a potential for fermions such that the
ν = 1/2 Moore-Read state (m = 2) is the highest density zero energy
state. This is quite analogous to what we did for the Laughlin state:

V = V0
∑

i<j<k

[∇2δ(ri − rj)]δ(ri − rk)

Non-Exact Statements

Although the Coulomb interaction looks nothing like the three body
interaction for which the Moore-Read Pfaffian is exact, it turns out that
ν = 1/2 Moore-Read Pfaffian m = 2 is an extremely good trial state1414Here we have used a mapping be-

tween Landau levels, that any par-
tially filled higher Landau level can be
mapped to a partially filled lowest Lan-
dau level at the price of modifying the
inter-electron interaction. This map-
ping is exact to the extent that there is
no Landau level mixing. I.e., that the
spacing between Landau levels is very
large.

for electrons at ν = 5/2 interacting with the usual Coulomb interaction.
This is very suggestive that the ν = 5/2 is topologically equivalent to
the Moore-Read Pfaffian wavefunction (i.e., they are in the same phase
of matter)15 Further, the most natural interaction for bosons, the simple

15There is one slight glitch here. It
turns out that with a half-filled Landau
level, the wavefunction and its charge-
conjugate (replace electrons by holes in
the Landau level) are inequivalent! The
breaking of the particle-hole symmetry
is very weak and involves Landau-level
mixing. From numerics it appears that
the ν = 5/2 state is actually in the
phase of matter defined by the conju-
gate of the Moore-Read state. *** add
refs

two-body delta function interaction has a ground state at ν = 1 which
is extremely close to the Moore-Read m = 2 Pfaffian.

27.4 Quasiholes of the Moore-Read state

We now try to construct quasiholes for the Moore-Read Pfaffian wave-
function. As we did in Eq. 27.4, we want to write

Ψqh(w) = 〈ψqh(w)ψe(z1)ψe(z2) . . . ψe(zN )Q̂〉

but we need to figure out what the proper quasihole operator ψqh is.

Laughlin Quasihole

One obvious thing to try would be to write a simple vertex operator

ψLqh(w) = Vβ(w)



27.4 Quasiholes of the Moore-Read state 307

Looking at the OPE we have (***include fields on the right? ***)

ψLqh(w)ψe(z) ∼ (w − z)β
√
mψ(z)

In order to have the correlator be single valued in z (i.e., no branch cuts)
we must choose β = p/

√
m for some integer p (the smallest quasihole of

this type corresponding to p = 1 then). This generates the wavefunction

ΨLqh(w) = 〈ψLqh(w)ψe(z1)ψe(z2) . . . ψe(zN )Q̂〉 (27.11)

=

[
N∏

i=1

(zi − w)

]
Ψ

(m)
Moore−Read

which is just a regular Laughlin quasihole factor. By the same argu-
ments, the charge of this quasihole is e∗ = eν.

Minimal quasihole

However, the Laughlin quasihole is not the minimal quasihole that can
be made. Let us try using an operator from the Ising theory as part of
the quasihole operator. Suppose

ψqh(w) = σ(w)Vβ(w)

We then have the operator product expansion

ψqh(w)ψe(z) ∼ [σ(w)ψ(z)]
[
Vβ(w)V√m(z)

]
∼ (w − z)−1/2(w − z)β

√
m

In order for the wavefunction not to have any branch cuts for the physical
electron z coordinates, we must choose β = (p + 1/2)/

√
m for p ≥ 0,

with the minimal quasihole corresponding to p = 0. Thus we have the
minimal quasihole operator of the form

ψqh(w) = σ(w)V 1
2
√
m
(w)

Note that when we consider correlators, by the general rule (4) from
section 27.2, the operators must fuse to the identity in order to give a
nonzero result. Thus, we must always have an even number of σ fields16. 16Like the Sith, they come in pairs.

We thus consider the wavefunction of the form

Ψqh(w,w
′) = 〈ψqh(w)ψqh(w′)ψe(z1)ψe(z2) . . . ψe(zN )Q̂〉 (27.12)

= (w − w′)
1

4m e−(|w|2+|w′|2)/4ℓ∗2
N∏

i=1

(w − zi)
1/2(w′ − zi)

1/2 (27.13)

× 〈σ(w)σ(w′)ψ(z1)ψ(z2) . . . ψ(zN )〉
∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

Several comments are in order here. First of all, from the first line
of Eq. 27.13 it looks like there are branch cuts with respect to the z
coordinates. However, these fractional powers are precisely canceled by
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branch cuts in the correlator on the second line. Secondly the charge of
the quasihole is determined entirely by the power of the (z − w) factor,
since it tells us how much the electrons are pushed away from the hole.
(The correlator does not give an extensive number of zeros, similar to the
Pfaffian of Eq. 27.10). If the exponent of (z − w) were one, this would
be a regular Laughlin quasihole with charge eν, thus here we have a
quasihole charge of

e∗ = eν/2.

I.e., the Laughlin quasihole has fractionalized into two pieces! This
charge is reflected in the effective magnetic length ℓ∗ =

√
~/e∗B.

Note that this wavefunction is still an exact zero energy state of the
special interaction discussed above for which the Moore-Read wavefunc-
tion is the exact highest density zero energy state (the wavefunction here
is higher degree and thus less dense, as we would expect given that we
have added quasiholes). We can demonstrate the current wavefunction
is still zero energy by bringing together three electrons to the same point
and examining how the wavefunction vanishes. Since this can be fully
determined by the operator product expansion, it does not matter if we
add quasiholes to the wavefunction, the vanishing property of the wave-
function remains the same, and thus this is an exact zero energy state
of the special interaction.

A Crucial Assumption

The wavefunction here is single valued in all electron coorrdinates (as it
should be) and is holomorphic in all coordinates (all z’s and w’s) except
for the gaussian exponential factors. In this holomorphic gauge, as dis-
cussed above, we can read off the fractional statistics of the quasiparticles
given the assumption that the wavefunction is properly normalized. This
is a crucial assumption and it is not a simple result of CFT, but always
requires an assumption about some sort of plasma being in a screen-
ing phase — and often the mapping to a plasma is highly nontrivial17.17See work by Bonderson et al ***.

Nonetheless, from extensive numerical work, it appears that physics is
kind to us and that these wavefunctions do indeed come out to be prop-
erly normalized!

Fusion and Braiding of Two Quasiholes in Identity Channel
(even number of electrons)

Let us assume that the number of electrons is even. In this case the
two σ’s of the quasiholes fuse to the identity as in Eq. 27.8. As the
two quasiholes approach each other we then have18 (** insert also h-h-h18Strictly speaking on the right hand

side we should also write the identity
operator I for the Ising theory and
V1/

√
m for the boson sector.

derivation of R? **)

ψqh(w)ψqh(w
′) ∼ (w − w′)

1
4m

− 1
8

where the 1
4m is written expliclty in the first line of Eq. 27.13 and the

− 1
8 is from the operator product expansion Eq. 27.8. Invoking now the

crucial assumption that the wavefunctions are normalized, since they
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are obviously holomorphic, we simply read off the statistical phase (the
monodromy) we get for wrapping one quasihole around another!
One might object that the operator product expansion only tells us

the behavior of the correlator as w and w′ come close to each other.
However, we are guaranteed that there are no other branch cuts in the
system — the only branch cut in the wavefunction for w is when it
approaches w′. Thus, no matter how far w is from w′, when w circles
w′ it must always accumulate the same monodromy! In the notation
we defined in earlier chapters we have ***(move I downstairs here to fit
with our conventions?, change notation ”I” to 2qh-I?)***

[R“I”
qh−qh]

2 = e2πi(
1

4m
− 1

8
)

Recall that if a × b → c we should have [Rcab]
2 = e2πi(hc−ha−hb). Here,

the total scaling dimension of the quasihole is hqh = 1/16 + 1/(8m)
with the second piece from the bose vertex operator V1/2

√
m. The fusion

product “I” = V1/
√
m has quantum dimension h“I” = 1/2m.

Fusion and Braiding of Two Quasiholes in ψ Channel (odd
number of electrons)

Let us now assume that the number of electrons is odd. In this case the
two σ’s of the quasiholes fuse to ψ as in Eq. 27.9. As the two quasiholes
approach each other we then have19

19Strictly speaking on the right hand
side we should also write the operator
ψ for the Ising theory and V1/

√
m for

the boson sector.

ψqh(w)ψqh(w
′) ∼ (w − w′)

1
4m

+ 3
8

where the 1
4m is written expliclty in the first line of Eq. 27.13 and the

3
8 is from the operator product expansion Eq. 27.9. Again we just read
off the monodromy from this OPE. Thus, one obtains a different phase
depending on the fusion channel of the two quasiholes. In the notation
we defined in earlier chapters we have

[R“ψ”
qh−qh]

2 = e2πi(
1

4m
+ 3

8
)

27.5 Multiple Fusion Channels and Conformal
Blocks

We will next address the issue of what happens when we have more
than two quasiholes. It is clear what will happen here, we will obtain
a correlator (like that in Eq. 27.13) but now it will have more σ fields.
We will thus have to figure out how to make sense of correlators with
many (nonabelian) σ fields. As an example to show how this works, let
us get rid of the ψ fields for a moment and consider a correlator

G(w1, w2, w3, w4) = 〈σ(w1)σ(w2)σ(w3)σ(w4)〉 (27.14)

Let us imagine that we will bring w1 close to w2 and w3 close to w4.
Now in order for the correlator to give a nonzero value, the four fields
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have to fuse to unity (rule (4) from section 27.2). There are two different
ways in which this can happen

σ(w1)σ(w2) → I

σ(w3)σ(w4) → I

OR we could have

σ(w1)σ(w2) → ψ

σ(w3)σ(w4) → ψ

and the two ψ fields could then fuse to the identity.
So which one is right? In fact both happen at the same time! To

understand this we should think back to what we know about a 2d
systems with nonabelian quasiparticles in them — they are described
by a vector space. In order to know which particular wavefunction we
have in a vector space we need some sort of initial condition or space-
time history. Nowhere in the correlator have we specified any space-
time history, so we should be getting a vector space rather than a single
wavefunction. The multiple wavefunctions in the vector space arise from
choosing different roots of the branch cuts of the holomorphic functions.
To see a detailed example of this let us write out the explict form of
the correlator in Eq. 27.14. We note that the calculation that leads to
this requires some substantial knowledge of conformal field theory and
will not be presented here. However many of these sorts of results have
simply been tabulated in books and can be looked up when necessary.
For simplicity we take the four coordinates of the z variables to be at
convenient points so that the correlator looks as simple as possible20.20In fact due to conformal invariance,

knowing the correlator for any fixed
three points and one point z free, we
can determine the correlator for any
other four points, but this is beyond the
scope of the current discussion!

lim
w→∞

〈σ(0)σ(z)σ(1)σ(w)〉 = a+G+(z) + a−G−(z) (27.15)

where

G± = (wz(1 − z))−1/8

√
1±

√
1− z (27.16)

are known as conformal blocks and here a+ and a− are arbitrary com-
plex coefficients (usually with some normalization condition implied).
I.e, the correlator itself represents not a function, but a vector space
(with basis vectors being conformal blocks) with arbitrary coefficients
yet to be determined by the history of the system!
Let us analyze some limits to see which fusion channels we have here.

Taking the limit of z → 0 we find that

lim
z→0

G+ ∼ z−1/8 (σ(0)σ(z) → I)

lim
z→0

G− ∼ z3/8 (σ(0)σ(z) → ψ)

Thus (comparing to Eqs. 27.8 and 27.9) we see that G+ has σ(0) and
σ(z) fusing to I whereas G− has them fusing to ψ. Since the four σ’s
must fuse to the identity, this tells us also the fusion channel for σ(1)
and σ(w).
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The most general wavefunction is some linear combination (a+ and
a−) of the two possible fusion channels. This is what we expect, the
state of a system can be any superposition within this degenerate space.
Now consider what happens as we adiabatically take the coordinate

z in a circle around the coordinate 1. Looking at Eq. 27.16 we see that
we accumulate a phase of e−2πi/8 from the factor of (1− z)−1/8 outside
the square-root. In addition, however, the

√
1− z inside the square root

comes back to minus itself when z wraps around 1, thus turning G+ to
G− and vice versa! The effect of monodromy (taking z around 1) is then

(
a+
a−

)
−→ e−2πi/8

(
0 1
1 0

)(
a+
a−

)

(This result should be somewhat familiar from the homework exercise
on Ising anyons!)
We thus see that in this language, the multiple fusion channels are

just different choices of which Riemann sheet we are considering, and
the fact that braiding (monodromy) changes the fusion channel is simply
the fact that moving coordinates around on a Riemann surface, you can
move from one Riemann sheet to another!
So long as we can assume that the conformal blocks are orthonormal

(see comment above on “crucial assumption” about normalization of
wavefunctions. Orthonormality, is now adding a further assumption21) 21As with the discussion above, this

assumption appears to be true, but
“proofs” of it always boil down to some
statement about some exotic plasma
being in a screening phase, which is
hard to prove. *** myabe move bon-
derson ref here?

then we can continue to read off the result of physically braiding the
particles around each other by simply looking at the branch cuts in the
wavefunction.

F-matrix

We have seen how to describe the fusion of σ(0) and σ(z). What if
now we instead take z close to 1 such that we can perform an operator
product expansion of σ(z)σ(1). Taking this limit of Eq 27.16 it naively
looks like both

lim
z→1

G+ ∼ (1− z)−1/8

lim
z→1

G− ∼ (1− z)−1/8

But examining this a bit more closely we realize we can construct the
linear combinations

G̃+ =
1√
2
(G+ +G−)

G̃− =
1√
2
(G+ −G−)

where here we have inserted the prefactor of 1/
√
2 such that the new

basis G̃± is orthonormal given that the old basis G± was. With this new
basis we now have the limits

lim
z→1

G̃+ ∼ (1 − z)−1/8



312 Conformal Field Theory Approach to Fractional Quantum Hall Effect

lim
z→1

G̃− ∼ (1− z)−1/8

[√
1 +

√
1− z −

√
1−

√
1− z

]

∼ (1− z)−1/8(1− z)1/2 ∼ (1 − z)3/8

Thus we see that in this twiddle basis (G̃±) we have in this limit that
G̃+ is the fusion of σ(z) and σ(1) to identity and G̃− is the fusion to ψ.
The transformation between the two bases G± and G̃± is precisely

the F -matrix transformation.

(
G̃+

G̃−

)
=

1√
2

(
1 1
1 −1

)(
G+

G−

)

which should look familiar to anyone who did the homework! (We
also got the same result from writing the ising theory in terms of ca-
bled Kauffman strings). Diagrammatically this transform is shown in
Fig. 27.1

Fig. 27.1 The F -matrix transforms between the two fusion channels depicted here.

27.6 More Comments on Moore-Read State
with Many Quasiholes

Although we have presented this discussion about multiple fusion chan-
nels and braiding in terms of σ operators, the situation is extremely
similar once we use quasihole operators (σ(z)Vβ(z)) and we put them
in a wavefunction as in Eq. 27.13 but possibly with more quasihole op-
erators. As we might expect just from looking at the fusion rules, the
number of fusion channels (the number of Riemann sheets!) is 2M/2−1

where M is the number of quasiholes, and the -1 arises because the
overall fusion channel must be the identity. Further, the F -matrices and
braiding properties all follow very much in a similar manner. The only
slightly problematic piece is that we must continue to assume that the
conformal blocks form an orthonormal basis — which is hard to prove,
but appears to be true.
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27.7 Generalizing to Other CFTs

The principles we used for buidling a quantum Hall state from the Ising
CFT can be generalized to build quantum Hall states from other CFTs
as well. The general principles are as follows:

(1) Construct an electron field which gives a ground state which is
single valued in the electron coordinates. This is done bystarting with
an abelian field from the CFT (one that does not have multiple fusion
channels) and combining it with a chiral bose vertex operator. The filling
fraction is determined entirely by the charge on the vertex operator.

(2) Identify all of the possible quasiholes by looking at all the fields in
the CFT and fusing them with a chiral bose vertex operator and enforc-
ing the condition that the electron coordinates must not have branch
cuts. The charge of the quasihole is determined by the charge on the
vertex operator (and the charge on the electron vertex operator).

(3) Some of the braiding properties can be determined immediately
from the operator product expansion while others require more detailed
information about the form of the CFT.

27.7.1 Z3 Parafermions (briefly)

As an example, let us consider the Z3 Parafermion CFT. Its primary
fields and fusion rules are given by

h

ψ1 2/3

ψ2 2/3

σ1 1/15

σ2 1/15

ǫ 2/5

× ψ1 ψ2 σ1 σ2 ǫ

ψ1 ψ2

ψ2 I ψ1

σ1 ǫ σ2 σ2 + ψ1

σ2 σ1 ǫ I + ǫ σ1 + ψ2

ǫ σ2 σ1 σ1 + ψ2 σ2 + ψ1 I + ǫ

These fusion rules might look very complicated, but in fact they can
be thought of as an abelian Z3 theory (with fields I, ψ1, ψ2 = ψ̄1) fused
with a Fibonacci theory (with fields I and τ). We then have

σ1 = ψ2τ

σ2 = ψ1τ
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ǫ = τ

and using the Fibonacci fusions τ×τ = I+τ and the Z3 fusions ψi×ψj =
ψ(i+j)mod3 with ψ0 being the identity, we recover the full fusion table22.22Note that the scaling dimensions h

also work out modulo 1. The τ field has
hτ = 2/5 If you add this to h = 2/3 for
the ψ field you get h = 2/5 + 2/3 =
1 + 1/15.

Let us propose an electron field

ψe(z) = ψ1(z)V√m+ 2
3

(z)

where m is a nonnegative integer (even for bosons, odd for fermions). It
is easy to check from the OPE that

ψe(z)ψe(w) ∼ (z − w)mψ2(z)V2
√
m+ 2

3

(z)

The resulting wavefunction is then

Ψ = 〈ψe(z1)ψe(z2) . . . ψe(zN )Q〉

which is known as the Read-Rezayi Z3 parafermion wavefunction.
The filling fraction of the wavefunction is determined by the vertex

operator and is given by

ν =
1

m+ 2
3

For the m = 0 case this is ν = 3/2 bosons, while for the m = 1 case this
is ν = 3/5 fermions.
For the case of m = 0 it is easy to check that the wavefunction does

not vanish when two particles come to the same point, nor does it vanish
when three particles come to the same point, but it does vanish when
four particles come to the same point. Thus the wavefunction is an exact
(densest) zero energy ground state of a four particle delta function.
While there are 4-particle interactions for these systems for which

wavefunctions are the exact ground state, it turns out that there are
physically relevant cases where the Read-Rezayi Z3 parafermion wave-
function is an extremely good trial wavefunction. For bosons interacting
with a simple two body δ-function potential potential at filling fraction
ν = 3/2,the Z3 parafermion wavefunction is extremely good. For elec-
trons interacting with simple coulomb interaction (in realistic quantum
well samples), it turns out that the wavefunction is extremely good for
ν = 2+2/5, which we need to particle-hole conjugate in the partly filled
Landau level to get a ν = 3/5 wavefunction. (** add cites **)
To construct a quasihole we can try building a quasihole from any of

the primary field operators. It turns out the one with the lowest charge
is constructed from σ1

ψqh(z) = σ1(z)Vβ(z)

Using the OPE we have

σ1(w)ψ1(z) ∼ (z − w)−1/3ǫ(z)

We thus choose
β =

p

3
√
m+ 2

3
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with the smallest charge quasihole then being p = 1. With this choice,
for a quasihole at position w we generate a factor of

∏

i

(z − w)1/3

meaning the charge of the quasihole is

e∗ = eν/3
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Exercises

Exercise 27.1 Bose Vertex Operators
In lecture we needed the following identity

〈Vα1(z1)Vα2(z2) . . . VαN (zN )〉 =
∏

i<j

(zi − zj)
αiαj (27.17)

where
∑

i

αi = 0 (27.18)

where the vertex operators are defined by

Vα(z) =: eiαφ(z) : (27.19)

with φ a chiral bose field and colons meaning normal ordering.
(a) To get to this result, let us first show that for a bose operator a, such

that [a, a†] = 1, we have

eαaeβa
†
= eβa

†
eαaeαβ (27.20)

(b) Thus derive

〈VA1VA2 . . . VAN 〉 = e
∑
i<j〈AiAj〉 (27.21)

where
Ai = uia

† + via (27.22)

and
VAi =: eAi := euia

†
evia (27.23)

with the colons meaning normal ordering (all daggers moved to the left).
(c) Show that Eq. 27.21 remains true for any operators Ai that are sums of

different bose modes ak, i.e., if

Ai =
∑

k

[ui(k)a
†
k + vi(k)ak] (27.24)

Set Ai = iαiφ(zi) such that VAi = Vα(zi). If φ is a free massless chiral bose
field which can be written as the sum of fourier modes of bose operators such
that

〈φ(z)φ(w)〉 = − ln(z −w) (27.25)

conclude that Eq. 27.17 holds.
Note: This result is not quite correct, as it fails to find the constraint

Eq. 27.18 properly. The reason it fails is a subtlety which involves how one
separates a bose field into two chiral components. (More detailed calculations
that get this part right are given in the Big Yellow CFT book (P. Di Francesco,
P. Mathieu, and D. Senechal) and in a different language in A. Tsvelik’s book.)

There is, however, a quick way to see that the constraint must be true.
Note that the lagrangian of a massless chiral bose field is

L =
1

2π
∂xφ(∂x + v∂t)φ (27.26)

which clearly must be invariant under the global transformation φ→ φ+ b.
(d)Show that the correlator Eq. 27.17 (with Eq. 27.19) cannot be invariant

under this transformation unless Eq. 27.18 is satisfied, or unless the value of
the correlator is zero.
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Exercise 27.2 Z4 Quantum Hall State
In this problem we intend to construct a quantum hall state from the the

Z4 parafermion conformal field theory (Details of the CFT can be found in A.
B. Zamolodchikov and V. A. Fateev, Soviet Physics JETP 62, 216 (1985), but
we will not need too many of the details here).

The wavefunction we construct is known as the Z4 Read-Rezayi wavefunc-
tion (N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999) ).

The Z4 parafermion conformal field theory has 10 fields with corresponding
conformal weights (scaling dimension)

field 1 ψ1 ψ2 ψ3 σ+ σ− ǫ ρ χ+ χ−

weight h 0 3
4

1 3
4

1
16

1
16

1
3

1
12

9
16

9
16

and the fusion table is given by

× 1 ψ1 ψ2 ψ3 σ+ σ− ǫ ρ χ+ χ−

1 1 ψ1 ψ2 ψ3 σ+ σ− ǫ ρ χ+ χ−

ψ1 ψ1 ψ2 ψ3 1 χ− σ+ ρ ǫ σ− χ+

ψ2 ψ2 ψ3 1 ψ1 χ+ χ− ǫ ρ σ+ σ−

ψ3 ψ3 1 ψ1 ψ2 σ− χ+ ρ ǫ χ− σ+

σ+ σ+ χ− χ+ σ− ψ1 + ρ 1+ ǫ σ+ + χ+ σ− + χ− ψ3 + ρ ψ2 + ǫ

σ− σ− σ+ χ− χ+ 1+ ǫ ψ3 + ρ σ− + χ− σ+ + χ+ ψ2 + ǫ ψ1 + ρ

ǫ ǫ ρ ǫ ρ σ+ + χ+ σ− + χ− 1+ ψ2 + ǫ ψ1 + ψ3 + ρ σ+ + χ+ σ− + χ−

ρ ρ ǫ ρ ǫ σ− + χ− σ+ + χ+ ψ1 + ψ3 + ρ 1+ ψ2 + ǫ σ− + χ− σ+ + χ+

χ+ χ+ σ− σ+ χ− ψ3 + ρ ψ2 + ǫ σ+ + χ+ σ− + χ− ψ1 + ρ 1+ ǫ

χ− χ− χ+ σ− σ+ ψ2 + ǫ ψ1 + ρ σ− + χ− σ+ + χ+ 1+ ǫ ψ3 + ρ

If I have not made any mistake in typing this table, the fusion rules should
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be associative
(a× b)× c = a× (b× c) (27.27)

Note of interest: These fusion rules may look mysterious, but in fact they
are very closely related to the fusion rules of SU(2) appropriately truncated
(i.e., this is the SU(2)4 WZW model). We can write each field as a young
tableau with no more than 2 (for SU(2)) columns and no more than 4−1 = 3
rows

field 1 ψ1 ψ2 ψ3 σ+ σ− ǫ ρ χ+ χ−

tableau empty

The fusion rules are just a slight modification of the usual young tableau
manipulations for SU(2) where columns are removed if they have 4 boxes.
(See the big yellow book for details).

Using the techniques discussed in lecture:

(a) Use the operator product expansion (dimension counting) to find the
singularity as two ψ1 fields come close together. I.e, find the exponent α in
the relation

lim
z′→z

ψ1(z
′)ψ1(z) ∼ (z′ − z)α ψ2(z) (27.28)

(b) Construct all possible “electron” fields by making a product of the ψ1

field and a chiral bose vertex operator of the form

ψe(z) = ψ1(z)e
iβφ(z) (27.29)

that give a single-valued and nonsingular wavefunction for the electron. (See
Eq. 27.17, but ignore the sum condition Eq. 27.18) I.e., find all acceptable
values of β. Consider both the case where the “electron” is a boson or a
fermion. What filling fractions do these correspond to? (There are multi-
ple allowable solutions for both bosons and fermions). Consider among the
bosonic solution, the one solution of the highest density. The ground state
wavefunction in this case is the highest density zero energy state of a 5-point
delta function interaction. Show that the wavefunction does not vanish when
4 particles come to the same point, but does indeed vanish as 5 particles come
to the same point.

(c) Given a choice of the electron field, construct all possible quasihole
operators from all fields ϕ in the above table

φqh(w) = ϕ(w)eiκφ(w) (27.30)

For each case, fix the values of κ by insisting that the wavefunction remain
single-valued in the electron coordinates. Determine the quasihole with the
lowest possible (nonzero) electric charge. What is this charge?

(d) Two such quasiholes can fuse together in two possible fusion channels.
What is the monodromy in each of these channels. I.e, what phase is accumu-
lated when the two quasiholes are transported around each other (assuming



Exercises 319

the Berry matrix is zero – which is a statement about wavefunctions being
properly orthonormal – which we usually assume is true).

(e) Draw a Bratteli diagram (a tree) describing the possible fusion channels
for many of these elementary particles. Label the number of paths in the
diagram for up to 10 quasiholes. If there are 8 quasiparticles and the number
of electrons is divisible by 4, what is the degeneracy of the ground state? If
there are 4 quasiparticles and the number of electrons is 4m + 2 what is the
degeneracy of the ground state?

(f) Construct a 5 by 5 transfer matrix and show how to calculate the ground
state degeneracy in the presence of any number of quasiholes. Finding the
largest eigenvalue of this matrix allows you to calculate the “quantum dimen-
sion” d which is the scaling

Degeneracy ∼ d[Number of Quasiholes] (27.31)

in the limit of large number of quasiholes. While diagonalizing a 5 by 5 matrix
seems horrid, this one can be solved in several easy ways (look for a trick or
a nice factorization of the characteristic polynomial).

(g) Consider instead constructing a wavefunction from the ψ2 field

ψe(z) = ψ2(z)e
iβφ(z) (27.32)

What filling fraction does this correspond to (for bosons or fermions). In the
highest density case, what are the properties of this wavefunction (how does
it vanish as how many many electrons come to the same point).





Some Mathematical Basics 28
Many undergraduates (and even many graduates) do not get any proper
education in advanced mathematics. As such I am including a very short
exposition of most of what you need to know in order to read this book.
For much of the book, you won’t even need to know this much! If you
have even a little background in mathematics you will probably know
most of this already.

28.1 Manifolds

We sometimes write R to denote the real line, i.e., it is a space where
a point is indexed by a real number x. We can write Rn to denote n-
dimensional (real) space — a space where a point is indexed by n-real
numbers (x1, . . . , xn). Sometimes people call these spaces “Euclidean”
space.

Definition 28.1 A Manifold is a space that locally looks like a Eu-
clidean space.

If a manifold is bounded, contains all its limit points, and has no
boundary we call it closed.

28.1.1 Some Simple Examples: Euclidean Spaces
and Spheres

• Rn is obviously a manifold (it is not bounded, so therefore not
closed).

• The circle S1, also known as a 1-sphere (hence the notation, the
index 1 meaning it is a 1-dimensional object) is defined as as all
points in a plane equidistant from a central point. Locally this
looks like a line since position is indexed by a single variable (the
“curvature” of the circle is not important locally). Globally, one
discovers that the circle is not the same as a real line, as position
is periodic (if you walk far enough in one direction you come back
to where you start). We sometimes define a circle as a real number
from 0 to 2π which specifies the angle around the circle.

• The 2-sphere S2 is what we usually call (the surface of) a sphere
in our regular life. We can define this similarly as all points in R

3

equidistant from a central point.

• One can generally define the n-sphere, Sn, as points equidistant
from a central point in Rn+1.
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Often when we discuss a manifold, we will be interested in its topolog-
ical properties only. In other words, we will not care if a circle is dented
as shown in Fig. 28.1, it is still topologically S1. Mathematicians say

Fig. 28.1 This object is topologically
a circle, S1.

that two objects that can be smoothly deformed into each other are
homeomorphic, although we will not use this language often.
It is sometimes convenient to view the circle S1 as being just the real

line R1 with a single point added “at infinity” — think about joining
up +∞ with −∞ to make a circle. We can do the same thing with the
sphere S2 and R2 — this is like taking a big flat sheet and pulling the
boundary together to a point to make it into a bag and closing up the
top (which gives a sphere S2). Obviously the idea generalizes: S3 is the
same as R3 “compactified” with a point at infinity, and so forth.

Orientability

We say a manifold is orientable if we can consistently define a vector nor-
mal to the manifold at all points. Another way of defining orientability
(that does not rely on embedding the manifold in a higher dimension)
is that we should be able to consistently define an orientation of the
coordinate axes at all points on the manifold. Throughout this book we
will almost always assume that all manifolds are orientable.

Fig. 28.2 A Möbius strip is a nonori-
entable manifold (with boundary). If
we move the coordinate axes around
the strip, when they come back to the
same position, the normal vector will
be pointing downwards instead of up-
wards.

Fig. 28.3 A two handled torus is
an orientable two-dimensional manifold
without boundary. Because it has two
holes we say it has genus two. Two di-
mensional manifolds without boundary
are classified by their genus.

An example of a nonorientable manifold is the Möbius strip shown
in Fig. 28.2. If we smoothy move the coordinate axes around the strip,
when we come back to the same point, the upward pointing normal will
have transformed into a downward facing normal.
There is a very simple classification of orientable closed (bounded and

without boundary) two dimensional manifolds by the number of ”holes”
which is known as its “genus”. A sphere has no holes, a torus has one
hole, a two handled torus has two holes, and so forth. See Fig. 28.3.

28.1.2 Unions of Manifolds M1 ∪M2

We can take a “disjoint” union of manifolds, using the notation ∪. For
example, S1 ∪ S1 is two circles (not connected in any way). If we think
of this as being a single manifold, it is a manifold made of two disjoint
pieces (or a disconnected manifold). Locally it still looks like a Euclidean
space.

28.1.3 Products of Manifolds: M3 = M1 ×M2

One can take the product of two manifolds, or “cross” them together,
using the notation ×. We write M3 = M1 ×M2. This means that a
point in M3 is given by one point in M1 and one point in M2. This
multiplication is often called the direct or Cartesian product.

• R
2 = R

1 × R
1. Here, a point in R

1 is specified by a single real
number. Crossing two of these together, a point in R2 is specified
by two real numbers (one in the first R1 and one in the second
R1).
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• T 2 = S1 × S1. The 2-torus T 2, or surface of a doughnut1 is the

1Alternatively spelled “donut” if you
are from the states and you like coffee.

product of two circles. To see this note that a point on a torus is
specified by two angles, and the torus is periodic in both directions.
Similarly we can build higher dimensional tori (tori is the plural
of torus) by crossing S1’s together any number of times.

28.1.4 Manifolds with Boundary:

One can also have manifolds with boundary. A boundary of a manifold
locally looks like an n-dimensional half-Euclidean space. The interior
of a manifold with boundary looks like a Euclidean space, and near
the boundary it looks like a half-space, or space with boundary . For
example, a half-plane is a 2-manifold with boundary. An example is
useful:

• The n-dimensional ball, denoted Bn is defined as the set of points
in n dimensional space such that the distance to a central point
is less than or equal to some fixed radius r. Note: Often the
ball is called a disk and is denoted by Dn (so Dn = Bn). The
nomenclature makes good sense in two dimensions, where what
we usually call a disc is D2. The one-dimensional ball is just an
interval (one-dimensional segment) which is sometimes denoted
I = D1 = B1.

Note that a boundary of a manifold may have disconnected parts. For
example, the boundary of an interval (segment) in 1-dimension I = B1

is two disconnected points at its two ends2. 2In the notation of Section 28.1.5 be-
low, ∂I = pt ∪ pt where pt means a
point and here ∪ means the union of
the two objects as described above in
28.1.2.

One can take cartesian products of manifolds with boundaries too. For
example, consider the interval (or 1-ball) I = B1 which we can think of
as all the points on a line with |x| ≤ 1. The cartesian product I × I is
described by two coordinates (x, y) where |x| ≤ 1 and |y| ≤ 1. This is
a square including its interior. However, in topology we are only ever
concerned with topological properties, and a square-with-interior can
be continuously deformed into a circle-with-interior, or a 2-ball (2-disc),
B2.

• The same reasoning gives us the general topological law Bn×Bm =
Bn+m.

• The cylinder (hollow tube) is expressed as S1×I (two coordinates,
one periodic, one bounded on both sides).

• The solid donut is expressed as D2 × S1 (= B2 × S1), a 2-disc
crossed with a circle.

28.1.5 Boundaries of Manifolds: M1 = ∂M2.

The notation for boundary is ∂, so if M1 is the boundary of M2 we
write M1 = ∂M2. The boundary ∂M has dimension one less than that
of M.
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• The boundary of D2, the 2-dimensional disc is the one dimensional
circle S1.

• More generally, the boundary of Bn (also written as Dn) is Sn−1.

It is an interesting topological principle that the boundary of a mani-
fold is always a manifold without boundary. Or equivalently, the bound-
ary of a boundary is the empty set. We sometimes write ∂2 = 0 or
∂(∂M) = ∅ where ∅ means the empty set.

• The boundary of the 3-dimensional ball B3 is the sphere S2. The
sphere S2 is a 2-manifold without boundary.

The operation of taking a boundary obeys the Leibnitz rule analogous
to taking derivatives

∂(M1 ×M2) = (∂M1)×M2 ∪ M1 × (∂M2)

Lets see some examples of this:

• Consider the cylinder S1 × I. Using the above formula with find
its boundary

∂(S1 × I) = (∂S1)× I ∪ S1 × ∂I = S1 ∪ S1

To see how we get the final result here, start by examining the
first term, (∂S1) × I. Here, S1 has no boundary so ∂S1 = ∅ and
therefore everything before the ∪ symbol is just the empty set. In
the second term the boundary of the interval is just two points
∂I = pt ∪ pt. Thus the second term gives the final result S1 ∪ S1,
the union of two circles.

• Consider writing the disc (topologically) as the product of two
intervals B2 = I × I. It is best to think of this cartesian product
as forming a filled-in square. Using the above formula we get

∂B2 = ∂(I × I) = (pt ∪ pt)× I ∪ I × (pt ∪ pt)

= (I ∪ I) ∪ (I ∪ I) = top ∪ bottom ∪ left ∪ right

= square (edges only) = S1

The formula gives the union of four segments denoting the edges
of the square.

28.2 Groups

A group G is a set of elements g ∈ G along with an operation that we
think of as multiplication. The set must be closed under this multipli-
cation. So if g1, g2 ∈ G then g3 ∈ G where

g3 = g1g2

where by writing g1g2 we mean multiply g1 by g2. Note: g1g2 is not
necessarily the same as g2g1. If the group is always commutative (i.e.,
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if g1g2 = g2g1 for all g1, g2 ∈ G), then we call the group abelian3. If

the Norwegian
studied such

1800s. The word
capitalized due

There are a few
which are not
named after

there are at least some elements in the group where g1g2 6= g2g1 then
the group is called nonabelian4.

after someone
A group must always be associative

g1(g2g3) = (g1g2)g3 = g1g2g3

Within the group there must exist an identity element which is
sometimes5 called e or I or 0 or 1. The identity element satisifies

5It may seem inconvenient that the
identity has several names. However,
it is sometimes convenient. If we are
thinking of the group of integers and
the operation of addition, we want to
use 0 as the identity. If we are think-
ing about the group {1,−1} with the
operation of usual multiplication, then
it is convenient to write the identity as
1. For more abstract groups, e or I is
often most natural.

ge = eg = g

for all elements g ∈ G. Each element of the group must also have an
inverse which we write as g−1 with the property that

gg−1 = g−1g = e

28.2.1 Some Examples of Groups

• The group of integers Z with the operation being addition. The
identity element is 0. This group is abelian.

• The group {1,−1} with the operation being the usual multiplica-
tion. This is also called the group Z2. The identity element is 1.
We could have also written this group as {0, 1} with the operation
being the usual addition modulo 2, where here the identity is 0.
This group is abelian.

• The group ZN which is the set of complex numbers e2πip/N with
p an integer (which can be chosen between 1 and N inclusive) and
the operation being multiplication. This is equivalent to the set of
integers modulo N with the operation being addition. This group
is abelian.

• The group of permutations of N elements, which we write as SN
(known as the permutation group, or symmetric group). This
group is nonabelian. There are N ! elements in the group. Think
of the elements of the group as being a one-to-one mapping from
the set of the first N integers into itself.

• The simplest nonabelian group is S3. In S3, one of the elements is

X =





1 → 2
2 → 1
3 → 3

Another element is

R =





1 → 2
2 → 3
3 → 1

where X stands for exchange (exchanges 1 and 2) and R stands
for rotate. The multiplication operation XR is meant to mean,
do R first, then do X (you should be careful to make sure your
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convention of ordering is correct. Here we choose a convention that
we do the operation written furthest right first. You can choose
either convention, but then you must stick to it! You will see both
orderings in the literature!) So, if we start with the element 1,
when we do R the element 1 gets moved to 2. Then when we do
X the element 2 gets moved to 1. So in the product XR we have
1 getting moved back to position 1. In the end we have

XR =





1 → 1
2 → 3
2 → 1

Note that if we multiply the elements in the opposite order we get
a different result (hence this group is nonabelian)

RX =





1 → 3
2 → 2
1 → 2

It is easy to check that

X2 = R3 = e (28.1)

and further we have

XR = R2X (28.2)

There are a total of 6=3! elements in the group which we can list
as e,R,R2, X,XR,XR2. All other products can be reduced to one
of these 6 posibilities using Eqs. 28.1 and 28.2.

28.2.2 More Features of Groups

A subgroup is a subset of elements of a group which themselves form a
group. For example, the integers under addition form a group. The even
integers under addition are a subgroup of the integers under addition.
The centralizer of an element g ∈ G often written as Z(g) is the set

of all elements of the group G that commute with g. I.e., h ∈ Z(g) iff
hg = gh. Note that this set forms a subgroup (proof is easy!). For an
abelian group G the centralizer of any element is the entire group G.
A conjugacy class of an element g ∈ G is defined as the set of

elements g′ ∈ G such that g′ = hgh−1 for some element h ∈ G.

Example: S3 Above we listed some of the properties of the group
S3. S3 has several subgroups:

• The group containing the identity element e alone

• The group containing {e,X}
• The group containing {e,R,R2}
• The group S3 itself (which is not a so-called “proper” subgroup)
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The centralizer is just the identity element Z(S3) = e, since it is the
only element of the group S3 that commutes with all elements of the
group. The group has three conjugacy classes

• The identity element e

• The rotations {R,R2}
• The reflections {X,XR,XR2}

We can check that conjugating any element in any class gives another
element within the same class. For example, consider the element X
and conjugate it with the element R. We have RXR−1 = XR which is
in the same conjugacy class as X .

28.2.3 Lie Groups and Lie Algebras

A Lie group6 is a group which is also a manifold. Roughly, a group with 6Pronounced “Lee”, named after So-
phus Lie, also a Norwegian Mathemati-
cian of the 1800s. Like Ski-Jumping,
Norway seems to punch above its
weight in the theory of groups.

a continuous (rather than discrete) set of elements. Examples include:

• The group of invertible n×n complex matrices. We call this group
GL(n,C). Here GL stands for “general linear”. The identity is the
usual identity matrix. By definition all elements of the group are
invertable.

• The group of invertible n × n real matrices. We call this group
GL(n,R).

• The group, SU(2), the set of 2 by 2 unitary matrices with unit
determinant. In this case the fact that this is also a manifold can
be made particularly obvious. We can write all SU(2) matrices as

(
x1 + ix2 −x3 + ix4
x3 + ix4 x1 − ix2

)

with all xj any real numbers with the constraint that x21 + x22 +
x23 + x24 = 1. Obviously the set of four coordinates (x1, x2, x3, x4)
with the unit magnitude constraint describes the manifold S3.

• SU(N), the group of unitary N by N matrices of determinant one
is a Lie group

• SO(N), the group of real rotation matrices in N dimensions is a
Lie group.

• The vector space Rn with the operation being addition of vectors,
is a Lie group.

Note that certain Lie groups are known as “simple” because as man-
ifolds they have no boundaries and no nontrivial limit points (For ex-
ample, GL(n) is not simple because there is a nontrivial limit — you
can continuously approach matrices which have determinant zero (or
are not invertable) and are therefore not part of the group. The set of
simple Lie groups (including, SU(N) and SO(N) and just a few others)
is extremely highly studied.
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A Lie Algebra is the algebra generated by elements infinitesimally
close to the identity in a Lie group7. For matrix valued Lie groups G,

7A slightly more
that a Lie algebra
ements u, v, w...
with coefficients
au+bv+cw+ . .
mutator [·, ·] whic
for all X as w
bv,X] = a[u,X
larly [X, au + bv
for all X, a, b, u,
have the Jacobi
[[Y,Z],X] + [[Z

we can write any element g ∈ G as

g = eX = 1+X + (X)2/2 + . . .

where X is an element of the corresponding Lie algebra (make it have
small amplitude such that g is infinitesimally close to the identity). Con-
ventionally if a Lie group is denoted as G the corresponding Lie algebra
is denoted g.

• For the Lie group SU(2), we know that a general element can be
written as g = exp(in · σ) where n is a real three-dimensional
vector and σ are the Pauli matrices. In this case iσx, iσy and iσz
are the three generators of the Lie algebra su(2) (in the, so-called,
fundamental representation).

• For the Lie group GL(n,R) the corresponding Lie algebra gl(n,R)
is just the algebra of n× n real matrices.

Add something about Lie Algebra?

28.2.4 Representations of Groups:

A representation is a group homomorphism. This means it is a map-
ping from one group to another which preserves multiplication. We will
be concerned with the most common type of representation, which is
a homomorphism into the general linear group, ie, the group of ma-
trices. Almost always we will work with complex matrices. Thus an
n-dimensional representation is a mapping ρ to n-dimensional complex
matrices

ρ : G→ GL(n,C)

preserving multiplication. I.e.,

ρ(g1)ρ(g2) = ρ(g1g2)

for all g1, g2 ∈ G.
Typically in quantum mechanics we are concerned with representa-

tions which are unitary, i.e., ρ(g) is a complex unitary matrix of some
dimension. (In case you don’t remember, a unitary matrix U has the
property that UU † = U †U = 1).
A representation is reducible if the representing matrices decomposes

into block diagonal form. I.e., ρ is reducible if ρ = ρ1 ⊕ ρ2 for two
representations ρ1 and ρ2. An irreducible representation is one that
cannot be reduced.
An amazing fact from representation theory of discrete groups is that

the number of irreducible representations of a group is equal to the
number of distinct conjugacy classes.
Irrenducible representations matrices satisfy a beautiful orthogonal-

ity relationship known as the grand orthogonality theorem (or Schur
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orthogonality)

1

|G|
∑

g∈G
[ρR(g)]∗nm[ρR

′
(g)]pq = δnpδmqδRR′/d (28.3)

where the superscript R indicates a particular representation, the sub-
script are the matrix elements of the ρ matrix, d is the dimension of the
representation R, and |G| is the total number of elements in the group.
A character is the trace of a representation matrix.

χR(g) = Tr[ρR(g)]

where the superscript R indicates we are consisdering a particular repre-
sentation R. Because of the cyclic property of the trace Tr[ab] = Tr[ba]
the character is the same for all elements of a conjugacy class. One can
find tables of characters for different groups in any book on group theory
or on the web.
Representation theory of groups is a huge subject, but we won’t dis-

cuss it further here!

28.3 Fundamental Group Π1(M)

A powerful tool of topology is the idea of the fundamental group of a
manifold M which is often called the first homotopy group, or Π1(M).
This is essentially the group of topologically different paths through the
manifold starting and ending at the same point.
First, we choose a point in the manifold. Then we consider a path

through the manifold that starts and ends at the same point. Any other
path that can be continuously deformed into this path (without changing
the starting point or ending point) is deemed to be topologically equiva-
lent (or homeomorphic, or in the same equivalence class). We only want
to keep one representative of each class of topologically distinct paths.
These topologically distinct paths form a group. As one might expect,

the inverse of a path (always starting and ending at the same point) is
given by following the same path in a backward direction. Multiplication
of two paths is achieved by following one path and then following the
other to make a longer path.

28.3.1 Examples of Fundamental Groups

• If the manifold is a circle S1 the topologically distinct paths (start-
ing and ending at the same point) can be described by the number
n of clockwise wrappings the path makes around the circle before
coming back to its starting point (note n can be 0 or negative as
well). Thus the elements of the fundamental group are indexed by
a single integer. We write Π1(S

1) = Z.

• If the manifold is a torus S1 the topologically distinct paths can
be described by two integers indicating the number of times the
path winds around each handle. We write Π1(S

1 × S1) = Z× Z.
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It is in fact, easy to prove that Π1(M1 ×M2) = Π1(M1)×Π1(M2).

• A fact known to most physicists is that the the group of rotations
of three dimensional space SO(3) is not simply connected — a 2π
rotation (which seems trivial) cannot be continuously deformed
to the trivial rotation, whereas a 4π rotation can be continuously
deformed to the trivial rotation.8 Correspondingly the fundama-8This is the origin of half-odd integer

angular momenta. mental group is the group with two elements Π1(SO(3)) = Z2.

28.4 Isotopy, Reidermeister Moves

We ran into the idea of isotopy in chapter 2. Two knots (or two pictures
of knots) are isotopic if one can be deformed into each other other with-
out cutting any of the strands. Usually this is referred to as “ambient
isotopy”. In order for two pictures of knots to be ambient isotopic they
must be related to each other by a series of moves, known as Reider-
meister moves9.

9This is a very old result, by Kurt
Reidemeister from 1927. Note that it
may take many many moves in order
to bring a knot into some particular
desired form. For example, if there
are c crossings in a diagram which is
equivalent to the simple unknot (an un-
knotted loop), the strongest theorem
yet proven is that it can be reduced to
the simple unknot with (236c)11 moves
[Lackenby, 2015].

↔ Type I

↔ Type II

↔ Type III

Fig. 28.4 The Three Reidermeister Moves. Any two knots that can be deformed
into each other without cutting (they are “ambient isotopic”) can be connected by a
series of Reidermeister moves.

It is also useful to define regular isotopy which is when two knots can
be related to each other using only type-II and type-III moves. Another
way of thinking about this is to think of the strings as being ribbons. A
type-I move inserts a twist in the ribbon (See Fig. 2.7) and gives back
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a different ribbon diagram, whereas type-II and III moves do not twist
the ribbon10.

sion of the type I move that cancels two
twists in opposite direction, as shown in
Fig. 28.5

↔ Type I′

Fig. 28.5 A Type I’ move. This is
an additional move needed for ambient
isotopy of links.

28.5 Linking and Writhe

Let us put arrows on all strands of our knots and links (so now we have
directed lines). For each crossing we define a sign as shown in Fig. 28.6

= −1 = +1

Fig. 28.6 Defining a sign ǫ = ±1 for each crossing of oriented knots and links.

The writhe w of an oriented knot (here “knot” means made of a
single strand) is the sum of all of the values of the crossings

w(knot) =
∑

crossings

ǫ(crossing)

Note that type II and III Reidermeister moves preserve the writhe of a
knot, whereas type I moves do not. Thus, the writhe is an invariant of
regular isotopy.
For a link made of two strands, the linking number lk between the

two strands is given by

lk(link) =
∑

crossings between
two different strands

ǫ(crossing)

Chapter summary

Some mathematical ideas introduced in this chapter:
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• Manifolds are locally like Euclidean space: Examples include
sphere S2, circle S1, torus surface T 2 = S1 × S1, etc. Manifolds
can also have boundaries, like a two dimensional disk B2 (or D2)
bounded by a circle.

• Groups are mathematical sets with an operation, and identity
and an inverse: Important examples include, Z the integers under
addition, ZN the integers mod N under addition, the symmetric
(or permutation group) on N elements SN , and Lie groups such as
SU(2) which are also manifolds at the same time as being groups.

• The Fundamental Group of a manifold is the group of topolog-
ically different paths through the manifold starting and ending at
the same point.

• Isotopy is the topological equivalence of knot diagrams (what can
be deformed to what without cutting).

• Writhe and Linking Number characterize pictures of oriented
knots and links.

Further Reading

For background on more advanced mathematics used by physicists, in-
cluding some topological ideas, see:

• M. Nakahara, Geometry, Topology, and Physics, 2ed, (2003), Tay-
lor and Francis.

• M. Stone and P. Goldbart, Mathematics for Physics, Cambridge
(2009). Free pdf prepublication version available online.

For further information on mathematics of knots, isotopy, and Rie-
dermeister moves, writhe, and linking, see

• Louis Kauffman, Knots and Physics, World Scientific, (2001), 3ed.

Exercises

Exercise 28.1 Reidermeister moves and the Kauffman Bracket In-
variant

Show that the Kauffman bracket invariant is unchanged under application of
Reidermeister move of type II and type III. Thus conclude that the Kauffman
invariant is an invariant of regular isotopy.

Exercise 28.2 Jones polynomial
Let us define the Jones polynomial of an oriented knot as

Jones(knot) = (−A3)w(knot) Kauffman(knot)

where w is the writhe. Show that this quantity is an invariant of ambient
isotopy – that is, it is invarient under all three reidermeister moves.
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(1) A general reference which should be useful for much of the book

is the review article by Nayak, Simon, et alNayak et al. [2008].

(2) A wonderful little book which is really fun to read that introduces
the Kauffman invariant and many other ideas of knot theory is
the book Knots and Physics by KauffmanKauffman [2001], now
in its 3rd edition. This book really inspired me when I was a
grad student. It appears to be available online in several places
(not certain which, if any, are legal). Although the whole book is
fun; and much of it is written at a very introductory level, mainly
the end of part 1 is the most relevant part where he explains the
connection of Kauffman invariant to Chern-Simons theory (and
pieces get to be well beyond introductory). There is a lot in here
, the deep parts are easy to gloss over.

(3) A very nice introduction to non abelian anyons and topological
quantum computation is given in John Preskill’s lecture notes,
available online (Preskill [2004]).

(4) Frank Wilczek has two books which both discuss Berry phase and
abelian anyons??. Both have mainly reprints in them with some
commentary by Wilczek. Often it is enough to read the commen-
tary!

(5) If you need a refresher on path integrals, consider the first 15 pages
of Fabian Essler’s notes?. Also consider the nice article by Richard
MacKenzie?. MacKenzie includes some useful applications such as
Aharanov-Bohm effect. Look mainly at the first 22 pages.

(6) The classic paper by Ed Witten which launched the field is ?. This
is a tremendously deep paper which introduces a lot of brilliant
ideas. I find something new every time I read it. I find it to be
tough reading in some places and easy in others.

(7) From a more mathematial viewpoint several articles by Sir Michael
Atiya are very useful??. These are both introductions to topolog-
ical quantum field theories. There is also a more detailed book by
the same author?. The full book might be hard to read unless you
have a very strong maths background.

(8) A rather remarkably well written and readable master’s thesis (!)
by Lokman Tsui on Chern- Simons theories, topological quantum
field theory, and knot theory?.

(9) There are several nice references on the structure of topological
quantum field theories and diagrammatic calculus,
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Parsa Bonderson’s thesis: http://thesis.library.caltech.edu/2447/2/thesis.pdf
This is a more detailed version of the long article by Kitaev (“Anyons
in exactly solvable models”) which I mention below. Note there is
some slight change of convention between the two articles.
Also a good reference is the book on Topological Quantum Com-
putation by Zhenghan Wang
“Topological Quantum Computation”, Conference Board of the
Mathematical Sciences, Regional Conference Series in Mathemat-
ics, American Mathematical Society, (Providence, Rhode Island),
Number 112, 2008.
If you are more mathematical, you might like the thesis of Bruce
Bartlett available online here
https://arxiv.org/abs/math/0512103

(10) The monumental work “Anyons in an exactly solved model and
beyond” by Alexei Kitaev, Annals of Physics 321 (2006) 2–111
available online here
https://arxiv.org/abs/cond-mat/0506438
This brings the ideas of topological quantum field theory into the
condensed matter arena. This is not easy reading, but a ton of
great ideas are buried in this paper.
Another work by Kitaev, “Fault-tolerant quantum computation by
anyons”, Annals Phys. 303 (2003) 2-30.
available online here
https://arxiv.org/abs/quant-ph/9707021
introduces the famous toric code, discusses quantum error correc-
tion, and generalizes the toric code model to arbitrary non-abelian
groups.
Kitaev’s work on the quantum wire (which we might get to at the
end of the course) is here.
https://arxiv.org/abs/cond-mat/0010440
A brief digest of some of the many ideas introduced in these three
papers is given by notes taken by Laumann of Kitaev’s lectures,
available here.
https://arxiv.org/abs/0904.2771
Loop gases are introduced in this paper by Freedman et al. It has
a lot of sections which are hard to parse.
http://stationq.cnsi.ucsb.edu/ freedman/Publications/83.pdf
The double-fibonacci string-net is discussed in some detail in this
work by Fidkowski et al,
https://arxiv.org/abs/cond-mat/0610583
The classic paper on string - nets very generally is this by Levin
and Wen.
https://arxiv.org/abs/cond-mat/0404617
The standard reference on introductory quantum hall effect is the
classic book, ”The Quantum Hall Effect”, edited by Prange and
Girvin, published by Springer. The first chapter, and the chapters
by Laughlin and Haldane are probably the best. The experimental
chapters are good for context too.
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Another decent reference quantum Hall physics is T. Chakraborty
and P. Piettilainen, ”The Quantum Hall Effects: Integral and Frac-
tional,” (Springer 1995).
A short review article by Macdonald is pretty nice and is available
here.
https://arxiv.org/pdf/cond-mat/9410047v1.pdf
The article that introduced the ideas of conformal field theory into
the field of quantum Hall effect is by Moore and Read, available
online here.
http://www.physics.rutgers.edu/ gmoore/MooreReadNonabelions.pdf
A recent review article on Fractional quantum Hall hierarchies
(and also discusses nonabelian quantum Hall and conformal field
theory) is online here.
https://arxiv.org/abs/1601.01697

A few random digressions:

(11) If you are interested in 2+1 D quantum gravity, see this article .
I can’t vouch for it, but the introduction is interesting;
https://link.springer.com/article/10.12942/lrr-2005-1
This is the article by Witten explaining how 2+1 D gravity is ”ex-
actly solvable.” More from Witten here. There is reconsideration
many years later, again by Witten, see here .
http://www.sciencedirect.com/science/article/pii/0550321389905919

(12) I’ve been told the book by Jiannis Pachos on topological quantum
computation is a good resource.

(13) If you are interested in the topology of manifolds in 3 and 4 di-
mensions, there are several good books. One by Kirby is online
here.
https://math.berkeley.edu/ kirby/papers/Kirby
There is a book by Gompf and Stipcitz ”4-manifolds and Kirby
Calculus” which is nice. Note that parts of this book are online
free if you google them.
https://www.amazon.co.uk/4-Manifolds-Calculus-Graduate-Studies-
Mathematics/dp/0821809946

(14) For more information on conformal field theory. The standard
reference is the Big yellow book (Conformal Field Theory Authors:
Philippe Di Francesco, Pierre Mathieu, David Snchal) . The first
part of this book (up to chapter 12) is excellent, but even that
much is a lot of reading. There is a short set of lectures from les
Houches by Ginsparg .
https://arxiv.org/abs/hep-th/9108028
I also like the short set of notes by Fendley .
http://galileo.phys.virginia.edu/ pf7a/msmCFT.pdf
For even shorter introduction of what you need to apply CFT to
quantum Hall, see the appendix of Ref. 1 above, or the appendix
of ***.
The book by Kauffman and Lins gives more details of constructing
a full anyon theory from the kauffman invariant.
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http://press.princeton.edu/titles/5528.html
Neilsen and Chuang for quantum computation in general, although
there are plenty of other refs.
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A. Achúcarro and P. Townsend. A chern-simons action
for three-dimensional anti-de sitter supergravity theories.
Physics Letters B, 180(1):89 – 92, 1986. ISSN 0370-2693.
doi: https://doi.org/10.1016/0370-2693(86)90140-1. URL
http://www.sciencedirect.com/science/article/pii/0370269386901401.

C. C. Adams. The knot book: an elementary introduction to the mathe-
matical theory of knots. W. H. Freeman and Company, 1994.

D. Aharonov and I. Arad. The bqp-hardness of approximating the
jones polynomial. New Journal of Physics, 13(3):035019, 2011. URL
http://stacks.iop.org/1367-2630/13/i=3/a=035019.

D. Aharonov, V. Jones, and Z. Landau. A polynomial quantum
algorithm for approximating the jones polynomial. Algorithmica,
55, 2009. doi: https://doi.org/10.1007/s00453-008-9168-0. URL
arXiv:quant-ph/0511096.

Y. Aharonov and D. Bohm. Significance of electromagnetic
potentials in the quantum theory. Phys. Rev., 115:485–
491, Aug 1959. doi: 10.1103/PhysRev.115.485. URL
https://link.aps.org/doi/10.1103/PhysRev.115.485.

D. Arovas, J. R. Schrieffer, and F. Wilczek. Fractional statistics and the
quantum Hall effect. Phys. Rev. Lett., 53(7):722–3, 1984.
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