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These are my typed lecture notes. I’m typing as we go so please forgive all typos and unclear
parts etc!

General comment. I will not be as precise as mathematicians usually want. Hopefully I will
footnote place where important things are swept under the rug.

I’m not sure if these notes will become a book or not. In some ways the notes for a course are
not necessarily the right outline for making a good book.
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Chapter 1

Introduction and History of
Topology and Kelvin

Long story about Lord Kelvin and Peter Tait. Kelvin thought atoms were knotted vortices in the
aether – like smoke rings. Blah blah blah. Tait dies sad :-(
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Chapter 2

Kauffman Knot Invariant and
Relation to Physics

2.1 The idea of a knot invariant

Topological equivalence. We say two knots are topologically equivalent if they can be deformed
smoothly into each other without cutting1.

While it appears simple to determine whether two simple knots are topologically equivalent and
when they are not, for more complicated knots, it becomes extremely difficult. (Maybe give an
example?)

A Knot Invariant is a mapping from a knot (or a picture of a knot) to an output via a set of
rules. The rules must be cooked up in such a way that two topologically equivalent knots give the
same output.

(See Fig. 2.1)

Figure 2.1:

To demonstrate how knot invariants work, we will use the example of the Kauffman invariant2.
The Kauffman invariant was actually invented by V. Jones who won the Fields medal for his work
on knot theory. Kauffman explained his work in very simple terms. Kauffman also wrote a very
nice book ”Knots and Physics” which I recommend.

1A few pieces of fine print here. (1) I am not precise about knot versus link. Strictly speaking a knot is a single
strand, and a link is more generally made of multiple strands. Physicists call them all knots. Sorry. (2) When I say
”topologically equivalent” heree I mean the concept of regular isotopy. This asks the question of whether there is a
continuous smooth family of curves from the initial knot to the final knot – however to be more precise, as we will
see below, we should think of the curves as being thickened to ribbons

2Be warned, there are multiple things that are called the Kauffman invariant. The one we want is the ”the bracket
polynomial” multiplied by d
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2.2. RELATION TO PHYSICS

To define the Kauffman Invariant, we first choose a number, A. For now, leave it just a
variable, although later we may give it a value. There are two rules to the Kauffman invariant.
First, a simple loop of string (with nothing going through it) can be removed from the diagram and
replaced with the coefficient

d = −A2 −A−2

The second rule replaces a diagram with a crossing of strings by a sum of two diagrams where these
strings don’t cross — where the two possible uncrossings are weighted by A and A−1 respectively.
The Kauffman rules are shown in Fig. 2.2.

Figure 2.2: Rules for evaluating the Kauffman Invariant

To given an example of how these rules work we show evaluation of the Kauffman invariant for a
simple knot in figure 2.3. The output of the calculation is that the Kauffman invariant of this knot
comes out to be d. This results is expected since we know that the orginal knot (in the upper left
of the figure) is just a simple loop (the so-called ”unknot”) and the Kauffman rules tell us that a
loop gets a value d. We could have folded over this knot many many times3 and still that outcome
of the Kauffman evaluation would be d.

The idea of a knot invariant seems like a great tool for distinguishing knots from each other.
If you have two complicated knots and you do not know if they are topologically equivalent, you
just plug them into the Kauffman machinery and if they don’t give the same output then you know
immediately that they cannot be deformed into each other without cutting4. However, a bit of
thought indicates that things still get rapidly difficult for complicated knots. In the example of fig.
2.3 we have two crossings, and we ended up with 4 diagrams. If we had a knot with N crossings we
would have gotten 2N diagrams, which can be huge! While it is very easy to draw a knot with 100
crossings, even the world’s largest computer would not be able to evaluate the Kaufffnman invariant
of this knot! So one might then think that this Kauffman invariant is actually not so useful for
complicated knots. We will return to this issue later in section 2.4.

2.2 Relation to Physics

There is a fascinating relationship between the Kauffman invariant and quantum physics. For
certain types of so-called ”topological quantum systems” the amplitudes of space-time processes can
be directly calculated via the Kauffman invarient.

We should first comment that most of what we will discuss in this book corresponds to 2 dimen-
sional systems plus 1 dimension of time. There are topological systems in 3+1 dimension as well,
but more is known about 2+1 D and we will focus on that at least for now.

Figure 2.4 shows a particular space-time process of particle world lines. At the bottom of the
figure is shown the shaded 2 dimensional system (a disk). At some early time there is a pair creation
event – a particle antiparticle appear from the vacuum, then another pair creation event; then one
particle walks around another, and the pairs come back together to reannihilate.

3To a mathematician the Kauffman invariant is an invariant of regular isotopy.
4The converse is not true. If two knots give the same output, they are not necessarily topologically equivalent.
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CHAPTER 2. KAUFFMAN KNOT INVARIANT AND RELATION TO PHYSICS

Figure 2.3: Example of evaluation of the Kauffman invariant for the simple twisted loop in the upper
left. The light dotted loop is meant to draw attention to where we apply the Kauffman crossing rule
first to get the two diagrams on the right hand side. After applying the Kauffman rules again, we
have removed all crossings, we are left only with simple loops, which each get the value d. In the
penultimate line we have used the definition of d to replace A2 + A−2 = d. The fact that we get d
in the end of the calculation is expected since we know that the orginal knot is just a simple loop
(the so-called ”unknot”) and the Kauffman rules tell us that a loop gets a value d

Figure 2.4: A space-time proces showing world lines of particles for a 2+1 dimensional system (shown
as the shaded disk at the bottom).
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2.2. RELATION TO PHYSICS

In a topological theory, the quantum amplitude for this depends on the topology of the world
lines, and not on the detailed geometry. In other words, as long as the topology of the world lines
looks like two linked rings, it will have the same quantum amplitude as that shown in figure 2.4. It
should surprise us that such things exist in the real world, as we are used to the idea that amplitudes
depend on details of things, like details of the Hamiltonian, how fast the particles move, and how
close they come together. But in a topological theory, none of these things matter. What matters
is the topoogy of the space-time paths.

What should be obvious here is that the quantum amplitude of a process is therefore a knot
invariant. It is a mapping from a knot (made by the world lines) to an output (the amplitude)
which depends only on the topology of the knot. This connection between quantum systems and
knot invariants was made famously by Ed. Witten, one of the world’s leading string theorists. He
won the Fields medal along with Vaughn Jones for this work.

Such topological theories were first considered as an abstract possibility, mainly coming from
researchers in quantum gravity (we will say a bit more about the relation to quantum gravity later)/
However, now seveal systems are known in condensed matter which actually behave like this. While
not all topological theories are related to the Kauffman invariant, many of them are (there are other
knot invariants that occur in physical systems as well — including the famous HOMFLY invariant).
Let us make a brief table of some of the physical systems that are believed to be related to nontrivial
knot invariants:

Table of some interesting topological systems related to knot invariants

1. SU(2)2 Kauffman class. For these, the Kauffman invariant gives the quantum amplitude of
a process plugging in a value A = ie−iπ/(2(2+2)) = i3/4 This includes

• ν = 5/2 Fractional Quantum Hall Effect (2D electrons at low temperature in high mag-
netic field). We will say more about FQHE later.

• 2D Films of exotic superconductors, particularly Sr2RuO4

• 2D Films of 3HeA superfluid5

• A host of ”engineered” structures that are designed to have these interesting topological
properties. Typically these have a combination of spin-orbit coupling, superconductivity,
and magnetism of some sort. Recent experiments have been quite promising

2. SU(2)3 Kauffman class. For this, the Kauffman invariant gives the quantum amplitude of a
process plugging in a value A = ie−iπ/(2(2+3)) = i4/5. The only physical system known in this
class is the ν = 12/5 Fractional quantum hall effect.

3. SU(2)4 Kauffman class. For this, the Kauffman invariant gives the quantum amplitude of a
process plugging in a value A = ie−iπ/(2(2+4)) = i5/6. It is possible that ν = 2+2/3 Fractional
quantum hall effect is in this class.

4. SU(3)2 Class. This corresponds the the HOMFLY knot invariant rather than the Kauffman
invariant. It is possible that the unpolarized ν = 2 + 4/7 Fractional quantum hall effect is in
this class.

In addition there are a host of complicated systems that could in principle be engineered but are
much too hard for current technology to contemplate. There are also other quantum hall states that
are also topological, but their corresponding knot invariants are fairly trivial, as we will later see.

2.2.1 Twist and Spin-Statistics

Before moving on, we do a bit of more careful examination of the kauffman invariant. To this end,
let us examine a small loop in a piece of string and try to evaluate its kauffman invariant. See figure
2.5.

5Two nobel prizes have been given for work on Helium-3 superfluidity.
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Figure 2.5: Evaluation of a loop. Off the diagram on the left we mean that the string will be
connected up with itself, but we are not concerned with any part of the knot except this little piece.

We see from the calculation, that the little loop in the string has value of −A3. But wait! I
claimed earlier that any two knots that can be deformed into each other without cutting should have
the same Kauffman invariant, but they don’t!

Of course I didn’t lie to you! The unlooped string on the left and the looped string on the right
are not topologically equivalent6. To see this we should think of the string as not being infinitely
thin, but instead having some width, like a garden hose, or a ”ribbon”. If we imagine straightening
a thick string (not an infinitely thin string) we realize that pulling it straight gives a twisted string
— anyone who has tried to straighten a garden hose will realize this! See fig 2.6

Figure 2.6: Pulling straight a small loop

So the loop string is equivalent to a string with a self-twist, and this is then related to a straight
string by the factor of −A3. In fact, this is a result we should expect in quantum theory. The string
with a self-twist represtents a particle that stays in place but rotates around an axis. In quantum
theory, if a particle has a spin, it should accumulate a phase when it does a 2 π rotation, and indeed
this factor of −A3 is precisely such a phase in any well defined quantum theory.

In fact, figure 2.6 is a very slick proof of the famous spin statistics theorem. In the left picture
with the loop, we have two identical particles that change places. When we pull this straight, we
have a single particle that rotates around its own axis. In quantum theory, the phases accumulated
by these two processes must be identical. As we will see below, in 2+1D this phase can be arbitrary
(not just +1, or -1), but the exchange phase (statistical phase) and the twist phase (the spin phase)
must be the same7.

As a side comment, one can easily construct a knot invariant that treats the looped stirng on
the left of Fig.2.5 as being the same as the straight piece of string. One just calculates the kauffman
invariant and removes a factor of −A3 for each self twist that occurs. This gives the famed Jones
Polynomial knot invariant.

6In mathematics we say they are ambient isotopic but not regular isotopic!
7As we will see later, there may be multiple exchange phases for two particles, although this does not effect the

equivalence of diagrams stated here.
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2.3 Bras and Kets

For many topological theories (the so-called non-abelian theories) the physical systems have an
interesting, and very unusual property. Imagine we start in a the ground state (or vacuum) state
of some systems and create two particle-hole pairs, and if we tell you everything that you can
locally measure about these particles (their positions, if they have spin, their spin, etc etc). For
most gapped systems (insulators, superconductors, charge density waves) once you know all of the
locally measurable quantities, you know the full wavefunction of the system. But this is not true for
topological systems. As an example, see figure 2.7.

Figure 2.7: Two linearly independent quantum states that look identical locally but have different
space-time history.

To demonstrate that these two different space-time histories are linearly independent quantum
states, we simply take inner products as shown in Fig.2.8, and we see that |0〉 and |1〉must be linearly
independent, at least for |d| 6= 1. (We also see that the kets here are not properly normalized, we
should multiply each bra and ket by 1/

√
d in order that we have normalized states.)

Figure 2.8: Showing that the kets |0〉 and |1〉 are linearly indendent. For |d| 6= 1 the inner products
show they must be linearly independent quantities.

We can even do something more complicated, like insert a braid between the bra and the ket.
See Figure 2.9. The braid does a unitary operation on the two dimensional vector space spanned by
|0〉 and |1〉.
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Figure 2.9: Inserting a braid between the bra and the ket. The braid does a unitary operation on
the two dimensional vector space spanned by |0〉 and |1〉

We emphasize here that these maniplations are not just graphical tricks, but are quite physical.
We can think of the |0〉 and |1〉 states as being particular operators that produce particle-hole pairs
from the vacuum, and the inner product drawn by this graphical procedure is precisely the inner
product of these two resulting states. This can be reinterpreted as starting from the vacuum, time
evolving with the operator that gives |0〉 then time evolving with the inverse of the operator that
produces |1〉 to return us to the vacuum.

2.4 Quantum Computation with Knots

Why do we care so much about topological systems and knot invariants? Perhaps we have a hint
from the fact that we wrote states above as 0 and 1 – they certainly look like qubits!8 Indeed,
quantum computers are really nothing more than bits that you can do unitary operations on.

It turns out that many topological quantum systems can compute quanitites efficiently that
classical computers cannot.

To prove this, suppose you wanted to calculate the Kauffman invariant of a very complicated
knot, say with 100 crossings. As mentioned above, a classical computer would have to evaluate
2100 diagrams, which is so enormous, that it could never be done. However, suppose you have a
topological system of Kauffman type in your laboratory. You could actually arrange to physically
measure the Kauffman invariant9, The way we do this is to start with a system in the vacuum
state, arrange to “pull” particle-hole (particle-antiparticle) pairs out of the vacuum, then drag the
particles around in order to form the desired knot, and bring them back together to reannihilate.
See fig.2.10. Some of the particles will reannihilate, and others will refuse to go back to the vacuum.
The probability that they all reannihilate is (up to a normalization10 given by the absolute square
of the Kauffman invariant of the knot (since amplitudes are the Kauffman invariant, the square is
the probabiltiy). Even estimation of the Kauffman invariant is essentially impossible for a classical
computer. However, this is an easy task if you happen to have a topological quantum system in your
lab!11 Thus the topological quantum system has computational ability beyond that of a classical

8One of my favorite quotes is “Any idiot with a two state system thinks they have a quantum computer.” The
objective here is to show that we are not just any idiot — that quantum computing this way is actually a good idea!

9Perhaps the first statements ever made about a quantum computer were made by the russian mathematician
Yuri Manin, in 1980. He pointed out that doing any calcualtion about some complicated quantum system with 100
interacting particles is virtually impossible for a classical computer. Say for 100 spins you would have to find the
eigenvalues and eigenvectors of a 2100 dimensioanl matrix. But if you had the physical systm in your lab, you could
just measure its dynamics and answer certain questions. So in that sense the physical quantum system is able to
compute certain quantities, i.e., its own equations of motion, that a classical computer cannot. In the following year
Feynman starting thinking along the same lines and asked the question of whether one quantum system can compute
the dynamics of another quantum system — which starts getting close to the ideas of modern quantum computation.

10If we pull a single particle-hole pair from the vacuum and immediately bring them back together, the probability
that they reannihilate is 1. However, the spacetime diagram of this is a single loop, and the Kauffman invariant is d.
The proper normalization is that each pair pulled from the vacuum and then returned from the vacuum introduces a
1/
√
d factor in front of the Kauffman invariant.

11Something about the detailed algorithm.
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computer.

Figure 2.10: To evaluate the Kauffman invariant: Pull particle-hole pairs from the vacuum, drag
them around to form the knot and reannhilate. The probability that they all reannhilate to the
vacuum is related to the Kauffman invariant. Thus by repeating the measurement, you can make
an accurate estimate of the Kauffman invariant.

It turns out that the ability to calculate Kauffman invariant is sufficient to be able to do any
quantum computation. So one can use this so-called topological quantum computer to
run algoritms such as Shor’s famous factoring (i.e., code breaking algorithm). The idea of using
topological systems for quantum computation is due to Michael Freedman and Alexei Kitaev12.

So it turns out that these topological systems can do quantum computation. Why is this a good
way to do quantum computation?8. First we must ask about why quantum computing is hard in
the first place. In the conventional picture of a quantum computer, we imagine a bunch of two
state systems, say spins, which act as our qubits. Now during our computation, if some noise,
say a photon, or a phonon, enters the system and interacts with a qubit, it can cause an error or
decoherence, which can then ruin your computation. And while it is possible to protect quantum
systems from errors (we will see much later how you do this) it is very hard. Now consider what
happens when noise hits a topological quantum computer. In this case, the noise may shake around
a particle, as shown in Fig. 2.11. However, as long as the noise does not change the topology of
the knot, then no error is introduced. So the topological quantum computer is inherently protected
from errors. (of course sufficiently strong noise can change the topology of the knot and still cause
errors. )

Figure 2.11: The effect of noise on a topological quantum computation. As long as the noise does
not change the topology of the knot, then no error is introduced.

2.5 Some quick comments about Fractional Quantum Hall
Effect

There will be chapters later about FQHE (if i ever get around to writing them!). But it is worth
saying a few words about FQHE as a topological system now.

12Freedman is another field’s medalist, for his work on the Poincare conjecture in 4d. Alexei Kitaev is one of the
most influential scientists alive, a MacArthur winner, Milnor Prize winner, etc. Both smart people.
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FQHE occurs in two dimensional electronic systems13 in high magnetic field at low temperature
(typically below 1K). There are many FQHE states which are labeled by their so called filling fraction
ν = p/q with p and q small integers. The filling fraction can be changed in experiment (we will
discuss this later). The FQHE state emerges at low temperature and is topological14

How do we know that the system is topological. There are not a whole lot of experiments that
are easy to do on quantum Hall systems, since they are very low temperature and complicated
experiments to do. However, one type of experiment is fairly straightforward — a simple electrical
resisitance measurement, as shown in Fig.2.12. In the top of the figure, the so-called longitudinal
resistance is measured – where the current runs roughly parallel to the voltage. In this case the
measured voltage is zero — like a superconductor. This shows that this state of matter has no
dissipation, no friction.

Figure 2.12: Measurement of resistance in FQHE experiment.

The measurement in the lower half of the figure is more interesting. In this case, the Hall voltage
is precisely quantized as V = (h/e2)(1/ν)I where I is the current, h is Plank’s constant,e the electron
charge and ν = p/q is a ratio of small integers. This quantization is extremely precise — to within
about a part in 1010. This is like measuring the distance from London to Los Angeles to within
a millimeter. Experiments of this sort are used in the metrological definition of the Ohm. What
is most surprising is that the measured voltage does not depend on details, such as the shape of
the sample, whether there is disorder in the sample, or where you put the voltage leads or how you
attach them as long as the current and voltage leads are topologically crossed, as they are in the
lower figure, but not in the upper figure. We should emphasize that this is extremely unusual. If
you were to measure the resistance of a bar of copper, the voltage would depend entirely on how far
apart you put put the leads and the shape of the sample. This extremely unusual independence of
all details is a strong hint that we have something robust and topological happening here.

Finally we can ask about what the particles are that we want to braid around each other in the
FQHE case. These so-called quasiparticles are like the point-vortices of the FQHE superfluid.

13Electronic systems can be made two dimensional in several ways. Most usually electrons are confined in between
layers of semiconductors in a so-called heterostructure quantum well. However, one can also use substances like
graphene which are only one atom thick and allow electron motion strictly in 2d

14A comment in comparing this paradigm to the common paradigm of high energy physics. In high energy there
is generally the idea that there is some grand unified theory (GUT) at very high energy scale and it is extremely
symmetric, but then when the universe cools to low temperature, symmetry breaks (such as electro-weak symmetry)
and we obtain the physics of the world around us. The paradigm is opposite here. The electrons in magnetic field
at high temperature have no special symmetry. However, as we cool down to lower temperature, a huge symmetry
emerges. The topological theory is symmetric under all diffeomorphisms (smooth distortions) of space and time.
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So in fact, Kelvin was almost right! He was thinking about vortices knotting in the dissipationless
aether. Here we are thinking about point vortices in the dissipationless FQHE fluid, but we move
the vortices around in time to form knots!

Topological Quantum page 18



Chapter 3

Particle Quantum Statistics

We have been discussing braiding particles around, or exchanging their positions. This is the domain
of what we call particle statistics (or quantum statistics). What we mean by this is ”what happens
to the many particle wavefunction when particles are exchanged in a certain way”.

We are familiar with bosons and fermions1,2. If we exchange to bosons the wavefunction is
unchanged, if we exchange two fermions the wavefunction accumulates a -1 sign. Various arguments
have been given as to why these are the only possibilities. The argument usually given in introductory
books is as follows

If you exchange a pair of particles then Exchange them again, you get back
where you started. So the square of the exchange operator should be 1, and
there two square roots of 1 and +1 and -1. So these are the two possibilities.

In the modern era this argument is considered to be incorrect (or at least not really sufficient).
To really understand the possibilities in exchange statistics, we need to think about quantum physics
from the Feynman path integral point of view.

Parts of this section might be familiar to many people who know a lot about path integrals. If
so, skip down to section 3.2 This is not going to be a course on path integrals, see other refs for that!

3.1 Single Particle Path Integral. Probably you know this!

Consider a space-time trajectory of a non-relativistic particles. We say that we have x moving in
RD where D is the dimension of space, so we can write x(t) where t is time.

Given that we start at position xi at the initial time ti we can define a so-called propagator
which gives the amplitude of ending up at position xf at the final time tf . This can be written as

〈xf |Û(tf , ti)|xi〉

where Û is the (unitary) time evolution operator.
The propagator can be used to propagate forward in time some arbitrary wavefunction from ti

to tf as follows

〈xf |ψ(tf )〉 =

∫
dxi 〈xf |Û(tf , ti)|xi〉 〈xf |ψ(ti)〉

If we are trying to figure out the propagator from some microscopic calculation, there are two
very fundamental properties it must obey. First, it must be unitary – meaning no amplitude is lost

1Bose cooked up the current picture of Bose statistics in 1924 in the context of photons and communicated it to
Einstein who helped him get it published. Einstein realized the same ideas could be applied to non-photon particles
as well.

2Fermi-Dirac statistics were actually invented by Jordan in 1925. Jordan submitted a paper to a journal, where
Max Born was the referee. Born stuck the manuscript in his suitcase and forgot about it for over a year. During that
time both Fermi and Dirac published their results. Jordan could have won a Nobel prize (potentially with Born) for
his contributions to quantum physics, but he became a serious Nazi and no one really liked him much after that.
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along the way (normalized wavefunctions stay normalized). Secondly it must obey compisition...
propagating from ti to tm and then from tm to tf must be the same as propagating from ti to tf .
We can express the composition law as

〈xf |Û(tf , ti)|xi〉 =

∫
dxm 〈xf |Û(tf , tm)|xm〉 〈xm|Û(tm, ti)|xi〉

The integration over xm allows the particle to be at any position at the intermediate time (and it
must be at some position). Another way of seeing this statement is to realize that the integral over
xm is just insertion of a complete set of states at some intermediate time.

Feynman’s genius was to realize that you can subdivide time into infinitessimly small pieces,
and you end up doing lots of integrals over all possible intermediate positions. in order to get the
final result, you end up summing over all possible values of all possible intermediate positions, or all
possible functions x(t). Feynman’s final result is that the propagator can be written as

〈xf |Û(tf , ti)|xi〉 = N
∑

paths x(t) from
(xi, ti) to (xf , tf )

eiS[x(t)]/~ (3.1)

where N is some normalization constant. Here S[x(t)] is the action of the path

S =

∫ tf

ti

dtL[x(t), ẋ(t), t]

with L the Lagrangian.
The sum over paths in Eq. 3.1 is often well defined as a limit of dividing the path into disctete

time steps and integrating over x at each time. We often rewrite this sum over paths figuratively as
a so-called path integral

〈xf |Û(tf , ti)|xi〉 = N
∫ (xf ,tf )

(xi,ti)

Dx(t) eiS[x(t)]/~ (3.2)

Analogous to when we evaluate regular integrals of things that look like
∫
dx eiS[x]/~, we can

approximate the value of this integral in the small ~, or classical, limit by saddle point approximation.
We do this by looking for a minium of S with respect to its argument — this is where the argument
oscillates least, and it becomes the term which dominates the result of the integral. Similarly,
with the path integral, the piece that dominates in the small ~ limit is the piece where S[x(t)] is
extremized — i.e., the classical principle of least action!

3.2 Two Identical Particles

For identical particles there is no meaning to saying that particle one is at position x1 and particle
two is at position x1. This would be the same as saying that they are the other way around. So
instead, we can only say that there are particles at positions x1 and x2. It is then useful to simply
agree on some convention on which coordinate we will write first –for example, maybe we always
write the leftmost particle first3. For simplicity, we can assume that x1 6= x2, i.e., the particles have
hard cores.

For these indistinguishable particles, the Hilbert space is then cut in half compared to the care
of two distinguishable particles where |x1,x2〉 and |x2,x1〉 would mean physically different things.

The key realization, is that the space of all paths through the configuration space C divides up
into topologically inequivalent pieces. I.e., certain paths cannot be deformed into other paths by a
series of small deformations. To the mathematician we are looking at the group of paths through C,
known as the first homotopy group Π1(C) or fundamental group.

3This ordering scheme works in 1d. In 2d we would perhaps say, the particle with the smaller x coordinate wins,
but in case of a tie, the particle with smaller y coordinate wins. etc.
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To construct a path integral, we want to think about all possible paths through this configuration
space.

Claim: Fixing endpoints, the space of paths through configuration space breaks into topologi-
cally disconnected pieces (i..e, they cannot be deformed into each other by a series of small changes.)

What do these topologically disconnected pieces of our space of paths look like? For example,
we might consider the two paths as shown in Fig. 3.1. Here we mean that time runs vertically. It
is not possible to continuously deform the path on the left into the path on the right assuming the
end points are fixed.

Figure 3.1: Two possible sets of paths (paths in configuration space) from the same two starting
positions to the same two ending positions. We call the non-exchange path TYPE 1, and the
exchange path TYPE -1. Here we mean that time runs vertically. The two sets of paths cannot be
continuously deformed into each other assuming the end points are fixed. Note that we may be able to
further refine our classification of paths — for example, we may distinguish over and undercrossings,
but for now we will only be concerned with exchanges (TYPE -1) and non-exchanges (TYPE 1)

We will call the (left fig) non-exchange path TYPE 1, and the (right fig )exchange path TYPE
-1. Here we mean that time runs vertically. The two sets of paths cannot be continuously deformed
into each other assuming the end points are fixed. Note that we may be able to further refine our
classification of paths — for example, we may distinguish over and undercrossings, but for now we
will only be concerned with exchanges (TYPE -1) and non-exchanges (TYPE 1).

Paths can be composed with each other. In other words, we can follow one path, then follow the
second. We can write a multiplication table for such composition of paths

TYPE 1 Followed by TYPE 1 = TYPE 1
TYPE 1 Followed by TYPE -1 = TYPE -1
TYPE -1 Followed by TYPE 1 = TYPE -1
TYPE -1 Followed by TYPE -1 = TYPE 1

So for example, an exchange path (which switches the two particle) followed by another exchange
path (which switches again) results in a net path that does not switch the two particles.

Now let us try to construct a path integral, or sum over all possible paths. It is useful to think
about breaking up the sum over paths into seperate sums over the two different classes of paths.

〈x1fx2f |Û(tf , ti)|x1ix2i〉 = N
∑

paths
i→f

eiS[path]/~

= N

 ∑
TYPE 1 paths

i→f

eiS[path]/~ +
∑

TYPE -1 paths
i→f

eiS[path]


This second line is simply a rewriteing of the first having broken the paths into two different

classes.
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It turns out however, that it is completely consistent to try something different. Let us instead
write

〈x1fx2f |Û(tf , ti)|x1ix2i〉 = N

 ∑
TYPE 1 paths

i→f

eiS[path]/~ −
∑

TYPE -1 paths
i→f

eiS[path]

(3.3)

Notice the change of sign for the TYPE -1 paths.
The reason this change is allowed is because it obeys the composition law! To see this (and now

using some shorthand), let us check the composition law that we should have. Again, we break the
time propagation at some intermediate time

〈x1fx2f |Û(tf , ti)|x1ix2i〉 =

∫
dx1mdx2m 〈x1fx2f |Û(tf , tm)|x1mx2m〉 〈x1mx2m|Û(tm, ti)|x1ix2i〉

∼
∫
dx1mdx2m

 ∑
TYPE 1
m→f

−
∑

TYPE -1
m→f


 ∑

TYPE 1
i→m

−
∑

TYPE -1
i→m

 eiS[path]

Now, when we compose together subpaths from i→ m with m→ f to get the overall path, the
sub-path types multiply according to our above multiplication table. For the final path, there are
two ways to obtain a TYPE 1 path —when either both sub-paths are TYPE 1 or both sub-paths
are TYPE -1. In either case, note that the net prefactor of the overall TYPE 1 path is +1. (the two
- prefactors of the TYPE -1 multiply and cancel). Similarly, we can get an overall TYPE -1 path.
In this case, exactly one of the sub-paths must be of TYPE -1. In which case, the overall sign ends
up being -1. Thus, for the full path, we obtain exactly the intended form written in Eq.3.3. I.e.,
under composition of paths, we preserve the rule that TYPE 1 paths get a +1 sign and TYPE -1
paths get a -1 sign. Thus this is consistent for quantum mechanics, and indeed, this is exactly what
happens in the case of fermions.

3.3 Many Identical Particles

To figure out what is consistent in quantum mechanics, we must do two things
(a) Characterize the space of paths through configuration space
(b) Insist on consistency under composition.
Our configuration space for the set of N identical particles in D dimensions can then be written

as
C = (RND −∆)/SN

Here RND is a set of N coordinates in D dimensions, ∆ is the space of ”coincidences” where more
than one particle occupy the same position (we are eliminating this possibility for simplicity), here
SN is the group of permutations, and we are ”modding” out by this group. We say a bit more about
the permutation group in the appendix on group theory, but this modding out by SN is just a fancy
way to say that we specify N coordinates, but we do not order these points (or as described above,
we always write the left-most first). In the case of 2 particles above, this reduced the Hilbert space
by a factor of 2. More generally this should reduce the Hilbert space by a factor of N !. This is the
same indistinguishability factor which is familiar from the Gibbs paradox of statistical mechanics.

We would now like to consider all possible paths through this configuration space C. In other
words we want to consider how these N different points move in time. We can think of this as a
set of coordinates moving through time {x1(t), . . .xN (t)} but we must be careful that the particles
are indistinguishable, so the order in which we write the coordinates doesnt matter.. We can think
of this as N directed curves moving in ND + 1 dimensional space4. Since we want to add up all of

4The curves are directed because we do not allow them to double back in time, that would represent particle-hole
creation or annhilation, which we do not yet consider.
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these possible paths in a path integral it is useful to try to better understand what the structure is
of this space of paths.

The key realization, is that the space of all paths through the configuration space C divides up
into topologically inequivalent pieces. I.e., certain paths cannot be deformed into other paths by a
series of small deformations. To the mathematician we are looking at the group of paths through
C, known as the first homotopy group Π1(C) or fundamental group. The reason this is a group (see
appendix on definition of a group) is that it comes with a natural operation, or multiplication of
elements — which is the composition of paths: follow one path, then follow another path.

3.3.1 Paths in 2+1 D, the Braid Group

An example of a path in configuration space is shown in Fig.3.2. This is known as a braid.

Figure 3.2: A path through configuration space for 3 Particles in 2+1 D is a braid with three strands.

A few notes:
(1) Fixing the endpoints, the braids can be deformed continuously, and so long as we do cut one

string through another, it still represents the same topological class.
(2) We cannot allow the strings to double back in time. This would be pair creation or annihi-

lation, which we will consider later, but not now.
The Braid group on N strands is typically notated as BN . The generators of the braid group

on 4 strands are shown in Fig. Any braid can be written as a product of the braid generators

Figure 3.3: The three generating elements of teh braid group on 4 strands. Any braid can be written
as a product of the braid generators and their inverses (the inverse of an element looks similir but
the crossing is reversed – counter-clockwise instead of clockwise).

and their inverses. An expression representing a braid, such as σ1σ2σ
−1
3 σ1 is known as a “braid

word.” Typically we read the braid word from right to left (do the operation on the right-most first),
although sometimes people use the opposite convention!

Note that many different braid words can represent the same braid. An example of this is shown
for B3 in Fig. 3.4. A very useful braid invariant is given by the so-called winding number

W=Winding Number = # of overcrossings - # of undercrossings

Where an overcrossig is a σ and an undercrossing is a σ−1. As can be checked in Fig.3.4, the
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Figure 3.4: Two braid words that represent the same braid.

widing number is independent of the particular way we represent the braid. As long as we do not
cut one strand through another or move the endpoints (or double back strands) the braid invariant
remains the same.

There are several homework assignments that ask you to use the braid group! Do them and you
will be enlightened.

3.3.2 Paths in 3+1 D, the Perumation Group

It would be convenient here to be able to draw pictures in 4 dimensions, but obviously that isn’t so
easy.

The key point here is that you cannot have any knot in a 1d world-line embedded in a 4d space.
If this is not obvious consider the following lower dimensional analogue shown in Fig.3.5.

Figure 3.5: In 1d, two points cannot cross through each other without hitting each other. But if we
allow the points to move in 2D they can get around each other without touching. This is supposed
to show you that 1d world-lines cannot form knots in 4d space.

As shown in the figure, in 1d, two points cannot cross through each other without hitting each
other. But if we allow the points to move in 2D they can move around each other without touching
each other. Analogously we can consider strings forming knots or braids in 3D space. When we try
to push these strings through each other, they bump into each other and get entangled. However, if
we allow the strings to move into the 4th dimension, we can move one string a bit off into the 4th
dimension so that it can move past the other string, and we see that the strings can get by each
other without ever touching each other!

Given that in 3+1D world-lines cannot form knots, the only thing that is important in determin-
ing the topological classes of paths is where the strings start and where they end. In other words, we
can drraw things that look a bit like braid-diagrams (where the starting plane and finishing plane
really represent 3d now!) but now there is no meaning to an over or under-crossing. They are the
same! So everything can be unentangled until the diagram looks only like Fig. 3.6. The only thing
that is important is who starts where and ends where. This is precisely the permutation group, or
symmetric group SN . Note that in the symmetric group and exchange squared does give the identity.
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Figure 3.6: Paths in 3+1 D are elements of the permutation group (or symmetric group) SN .

However, in the braid group this is not so – σ2
i is not the identity since it creates a nontrivial braid!

3.3.3 Building a Path Integral

We now return to the issue of building a path integral. We will follow the intuition we gained in
the 2-particle case, but now including the information we have discovered about the group of paths
through configuration space.

Using the notation {x} to denote all of the N particle coordinates, we now construct the path
integral as

〈{x}f |Û(tf , ti)|{x}i〉 = N
∑

g ∈ G
ρ(g)

∑
paths ∈ g

i→f

eiS[path]/~ (3.4)

Here G is the group of paths (the fundamental group) — or the set of classes of topologically
different paths. This is the symmetric group SN for 3+1 dimensions and the braid group BN for
2+1 dimension . Here we have split the sum over paths into the different classes. We have also
introduced a factor of ρ(g) out front where ρ is a representation of the group G. (See the appendix
on group theory).

To show that this is allowed by the laws of quantum mechanics, we need only check that it obeys
the composition law – we should be able to construct all paths from i to f in terms of all paths from
i to m and all paths from m to f .

〈{x}f |Û(tf , ti)|{x}i〉 =

∫
d{x} 〈{x}f |Û(tf , tm)|{x}m〉 〈{x}m|Û(tm, ti)|{x}i〉

∼
∫
d{x}


∑

g1 ∈ G
ρ(g1)

∑
paths ∈ g1

m→f




∑
g2 ∈ G

ρ(g2)
∑

paths ∈ g2
i→m

 eiS[path]/~

So we have constructed all possible paths from i to f and split them into class g2 in the region i to m
and then class g1 in the region m to f . When we compose these paths we will get a path of type g1g2.
The prefactors of the paths ρ(g1) and ρ(g2) then multiply and we get ρ(g1)ρ(g2) = ρ(g1g2) since ρ is
a representation (the preservation of multiplication is the definition of being a representation!). So
the prefactor of a given path from i to f is correcly given by ρ(g) where g is the topological class of
teh path. In other words, the form shown in Eq. 3.4 is properly preserved under composition, which
is what is required in quantum mechanics!

Topological Quantum page 25



3.4. ABELIAN EXAMPLES

3.4 Abelian Examples

Let us consider the case where the representation ρ of our group G of paths through configuration
space is one dimensional – in other words it just a mapping from g to a complex phase.

This case seems to be most applicable in the quantum mechanics we know, because this repre-
sentation is acting on the wavefunction of our system — and we are quite familiar with the idea of
wavefunctions accumulating a complex phase.

3.4.1 3+1 Dimensions

The group of paths through configuration space G is the symmetric group SN . There are only two
possible 1-dimensional representations.

Trivial rep: In this case ρ(g) = 1 for all g. This corresponds to bosons, The path integral is
just a simple sum over all possible paths with no factors inserted.

Alternating (or sign) rep: IN this case ρ(g) = 1 or -1 depending on whether g represents an
even or odd number of exchanges. In this case the sum over all paths gets a positive sign for an
even number of exchanges and a negative sign for an odd number. This is obviously fermions and
is the generalization of the 2-particle example we did above where the exchange was assigned a -1.

3.4.2 2+1 Dimensions

The group of paths through configuration space G is the braid group BN . We can describe the
possible 1-dimensional representations by a single parameter θ. We write the representation

ρ(g) = eiθW (g)

where W is the winding number of the braid g. In otherwords, a clockwise exchange accumulates a
phase of eiW whereas a counterclockwise exchange accumulates a phase of e−iW .

For θ = 0 there is no phase, and we simply recover bosons.
For θ = π we accumulate a phase of -1 for each exchange no matter the direction of the exchange

(since eiπ = e−iπ). And this is fermions.
Any other value of θ is also allowed and this is known as Anyons, or fractional statistics. The

fact that this is consistent in quantum mechanics was first point out by Leinaas and Myrheim in
1977, and popularized by Wilczek. In 1984,85 Halperin, then Arovas, Schrieffer, and Wilczek showed
that anyons really occur in fractional quantum Hall systems.5

3.5 Non-Abelian Case

Can we do something more interesting and exotic and use a higher dimensional representation of the
group G = BN of paths in configuration space? Generally in quantum mechanics, higher dimensional
representations correpsond to degeneracies, and indeed this is what is necessary.

Suppose we have a system with N particles at a set of positions {x}. And even once we fix
the positions (as well as the values of any local quantum numbers), suppose there still remains an
M -fold degeneracy of the state of the system. We might describe the M states as |n〉 for n = 1 to
M . An arbitary wavefunction of the system can then be expressed as

|ψ{x}〉 =

M∑
n=1

An|n; {x}〉

So given the N positions {x} a general wavefunction should be thought of as a vector in M dimen-
sional space. Now that we have a vector, we can use an M -dimensional representation of the braid
group in our path integral! We can use

ρ(g) = [U(g)]n,n′

5A good ref on fractional statisics is the book by Wilczek, ”Fractional Statistics and Anyon Superconductivity”.
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where U is an M by M matrix, and is assumed to be must be a representation of G and it must
also be unitary so as to assure that probability is conserved. The unitary matrix will act on the
coefficients An.

This type of particle is known as a non-Abelian anyon, or nonabelion6 (since generically matrices
don’t commute).

In general the Hilbert space dimension M is exponential in the number of particles N . We define
a quantity, the quantum dimension d

M ∼ dN

We will see a lot more of this quantity later. It is not coincidence that we used the symbol d
previously in the context of Kauffman anyons!

Quantum Computing: Quantum Computing is nothing more than the controlled application
of unitary operations to a Hilbert space7. Unitary operations is exaclty what one can do by braiding
nonabelions around each other!

3.5.1 Parastatistics in 3D

Is it possible to have exotic statistics in 3+1 D? Indeed, there do exist higher dimensional repre-
sentationgs of the symmetric group. And one can consider particles that obey more complicated
statistics even in 3+1 D. However, it turns out that, subject to some “additional constraints”, it is
essentially not possible to get anything fundamentally new. All we get is bosons and fermions and
possibly some internal additional degrees of freedom. The proof of this statement is known as the
Doplicher-Roberts theorem (from the 1970s) and runs some 200 pages (so we won’t do the whole
proof).

However, we should realize that the fine print is important. I mentioned in the previous paragraph
that we want to add some “additional constraints” and these are what really limit us to just bosons
and fermions. What are these additional constraints. Two things:

(1) We want to be able to pair create and annihilate. This means we are not just considering the
braid group, but rather a more complicate structure that allows not just braiding particles around
each other, but also creating and annhiliating. This structure is given by category theory, which we
will encounter later.

(2) We also want some degree of locality. If we do an experiment on earth, and off on jupiter
someone creates a particle-antiparticle pair, we would not want this to effect the result of our
experiment at all.

These two restrictions are crucial to reducing the 3+1 D case to only bosons and fermions. We
will not go through the details of thi. However, once we see the full structure of particles in 2+1
dimensions, it ends up being fairly clear why the same structure does not work in 3+1 dimensions,
except in the case of bosons and fermions.

3.6 Appendix on Groups

It is a shame that the Oxford undergrads do not get any education in group theory. To make up for
this failing, I am including a very short exposition of most of what you need to know!

A group G is a set of elements g ∈ G along with an operation that we think of as multiplication.
The set is must be closed under this multiplication. So if g1, g2 ∈ G then g3 ∈ G where

g3 = g1g2

where by writingg g1g2 we mean multiply g1 by g2. Note: g1g2 is not necessarily the same as g2g1.
If the group is always commutative (ie. g1g2 = g2g1 for all g1, g2 ∈ G), then we call the group

6The idea of nonabelian anyons was explored first in the 1980s by several authors in different contexts. Bais in
the context of gauge theories. Froelich in very abstract sense. Witten in the language of topological quantum field
theories. Moore and Read in the context of quantum Hall

7And initialization and measurement
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Abelian8. If there are at least some elements in the group where g1g2 6= g2g1 then the group is
called NonAbelian9

A group must always be associative

g1(g2g3) = (g1g2)g3 = g1g2g3

Within the group there must exist an identity element which is sometimes10 called e or 0 or 1.
The identity element satisifies

ge = eg = g

for all elements g ∈ G. Each element of the group must also have an inverse which we write as g−1

with the property that
gg−1 = g−1g = e

Some Examples

• The group of integers Z with the operation being addition. The identity element is 0.

• The group {1,−1} with the operation being the usual multiplication. This is also called the
group Z2. The identity element is 1. We could have also written this group as {0, 1} with the
operation being the usual addition modulo 2, where here the identity is 0.

• The group of invertable n×n complex matrices. We call this group GL(n,C). Here GL stands
for ”general linear”. The identity is the usual identity matrix. By definition all elements of
the group are invertable.

• The group of invertable n× n real matrices. We call this group GL(n,R).

• The group of permutations of N elements, which we write as SN . There are N ! elements in
the group. Think of the elements of the group as being a one-to-one mapping from the the set
of the first N integers into itself. For example, in S3, one of the elements is

g1 =

 1 → 2
2 → 1
3 → 3

Another element is

g2 =

 1 → 2
2 → 3
3 → 1

The multiplication operation g3 = g2g1 is meant to mean, do 1 first, then do 2 (you should
be careful to make sure your convention of ordering is correct. Choose either convention, but
stick to it!) So, if we start with the element 1. Do g1 the element 1 gets moved to 2. Then
when we do g2 the element 2 gets moved to 3. So in the product g2g1 we have 1 getting moved
to 3. In the end we have

g3 = g2g1 =

 1 → 3
2 → 2
3 → 1

Representations of Groups:

8Named after Abel, the Norwegian mathematician who studied such groups in the early 1800s
9Apparently named after someone named NonAbel.

10It may seem inconvenient that the identity has several names. However, it is sometimes convenient. If we are
thinking of the group of integers and the operation of addition, we want to use 0 as the identity. If we are thinking
about the group {1,−1} with the operation of usual multiplication, then it is convenient to write the identity as 1.
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A representation is a group homomorphism. Homomorphism means it is a mapping from one
group to another which preserves multiplication. We will be concerned with the most common
type of representation, which is a homomorphism into the general linear group, ie, the group
of matrices. Almost always we will work with complex matrices. Thus our n-dimensional
representation is a mapping ρ to n-dimensional complex matrices

ρ : G→ GL(n,C)

preserving multiplication. I.e.,
ρ(g1)ρ(g2) = ρ(g1g2)

for all g1, g2 ∈ G.

Representation theory of groups is a huge subject, but we won’t discuss it further here!
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Chapter 4

Aharanov-Bohm, Charge-Flux
Composites, and Introducing
Chern-Simons Theory

4.1 Review of Aharanov-Bohm Effect

Let us consider the two slit experiment shown in Fig. 4.1

Figure 4.1: The Young two slit experiment

We all know the result of the two slit experiment but let us rewrite the calculation roughly as a
path integral. We can write∑

paths

eiS/~ =
∑

paths, slit 1

eiS/~ +
∑

paths, slit 2

eiS/~

≈∼ eiL1/λ + eiL2/λ

where L1 and L2 are the path lengths through the two respective slits to whichever point is being
measured at on the output screen. In other words, we get the usual 2-slit calculation.

Now let us change the experiment to that shown in Fig. 4.2. Here we assume the particle being
sent into the interferometer is a charged particle, such as an electron. In this case a magnetic field
is added inside the middle box between the two paths. No magnetic field is allowed to leak out of
the box, so the particle never experiences magnetic field. Further the magnetic field is kept constant
so the particle does not feel a Faraday effect either. The surprising result is that the presence of
the magnetic field nonetheless changes the interference pattern obtained on the observation screen!
This effect, named the Aharanov-Bohm effect, was predicted by Ehrenberg and Siday in 1949, then
re-predicted by Aharanov and Bohm in 19591.

1Possibly the reason it is named after the later authors is that they realized the importance of the effect, whereas
the earlier authors pointed it out, but did not emphasize how strange it is! The first experimental observation of the
effect was in 1960 by Chambers, although many more careful experiments have been done since.
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Figure 4.2: Adding a magnetic field into the hidden box in the Young two slit experiment. Here
the circular region includes a constant magnetic field. No magnetic field leaks out of the box.
Nonetheless, if the particle being sent into the interferometer is charged, the interference pattern is
changed compared to the above figure.

So why does this strange effect occur? There are several ways to understand it, but the best for
our purpose will be to stay with the idea of path integrals and consider the Lagrangian description
of particle motion.

We must recall how a charged particle couples to an electromagnetic field in the Lagrangian
description of mechanics. We write the magnetic field and electric field in terms of a vector potential

B = ∇×A

and the electric field will then be
E = −∇A0 − dA/dt

where A0 is just the electrostatic potential. We can then write the particle Lagrangian as

L =
1

2m
ẋ2 + q(A(x) · ẋ−A0) (4.1)

where q is the particle charge.
It is an easy exercise to check that the Euler-Lagrange equations of motion from this Lagrangian

correctly gives motion under the Lorentz for as we should expect in electromagnetism.2 So adding
a magnetic field to the Lagrangian can be rephrased as changing the action as

S → S0 + q

∫
dt ẋ ·A

→ S0 + q

∫
dl ·A

where S0 is the action in the absence of the magnetic field.
Returning now to the two slit experiment. The amplitude of the process in the presence of the

vector potential can be now rewritten as∑
paths, slit 1

eiS0/~+iq/~
∫
dl·A +

∑
paths, slit 2

eiS/~++iq/~
∫
dl·A

2Here are the steps:

d

dt

∂L

∂ẋk
=

∂L

∂xk
d

dt
(mẋk + qAk) = mẍk + q

d

dt
Ak + qẋj

∂

∂xj
Ak = q(ẋj

∂

∂xk
Aj −

∂

∂xk
A0)

mẍk = q(E + ẋ×B)k
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Where S0 is the action of the path in the absence of the vector potential.
The physically important quantity is the difference in accumulated phases between the two paths.

This is given by

exp

[
iq

~

∫
slit1

dl ·A− iq

~

∫
slit2

dl ·A
]

= exp

[
iq

~

∮
dl ·A

]
(4.2)

where the integral is around a loop that goes forward through slit one and then backwards through
slit 2.

Using stokes theorem, we have

iq

~

∮
dl ·A =

iq

~

∫
inside loop

dS · (∇×A) =
iq

~
Φenclosed

where Φenclosed is the flux enclosed in the loop. Thus there is a measurable relative phase shift
between the two paths given by iq

~ Φenclosed. This results in a shift of the interference pattern observed
on the observation screen. Note that although the orginal Lagrangian did not look particularly gauge
invariant, the end result (once we integrate around the full path) is indeed gauge independent.

A few notes about this effect:
(1) If Φ is an integer multiple of the elementary flux quantum

φ0 = 2π~/q

, then the phase shift is an integer multipe of 2 π and is hence equivalent to no phase shift.
(2) We would get the same phase shift if we were to move flux around a charge. (Sometimes

known as Aharonov-Casher effect)
(3) More generally for particles moving in general space-time one wants to calculate the rela-

tivistically invariant quantity
iq

~

∮
dlµA

µ

4.2 Anyons as Flux-Charge Composites

Good reference is Preskills notes pages 1-25; Also the book on Anyons by Wilczek.
We will now consider a simple model of Abelian anyons — charge-flux composites. Imagine we

have a 2 dimensional system with charges q in them, where each charge is bound to an infinitely
thin flux tube through the plane, with flux Φ as shown in Fig. 4.3 If we drag one particle around

Figure 4.3: Abelian Anyons represented as charges bound to flux tubes through the plane. The
charge of each particle is q, the flux of each tube is Φ.

another, we then accumulate a phase due to the Aharnov-Bohm effect. The phase from the charge
of particle 1 going around the flux of particle 2 is eiqΦ/~, whereas the phase for dragging the flux of
1 around the charge of 2 is also eiqΦ/~, thus the total phase for dragging 1 around 2 is given by

(Phase of flux-charge composite 1 encircling 2) = e2iqΦ/~

Thus we have (as shown in Fig. 4.4)
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Figure 4.4: An exchange

(Phase for exhange of two flux-charge compisites) = eiqΦ/~

and we correspondingly call these particles θ-anyons, with θ = qΦ/~. Obviously θ = 0 is bosons,
θ = π is fermions, but other values of θ are also allowed.

Spin of an anyon

Let us see if we can determine the spin of these anyons. Spin refers to the rotation operator, so we
need to physically rotate the anyon on its axis. To do this we must think about how the flux is tied
to the charge — we must have some microscopic description of exactly where the flux is and where
the charge is. It is easiest to put them at very slightly different positions3. In this case, when we
rotate the anyon around its axis we move the charge and flux around each other and we obtain a
new phase of

eıqΦ/~ = eiθ

This fits very nicely with the spin statistics theorem – the phase obtained by exchanging two identical
particles should be the same as the phase obtained by rotating one around its own axis. (See the
discussion by Fig. 2.6).

4.2.1 Anti-Anyons

We can introduce the concept of an anti-anyon. This would be a charge flux composite which instead
of having charge and flux (q,Φ) instead has (−q,−Φ). This makes sense because if we pair create
an anyon-antianyon pair, before the creation, we have total charge q = 0 and total flux Φ = 0, and
after the creation the sum of the two charges is still zero, as is the sum of the two fluxes.

If the phase of dragging an anyon clockwise around an anyon is 2θ, then so is the phase of
dragging an anti-anyon clockwise around an anti-anyon! (The two minus signs on the two anyons
cancel). However, the phase of dragging an anyon clockwise around an antianyon is −2θ.

4.2.2 Fusion of Anyons

We can consider pushing two anyons together to try to form a new particle. A simple example of
this is pushing together an anyon with an antianyon. In this case the charge and flux (q,Φ) cancels
with the charge and flux (−q,−Φ) giving the vacuum. This makes some sense — the total charge
and flux are locally conserved. (See fig. 4.5).

If we push together two particles both having charge and flux (q,Φ) we will obtain a single
particle with charge and flux (2q, 2Φ). Note that the phase of exchanging two such double particles
is now θ = 4qΦ/~. We sometimes will draw a ”fusion diagram” as in Fig. 4.5 to indicate that two θ
particles have come together to form a 4θ particle.

3We can try to put them at the same position, but it becomes very hard to not get infinities if we do this!
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Figure 4.5: Left; Fusing an anyon and an antianyon to get the vacuum (”e”) drawn as dotted line.
Note that the antianyon moving forward in time is drawn as a downpointing arrow — which looks
like an anyon moving backwards in time. Right: Fusing two anyons together to form another anyon
of a different type (two θ = qΦ/~ anyons make a 4θ anyon)

(Add better picture of braiding around the vacuum and braiding around p-h pair giving zero net
phase).

The principle of locality is an important one. Consider Fig. 4.6) where we see that braiding
around a segment that doubles back in time is equivalent to braiding around a segment pulled
straight. This is an example of the locality priniciple. If you wrap around a large region of space,
it should not matter if there is a glitch in that region of space where an anyon and antianyon are
created briefly. From far away you should not see this. You should only see that the total anyonic
charge in that region of space is zero.

Figure 4.6: Braiding around a world-line that doubles back. The anyon-antianyon braiding rules are
constructed so that the double-back can be pulled straight. The calculation scribbled in the middle
says ”two anyon wraps around anyon + 1 anyon wraps anti-anyon” which give a net phase the same
as one anyon wrapping one anyon.

4.3 Anyon Vacuum on a Torus, etc, and Quantum Memory

A rather remarkable feature of topological models is that the ground state somehow “knows” what
kind of anyons exist in the model (i.e, those that could be created), even when they are not actually
present. To see this, consider the ground state of an anyon model on the surface of a torus (a
doughnut – or donut if you are from the states).

We can draw the torus as a square will opposite edges identified as shown in Fig. 4.7. The two
cycles around the torus are marked as C1 and C2.
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Figure 4.7: Drawing a torus as a rectangle with opposite edges identified. The two noncontractable
cycles around the torus can be considered to be the edges of the square, labeled C1 and C2 here.

Let us now construct operators that do the following complicated operations:

T1 is the operator that creates a particle-hole pair, moves the two in opposite
directions around the C1 cycle of the torus, they meet on the opposite side of the
torus and reannihilate.

T2 is the operator that creates a particle-hole pair, moves the two in opposite
directions around the C2 cycle of the torus, they meet on the opposite side of the
torus and reannihilate.

Both of these operators are unitary because they can be implemented (in principle) with some
time-dependent Hamiltonian4. However, the two operators do not commute. To see this consider
the operator T−1

2 T−1
1 T2T1 where I read time from right to left. This can be interpreted as as two

particles being created, braiding around each other, and then reannihilating. This is shown in
Fig. 4.8.

So what we have now is two operators T1 and T2 which do not commute with each other, indeed,
we have5

T2T1 = e−2iθT1T2

But both T1 and T2 commute with the Hamiltonian (since they start and end with states of exactly
the same energy6). Whenever you have two operators that don’t commute with each other but
do commute with the Hamiltonian, it means you have degenerate eigenstates. Let us see how this
happens.

Since T1 is unitary, its eigenvalues have to have unit modulus (or just a complex phase). Consider
the space of possible ground states, let us write a ground state eigenstate of T1 as

T1|α〉 = eiα|α〉

Now we can generate a new eigenstate with a different eigenvalue of T1. Consider the state T2|α〉.
This must also be in the ground state space since T2 commutes with the Hamiltonian. But now

T1(T2|α〉) = e2iθT2T1|α〉 = e2iθeiα(T2|α〉)

So we can call this new ground state |α + 2θ〉 = T2|α〉. So we have now generated a new ground
state and we can continue the procedure to generate more!

4For example, we could insert charges +Q and -Q near to each other which are strong enough to pull a particle-hole
pair out of the vacuum, the -Q trapping the +(q,Φ) and the +Q trapping the (−q,−Φ). Then we can drag the Q
charges around the handle of the torus, dragging the anyons with them.

5At least this relation should be true acting on the ground state space. If some particles are already present, then
we have to consider the braiding of the the particles we create with those already present as well, which will be more
complicated.

6Strictly speaking this means they commute with the Hamilonian within the ground state space.

Topological Quantum page 36



CHAPTER 4. AHARANOV-BOHM, CHARGE-FLUX COMPOSITES, AND INTRODUCING
CHERN-SIMONS THEORY

Figure 4.8: The torus is drawn as a horizontal rectangle with opposite ends identified. Time runs
vertically. First create a particle hole pair at the center of the rectangle and move them in opposite
directions until they meet at the edges of the rectangle to reannhiliate. Note that a particle moving
to the right or an antiparticle moving to the left are both drawn as a rightpointed arrow. Similarly
next a particle antiparticle pair are made in the center of the torus and moved to the front and
back walls (which are the same point) to reannihilate. Then the two processes are reversed to give
T−1

2 T−1
1 T2T1. This procedure can be reduced to one particle wrapping around another which gives

a phase of e−2iθ. Note that in the top figure we do not quite annihilate the particles at the end of
the first and second step. This is actually allowed since bringing two particles close looks like they
have fused together from far away.

Let us suppose we have a system where the anyons have statistical phase

θ = πp/m

where p and m are relatively prime integers (i.e., it is an irreducible fraction). Now we have a series
of ground states

|α〉, |α+ 2πp/m〉, |α+ 4πp/m〉, . . . , |α+ 2π(m− 1)/m〉

When we try to generate yet another state, we get the phase α + 2π = α so we are back to the
original state. Nonetheless, we now have m independent ground states7.

Now let us consider the anyons in the system. Since we are considering anyons of statistical angle
θ = πp/m we can consider a charge-flux composite with (q,Φ) = (πp/m, 1). Fusion of n of these
elementary anyons will have (By this time I’m sick of ~ and I’m going to set it equal to 1.)

Fusion of n elementary anyons = |”n”〉 = (q = nπp/m,Φ = n) = (nπp/m, n)

7There may be even more degeneracy which is non generic. What we have proven is there must be a degeneracy
which is m times some integeer, where one generally expects that integer to be 1 but there could be additional
accidental degeneracy.
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Now let us consider a cluster of m of these elementary anyons. We then have

|”m”〉 = (πp,m)

If we braid an arbitrary cluster |”n”′〉 = (nπp/m, n) around one of these |”m”〉 = (πp,m) cluster, we
obtain a net phase8 of 2nπp which is equivalent to no phase at all! Thus we conclude that the cluster
of m elementary anyons is equivalent to the vacuum in the sense that everything braids trivially
when it goes all the way around it.

We might be tempted to conclude that there are exactly m different anyon species in the system.
Indeed, this conclusion is often true. However, there is a glitch. If both p and m are odd, one obtains
a nontrivial sign for exchanging (half braiding) a |”m”〉 = (πp,m) with another |”m”〉 = (πp,m)
particle (you get a phase πpm since exchange should give half of the 2πpm phase for wrapping one
particle all the way around the other). This means the |”m”〉 particle is a fermion. In fact, this case
of p and m both odd is a bit of an anomolous case and in some sense is a poorly behaved theory9.

Neglecting this complicated case with fermions, we are correct to conclude that we have exactly
m different species of anyons – and also m different ground states on the torus. This connection
will occur in any well behaved topological theory — the number of ground states on the torus will
match the number of different types of particles.

Quantum Memory and Higher Genus
The degenerate ground state on the torus can be thought of as a quantum memory. There are m

different ground states, so the most general wavefunction we can have is some linear superposition

|Ψ〉 =

m−1∑
n=0

An|α+ 2πnp/m〉

where the coefficients An form an arbitrary (but normalized) vector. We can initialize the system
in some particular superposition (i.e, some vector An) and we can expect that the system remains
in this superposition. The only way that this superposition can change is if a T1 or T2 operation is
performed (or some combination thereof)— i.e, if a pair of anyons appears from the vacuum moves
around the handle of the torus and then reannihilates. Such a process can be extremely unlikey when
the energy gap for creating excitations is large. Hence the quantum superposition is “topologically
protected”.

In fact, one does not even need to have a system on a torus in order to have a degenerate ground
state. It is often sufficeint to have an annulus geometry (a disk with a big hole in the middle).
In this case, T1 could correspond to moving an anyon around annulus and T2 could correspond to
moving an anyon from the inside to the outside edge. In this case it is often not precisely true that
the ground states are entirely degenerate (since there is a net result of having moved a particle from
inside to outside, and therefore one is not necessarily in the precise ground state) but under certain
conditions it can be extremely close to degenerate nonetheless.

One can consider mode complicated geometries, such as a torus with multiple handles, or a
disk with multiple holes cut in the middle. For a theory of abelian anyons (fractional statistics)
the ground state degeneracy for a surface with genus g (meaning g handles, or g holes) is mg.
Thus by using high genus one can obtain very very large Hilbert spaces in which to store quantum
information.

4.4 Abelian Chern-Simons Theory

Good ref is Wilczek book.
It is useful to see how charge-flux binding occurs in some microscopic field theory description of

a physical system. The type of field theory we will study is known as a Chern-Simons field theory10

and is the paradigm for topological quantum field theories.

8nπp/m times m plus n times πp.
9Later on we will call it “non-modular.”

10S.S. Chern is one of the most important mathematicians of the 20th century. He died in 2004. Jim Simons was
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In the current section we will consider the simplest type of Chern-Simons theory which is the
Abelian type (i.e., it generates Abelian anyons). To do this we imagine a gauge field aα analogous
to the vector potential Aα we have discussed already when we were discussing flux above. Here we
should realize that aα is not the real electromagnetic vector potential because it lives only in our
2-dimensional plane. We should think of it instead as some emergent effective quantity for whatever
two dimensional system we are working with.

Let us write the Lagrangian of our system

L = L0 +

∫
d2x∆L

Here we have written L0 to be the Lagrangian of our particles without considering the coupling to
the vector potential. This could be nothing more than the Lagrangian for free particles – although
we could jam other things into this part too, such as inter-particle interaction if we like.

The second term is the integral of a Lagrangian density — and this will be the term that is relevant
for the flux-binding and the exchange statistics of the particles. The form of the Lagrangian density
is

∆L = −qjαaα +
µ

2
εαβγaα∂βaγ (4.3)

Here q is the particle charge, jα is the particle current, µ is some coupling constant, and ε is the
antisymmetric tensor. The indices α, β, γ take values 0, 1, 2 where 0 indicates the time direction and
1, 2 are the space directions.

The first term here jαaα is actually something we have already seen. If we have N particles then
the current is

j0(x) =

N∑
n=1

δ(x− xn)

~j(x) =

N∑
n=1

~̇x δ(x− xn)

The j0 component, the density, is just a delta function peak at the position of each particle. The 1
and 2 component, ~j is a delta function at the position of each particle with prefactor of the velocity
of the particle. Now when −qjαaα is integrated over all of space we get

N∑
n=1

q [a(xn) · xn − a0(xn)]

exactly as in Eq. 4.1. So this is nothing more than the regular coupling of a system of charged
particles to a vector potential.

The second term in Eq. 4.3 corresponds to the Lagrangian density of the Chern-Simons vector
potential itself. (It is sometimes known as the ”Chern-Simons Term”).

As mentioned above the coupling of the particles to the gauge field is gauge invariant once one
integrates the particle motion over some closed path. The Chern-Simons term is gauge invariant on
a closed manifold if we can integrate by parts. To see this, make an arbitray gauge transformation

aµ → aµ + ∂µχ (4.4)

for any function χ. Then integating the Chern-Simons term by parts if necessary all terms can be
brought to the form εαβγχ∂α∂βaγ which vanish by antisymmtry. Note that this this gauge invariance

a prominent mathematician who wrote the key first paper on what became known as Chern-Simons theory in 1974.
Simons was the head of the math department at Stonybrook university at the time. In 1982, he decided to change
careers and start a hedge fund. His fund, Renaissance Technologies, became one of the most successful hedge funds
in the world. Simons’ wealth is now estimated at over 16 billion dollars. More recently he has become a prominent
philanthropist, and has donated huge amounts of money to physics and mathematics — now being one of the major
sources of funds for the best scientists in the US.
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holds for any closed manifold, although for a manifold with boundaries, we have to be careful when
we integrate by parts as we can get a physically important boundary term. (We will discuss these
later, but for now, let us just think about closed space-time manifolds).

To deterimne what the Chern-Simons does we need to look at the Euler-Lagrange equations of
motion. We have

∂L
∂aα

= ∂β

(
∂L

∂(∂βaα)

)
which generates the equations of motion11

qjα = µεαβγ∂βaγ (4.5)

This equation of motion demonstrates flux binding. To see this, let us look at the 0th component
of this equation. We have

qj0 = q

N∑
n=1

δ(x− xn) = µ(∇× ~a) = µb

where we have defined a ”Cherns-Simons” magnetic field to be the curl of the the Chern-Simons
vector potential. In other words this equation attaches a delta function flux tube with flux q/µ at
the position of each charge q. So we have achieved charge-flux binding!

We might expect that the phase obtained by exchanging two charges in this theory would be
the charge times the flux or θ = q2/µ. Actually, this is not right! The correct answer is that the
statistical phase is

θ = q2/(2µ)

. To see why this is the right answer, we can multiply our equation of motion 4.5 by aα and then
plug it back into the Lagrangian 4.3. We then end up with

∆L = −q
2
jαaα

In other words, the dynamics of the Chern-Simons vector potential itself cancels excatly half of the
Lagrangian density, and hence will cancel half of the accumulated phase when we exchange two
particles with each other!

If we are interested in calculating a propagator for our particles we can write∑
paths {x}

∑
all aα(x)

ei(S0+SCS+Scoupling)/~ (4.6)

Here the first sum is the usual sum over paths that we have discussed above. The second sum is
the sum over all possible configurations of the field a(x). Note this is all configurations in space and
time so it is effectively a path integral for a field. (This is potentially everything you ever need to
know about field theory!). Often the sum over field configurations is written as a functional integral∑

all aα(x)

→
∫
Daµ(x)

Formally when we write a functional integral we mean12 that we should divide space and time into
little boxes and within each box integrate over all possible values of a. Fortunately, we will not need
to do this procedure explicitly.

We thus rewrite Eq. 4.6 as∑
paths {x}

eiS0/~
∫
Daµ(x) eiSCS/~ ei(q/~)

∫
paths

dlαaα

11It may look like the right result would be to have µ/2 on the right hand side, given that it is µ/2 in equation
4.3. However, note that when we differentiate with respect to aα on the left hand side, we also generate an identical
factor of µ/2 and these two add up.

12Making strict mathematical sense of this type of integral is not always so easy!
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where S0 is the action of the particles following the path but not interacting with the gauge field,
SCS is the action of the Chern-Simons gauge field alone. The final term represents the coupling of
the gauge field to the path of the particles — it is an integral that follows the path of the particles
and integrates the vector potential along the path. This is precisely the phase accumulated by a
particle in the vector potential. It is an example of a Wilson-line operator, which we will see again
shortly.

Once the integration over the Chern-Simons field is done, we obtain∑
paths {x}

eiS0/~+iθW (path)

where W is the winding number of the path and θ is the anyon statistical angle.
Something we have pointed out above is that the vacuum of an anyon theories knows about the

statistics of the particles, even when the particles are not present (i..e, the ground state degeneracy
on a torus matches the number of particle species). Thus, in the absence of particles, we will be
interested in

Z(M) =

∫
M
Daµ(x) eiSCS/~

where M is the space-time manifold we are considering. In fact this integral will tell us about the
ground state degeneracy (it is exactly the ground state degeneracy if we are considering a spatial
manifold Σ, such as a torus, crossed with our time direction made periodic instead of infinite.) As
we might expect, this quantity will be a topological invariant of the space-time manifold. That is,
smooth deformations of M do not change its value. (See chapter appendix).

4.5 NonAbelian Chern-Simons theory: The paradigm of TQFT

Refs: As in section *** below, see articles by Atiyah, and Wittens seminal 1989 paper. See also
the discussion in Nayak et al. Among 2+1D TQFTs pretty much everything of interest is somehow
related to Chern-Simon theory – however, we don’t generally have the luxury of working with Abelian
theory.

We can generalize the Abelian Chern-Simons theory we discussed above by promoting the gauge
field aα to be not just a vector of numbers, but rather a vector of matrices.13 More precisely we are
making the vector potential take values in a Lie algebra14 For example, if we choose to work with
the Lie algebra of SU(2) we can write

aµ(x) = akµ(x)σk
i

2

where σk are the Pauli matrices. (the factor of 2 and i are a useful convention, although other
conventions exist). Note that now that aµ is matrix valued it becomes noncommutative and we have
to be very careful about the order in which we write factors of aµ.

The fundamental quantity that we should think about is the Wilson15 loop operators

WL = Tr

[
P exp

(
i
q

~

∮
L

dlµaµ

)]
13If you have studied Yang-Mills theory, you already know about non-abelian vector potentials.
14A Lie Group is a group which is also a manifold. The group of complex phases of unit modulus is an example of

this — it is also a circle. Another example, is the group SU(2) (2 by 2 unitary matrices with determinant 1) which is
equivalent to the three sphere. The definition of a three sphere is the set of all real 4-vectors (x, y, z, w) of unit length
x2 + y2 + z2 + w2 = 1. Every element of SU(2) can be written as ixσx + iyσy + izσz + w1 where σi are the Pauli
matrices and 1 is the identity matrix (check that this does indeed give a unitary unit determinant matrix!). A Lie
algebra is the algebra of infinitesimal changes in this group. We can think of this as writing all the elements of the
group close to the identity as 1 + εg where ε is very small, then the elements g are the Lie algebra of SU(2). Thus
the algebra is spanned elements iσk in this case. The groups SU(N) and SO(N) are also Lie groups.

15These are named for Ken Wilson, who won a Nobel Prize for his work on the renormalization group and critical
phenomena.

Topological Quantum page 41



4.5. NONABELIAN CHERN-SIMONS THEORY: THE PARADIGM OF TQFT

where here the integral follows some path L. (The trace can be taken in any representation, although
it is perhaps most useful to stick with the fundamental representation of the group.). Here, the P
symbol indicates path ordering — analogous to the usual time ordering of quantum mechanics. The
issue here is that aµ(x) is a matrix, so when we try to do the integral and exponentiate, the aµ(x)
and aµ(x′) do not commute. The proper interpretation of the path orderered integral is then to
divide the path into tiny pieces of length dl. We then have (setting q = ~ = 1 for simplicity of
notation)

P exp(i

∮
L

dlµaµ) = [1 + iaµ(x1)dlµ(x1)] [1 + iaµ(x2)dlµ(x2)] [1 + iaµ(x3)dlµ(x3)] . . . (4.7)

where x1, x2, x3, . . . are the small steps along the path. Since the exponent is an integral of a vector
potential around a loop, we can think of this path ordered integral as giving us eiqΦ/~ where Φ is
now some sort of matrix valued flux.

The proper gauge transformation in the case of a nonabelian gauge field is given by

aµ → UaµU
−1 − i~

q
U∂µU

−1 (4.8)

Where U(x) is a matrix (which is a function of position and time) which acts on the matrix part
of aµ. Note that this is just the nonabelian analogue of the gauge transformation in Eq. 4.4 (take
U = eiχ). To see that this gauge transformation leaves invariant the Wilson loop operators, see
Appendix.

The Chern-Simons action is now written as

SCS =
~k
4π

∫
M
d3x εαβγ Tr

[
aα∂βaγ −

2i

3
aαaβaγ

]
Note that the second term in the brackets would be zero if the aα were commutative (as in the
Abelian case above, where we have no such term!).

The Chern-Simons action is not quite gauge invariant. If in Eq.4.8 we use a unitary matrix which
is “close” to the identity (i.e., can be continuously deformed to the identity) then we will find the
action is gauge invariant up to a surface term (which vanishes for a closed manifold). To see this we
can simply use

U = exp(iεH(x)) = 1 + iεH(x) (4.9)

for a hermitian matrix H(x) (which again can be a function of space and time) where we can assume
ε is very small. Substituting this in to Eq. 4.8 and then into the Chern-Simons action, we find that
(to lowest order in ε) the action is indeed gauge invariant (See appendix). However, it turns out
that the unitary function of space and time U(x) has topologically disconnected components —
that is, we cannot continuously reach some functions U(x) starting from the identity and making
small deformations. This is not immediately obvious, but it turns out that under such “large” gauge
transformations, we have

SCS → SCS + 2πkn~
for some integer n which is some sort of winding number16 of the function U(x). This may look
problematic, but we note that the only thing entering our functional integral is eiSCS/~, not the
Chern-Simons action itself. Thus, so long as we choose k, the so-called ”level”, as an integer, then
we have a well defined functional integral of the form

Z(M) =

∫
M
Daµ(x) eiSCS/~

where the result Z(M) turns out to be a manifold invariant (see chapter appendix).

16In the case of the gauge group being SU(2), as mentioned in footnote 14, the gauge group is isomorphic to the
manifold S3. So if the manifold happens to be S3 then we are looking at mappings from S3 back into S3. The mapping
of Eq. 4.9 corresponds to zero winding number (can be continuously deformed to U = 1 everywhere). However, we
also can consider the identity mapping that S3 maps into S3 in the obvious way (each point goes to the same point)
which gives an n = 1 mapping (a 1-to-1 mapping). One can also construct 2-to-1 mappings which have winding n = 2
etc.
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Figure 4.9: A cartoon of a 3 manifold with a link embedded in it.
.

The insertion of the Wilson loop operator into the path integral gives a knot invariant of the link
L that the Wilson loop follows17. Often we will think about our link as being embedded in a simple
manifold like the three sphere18, which we denote as S3.

So for example, to find the link invariant corresponding to the two linked strings in Fig. 4.9, we
have

Knot Invariant =
Z(S3, L1, L2)

Z(S3)
=

∫
S3 Daµ(x) WL1WL2 eiSCS/~∫

S3 Daµ(x) eiSCS/~

And indeed, if we choose to work with the gauge group SU(2) at level k we obtain the Kauffman
invariant of the knot with A = −(−i)(k+1)/(k+1).

4.6 Appendix: Odds and Ends about Chern Simons Theory

4.6.1 Gauge Transforms with Nonabelian Gauge Fields

Let us define a Wilson-line operator, similar to the Wilson loop but not forming a closed loop, i.e.,
going along a curve C from space-time point x to point y.

WC(x, y) = Tr

[
P exp

(
i
q

~

∫
C

dlµaµ

)]
Under a gauge transformation function U(x) we intend that the Wilson line operator transform as

WC(x, y)→ U(x) WC(x, y) U(y)−1

Clearly this obeys composition of paths, and will correctly give a gauge invariant result for a closed
Wilson loop.

Now to see what is required for the gauge field aµ such that this works, we consider

WC(x, x+ dx) = 1 + i
q

~
aµdx

µ

17The observant reader will note that we have not specified the ”framing” of the knot – i.e, if we are to think of
the world-line as being a ribbon not a line, we have not specified how the ribbon twists around itself. In field theory
language this enters the calculation by how a point-splitting regularization is implemented.

18The three sphere we can imagine as being R3 with a point added at infinity, the same way we can think of a 2
sphere as being a plane with a point adeed at infinity. Another way to think about the 3-sphere is as the surface of
a 4-ball B4. If we can imagine 4-dimensional space with real coordinates (x, y, z, w), the 3-sphere is the set of points
such that x2 + y2 + z2 + w2 = 1. Oops, just realized I gave this definition in the previous footnote too!
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and its transformation should be

WC(x, x+ dx)→ U(x)WC(x, x+ dx)U(x+ dx)−1 = U(x)[1 + i
q

~
aµdx

µ]U(x+ dx)−1

= U(x)[1 + i
q

~
aµdx

µ][U(x)−1 + dxµ∂µU(x)−1]

= 1 + i
q

~
[UaµU

−1 − i~
q
U∂µU

−1]

Thus the gauge transform rule Eq. 4.8 correctly gives a gauge invariant Wilson loop operator.

4.6.2 Gauge Invariance of Chern-Simons action under small transforms

Just plug it in!

4.6.3 Chern Simons Action is Metric Independent

You will often see books state that you don’t see the metric gµν written anywhere — QED. But that
kind of misses the point!

A differential geometer would see that one can write the Chern-Simons action in differential form
notation

SCS =
k

4π

∫
(a ∧ da+

2

3
a ∧ a ∧ a)

which then makes it “obvious” that this is metric independent.

In more detail however, we must first declare how the gauge field transforms under changes of
metric. It is a “1-form” meaning it is meant to be integrated along a line to give a reparameterization
invariant result, such as in the wilson loops∫

da =

∫
dxµaµ(x) =

∫
dx′µ

∂xµ

∂x′ν
aν(x′)

This means that under reparameterization x′(x) we have

aµ(x) =
∂xµ

∂x′ν
aν(x′)

such that the line integral remains invariant under a reparameterization of the space.

Now, if we make this change on all of the a’s in the the Chern-Simons action we obtain

εαβγ Tr

[
aα∂βaγ −

2i

3
aαaβaγ

]
→

εαβγ
∂xα

∂x′α′
∂xβ

∂x′β′
∂xγ

∂x′γ′
Tr

[
aα′∂β′aγ′ −

2i

3
aα′aβ′aγ′

]
But notice that the prefactor, including the ε this is precisely the Jacobian determinant and can be
rewritten as

εα
′β′γ′ det[∂x/∂x′]

Thus the integral can be changed to the dx′ variables and the form of the integral is completely
unchanged.

In fact, this feature of the Chern-Simons Lagrangian is fairly unique. Given that we have a single
gauge field aµ(x) this is the ONLY (3-form) gauge invariant Lagrangian density we can write down
which will give a topological invariant!
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4.6.4 Framing of the Manifold — or doubling the theory

There is a bit of a glitch in Chern-Simons theory. We want the Chern-Simons functional Z(M) to
be a function of the topology ofM only. This is almost true — it is true up to a phase. In order to
get the phase, you need to specify one more piece of information which can be provided in several
ways (often called a 2-framing). This additional piece of information is most easily described by
saying that you need to specify a bit of information about the topology of the 4-manifold N thatM
boundsM = ∂N . It is a fact that all closed 3-manifolds are the boundary of some 4-manifold — in
fact, of many possible 4-manifolds. The phase of Z(M)) is senstive only to the so-called “signature”
of the 4-manifold N . (Consult a book on 4 manifold topology if you are interested!)

The fact that the Chern-Simons theory should depend on some information about the 4-manifold
that M bounds may sound a bit strange. It is in fact a sign that the Chern-Simons theory is
“anomolous”. That is, it is not really well defined in 3-dimensions. If you try to make sense of
the functional integral

∫
Daµ, you discover that there is no well defined limit by which you can

break up space-time into little boxes and integrate over a in each of these boxes. However, if you
extend the theory into 4-dimensions, then the theory becomes well behaved. This is not unusual.
We are familiar with lots of cases of this sort. Perhaps the most famous example is the fermion
doubling problem. You cannot write down a theory for a single chirality fermion in d dimensions
without somehow getting the other chirality. However, you can think of a system extended into
d+ 1 dimensions where one chirality ends up on one of the d-dimensioanl boundaries and the other
chirality ends up on the other d dimensional boundary.

So to make Chern-Simons theory well defined, you must either extend into 4d, or you can “cancel”
the anomoly in 3d by, for example, considering two, opposite chirality Chern-Simons theories coupled
together (so-called ”doubled” Chern-Simons theory). The corresponding manifold invariant of a
doubled theory gets Z(M) from the righthanded theory and its complex conjugate from the left
handed thoery, thus giving an end result of |Z(M)|2 which obvioulsy won’t care about the phase
anyway!

4.6.5 Chern Simons Canonical Quantization for the Abelian Case

One can consider the Chern-Simons theory as a quantum mechanical theory with wavefunctions and
operators (i.e., not in path integral language). To do this, we need to find the commutation relations.
Note in the Chern-Simons Lagrangian terms like ∂0ay multiply ax and vice versa. This means that
ay(x) is the momentum conjugate to ax(x) and vice versa. We thus have the commutation relations

[ax(~x), ay(~x′)] =
i~
µ
δ(~x− ~x′)

The arguments ~x here live in 2 dimensions. Consider now the wilson loop operators around the two
differnt handles

Wj = exp(i(q/~)

∮
L

~dl · ~a)

where here j indicates we have a loop around either cycle 1 or cycle 2 of our torus. The two paths
must intersect at one point and therefore, due to the above commutations, do not commute with
each other. We can use the indentity that

eAeB = eBeAe[A,B]

which holds when [A,B] is a number not an operator. This the gives us

W1W2 = eiq
2/µ~W2W1 = eiθW2W1

where θ is the statistical angle of the theory. Thus the Wilson loop operators act just like operators
T1 and T2 which created particle-hole pairs and moved them around the handle then reannihilated.
So even without discussing particles, the ground state wavefunction of the Chern-Simons theory is
degenerate!
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Chapter 5

Short Digression on Quantum
Gravity

5.0.1 Why this is hard

Little is known about quantum gravity with any certainty at all. What we do know for sure is the
value of some of the fundamental constants that must come into play. We expect the gravitational
constant G, the speed of light c and of course Planck’s constant ~. From these we can put together
an energy scale, known as the Planck Scale

E =

√
~c5
G
≈ 1028 eV

The temperature of the world around us is about .03eV. Chemistry, visible light, and biology occur
on the scale of 1eV. The LHC accelerator probes physics on the scale of roughly 1013eV . This
means trying to guess anything about the Planck scale is trying to guess physics on an energy scale
15 orders of magnitude beyond what any accelerator1 experiment has ever probed! We must surely
accept the difficult possibility that any physical principle we hold dear from all of our experiments
on low energy scales could no longer hold true at the Planck scale! The only thing that is really
required is that the effective low energy theory matches that which we can see at the low energies
in the world around us!

5.0.2 Which Approach?

There are several approaches to quantum gravity. While I will not make any statement about which
approaches is promising, and which approaches are crazy and overpublicized2, I am comfortable
stating that many of these investigations have led to increadibly interesting and important things
being discovered. While in some cases (maybe in most cases) the discoveries may be more about
math than about physics, they are nonetheless worthwhile investigations that I support.

5.1 Some general principles?

We have to choose general principles that we want to believe will always hold, despite the fact that
we are considering scales of energy and length 14 orders of magnitude away from anything we have

1Cosmic ray observations have been made at several orders of magnitude higher still — but very little can be
deduced from these extremely rare and uncontrolled events. A famous event known as the ”oh my god particle” was
apparently 1020eV , still 8 orders of magnitude away from the Planck scale.

2For information on the wars between some of the different approaches to quantum gravity, see ”The String Wars”,
or ”The Trouble With Physics” or ”Not Even Wrong”.. or see repsonses to these such as the article by Polchinski in
the American Scientist, or if you are ready for a major rant, the response by Lubos Motl.
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ever observed or measured. Much of the community feels that the most fundamental thing to hold
onto is the Feynman picture of quantum mechanics — that all space-time histories must be allowed.
We might write a quantum partition function of the form

Z =
∑

All universes

eiS/~ (5.1)

where the sum is now over everything that could happen — it is the ultimate sum over all his-
tories! Obviously such a thing is hard to even contemplate. Several key simplifications will make
contemplation easier

(1) Lets ignore matter. Let us (at least to begin with) try to model only universes which are
completely devoid of substance and only contain vacuum. Thus the universe contains only the
space-time metric. Doing this, the Einstein-Hilbert action3 for gravity takes the form

SEinstein ∼
∫
M
dx R

√
−g

where the integration is over the entire space-time manifold M, and g is the space-time metric and
R is the Ricci scalar. One might imagine that we could construct a real theory of quantum gravity
by plugging the Einstein-Hilbert action into the path integral form of Eq.5.1. We obtain

Z =

∫
Dg eiSEinstein(g)/~

Even without matter in the universe, the model is very nontrivial because the space-time metric can
fluctuate — which we know very well from the 2015 measurment of gravitational waves! Even in this
limit no one has fully made sense of this type of path integral without many additional assumptions.

(2) Let us simplify even more by considering a 2+1 dimensional universe.
For a huge amount of information on 2+1 dimensional quantum gravity, see http://www.livingreviews.org/lrr-

2005-1. For the key parts that are interesting to us, see the article by Witten on ”2+1 Dimensional
Gravity as an Exactly Solvable System.”

We are used to the idea that many things simplify when we go to lower dimension. Indeed, that is
what happens here. In 2+1 dimension, there is an enormous simplification that there are no gravity
waves! Why not? In short, there are just not enough degrees of freedom in a 2+1 dimensional metric
to allow for gravity waves. (For more information on this fact see the appendix to the chapter.)
As a result, the only classical solution of the Einstein equations in the vacuum is that R = 0 and
that is all! I.e., the universe is flat and there are no fluctuations. (One can also have a cosmological
constant in which case R = 2Λg is the solution).

One might think that this means that gravity in 2+1 D is completely trivial. However, it is
not. The space-time manifold, although everywhere curvature free, still has the possibility of having
a nontrivial topology. Thus what we are interested in is actually the different topologies that our
space-time manifold might have!

We thus rewrite Eq. 5.1 as

Z =
∑

manifoldsM

∫
M
Dg eiS(g)/~

=
∑

manifoldsM

Z(M)

where S(g) is the Einstein-Hilbert action for a flat universe with metric g, the sum is over all different
topologies of manifolds the universe might have, and the integration Dg is an integration over all
metrics subject to the condition that the manifold’s topology is fixed to be M.

3Written down by Hilbert first in 1915
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CHAPTER 5. SHORT DIGRESSION ON QUANTUM GRAVITY

Why would we be interested in such a quantity? In short, suppose we know what the topology is
of our (d-dimensional universe) at a fixed time t. We want to know the amplitudes that the topology
changes as t develops. I.e., is the space-time manifold of our universe of the form M = Σ× time or
does the space-time manifold split? For example, see the diagram 5.1.

Figure 5.1: A manifold where the topology of a time-like slice changes as time progresses.

OK, here is the kicker: The rather surprising result is that the function Z(M) is precisely the
Chern-Simons partition function discussed above for an appropriately chosen gauge group!

5.2 Appendix: No Gravity Waves in 2+1 D

The short argument for this is as follows (stolen from the article by Carlip)

In n dimensions, the phase space of general relativity is parametrized by
a spatial metric at constant time, which has n(n − 1)/2 components, and
its conjugate momentum, which adds another n(n− 1)/2 components. But
n of the Einstein field equations are constraints rather than dynamical
equations, and n more degrees of freedom can be eliminated by coordinate
choices. We are thus left with n(n− 1)− 2n = n(n− 3) physical degrees of
freedom per spacetime point. In four dimensions, this gives the usual four
phase space degrees of freedom, two gravitational wave polarizations and
their conjugate momenta. If n = 3, there are no local degrees of freedom.

To put a bit more detail on this argument, if we write the flat metric as ηµ,ν = diag[−1, 1, 1, . . .]
in any dimension, and we consider small deviations from a flat universe we have g = η + h, we can
construct the trace-reversed

h̄µν = hµν −
1

2
ηµνη

ρσhρσ

In any dimension, gravitational waves in vacuum take the form

h̄µν ,ν = 0

and
�h̄µν = 0

where the comma notation indicates derivatives, and indices are raised and lowered with η.
In any dimension we will have the gravitational wave of the form

h̄µν = εµνe
ikρxρ
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where the polarization is εµν is orthogonal to the lightlike propagation wavevector, kµkµ = 0.

εµνk
ν = 0 (5.2)

However, one must also worry about gauge freedoms. We can redefine our coordinates and
change the form of the metric without changing any of the spatial curvatures. In particular making
a coordinate transform x→ x′ − ξ, we have

h̄µν → h̄µν − ξν,µ − ξµ,ν + ηµ,νξ
α
,α

Now here is the key. In 2+1 D for any matrix ε you choose, you can always find a

ξµ = Aµe
ikρxρ

such that
h̄µν = εµνe

ikρxρ = ξν,µ − ξµ,ν + ηµ,νξ
α
,α

This means that the wave is pure gauge, and the system remains perfectly flat! I.e., if you calculate
the curvature with this form of h̄, you will find zero curvature.

To be more precise, we find

εµ,ν = Aµkν −Aνkµ + ηµνA
σkσ

And any ε that satisfies Eq. 5.2 can be represented with some vector A. It is easy to check this by
counting degrees of freedom. ε has 6 degrees of freedom in 2+1D, but Eq. 5.2 is 3 constraints, and
A has three parameters, so we should always be able to solve the equation for A given ε.
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Chapter 6

Topological Quantum Field Theory

We already have a rough picture of a Topological Quantum Field Theory (TQFT) as a quantum
theory that depends on topological properties not on geometric properties. (For example, it matters
that particle 1 traveled around particle 2, but it doesn’t matter how far apart they are.)

We can formalize these ideas by saying that the theory should be independent of small deforma-
tions of the space-time metric. We might say that

δ

δgµν
〈any correlator〉 = 0

This is a completely valid way to define a TQFT. However, a somewhat different definition has
been given by a set of Axioms by Atiya which are in some sense much more informative.

6.1 Paraphrasing of Atiyah’s Axioms

Several good references for this. Article by Atiyah. Book by Atiyah. Article by witten.
Here I’m going to give a rough interpretation of Aityah’s axioms for a TQFT. To begin with

we will consider space-time manifolds with no particle in them. Later on we will discuss adding
particles and moving them around in space-time too.

We will consider a d + 1 dimensional space-time manifold which we call M, and d dimensional
oriented slice Σ – we should think of this slice as being the space at a fixed time. Almost always we
will be thinking of d = 2, although the axioms are quite general and can be applied to any d.

AXIOM 1: A d-dimensional space Σ is associated with a Hilbert space V (Σ) which depends
only on the topology of Σ.

We call the space V -for vector space, although sometimes people call it H for Hilbert space.
For example, we have seen that if Σ is a torus, there is a nontrivial Hilbert space coming from

the ground state degeneracy.
Note that when we add particles to the system (and we have not done this yet), if the particles

are non-abelian, then there will be a Hilbert space associated with the degeneracy that comes with
such non-abelian particles.

AXIOM 2: the disjoint union of two d-dimensional spaces Σ1 and Σ2 will be associated with a
Hilbert space which is the tensor product of the Hilbert spaces associated with each space. I.e.,

V (Σ1 ∪ Σ2) = V (Σ1)⊗ V (Σ2)

In particular this means that the vector space associated with the null or empty space ∅ must be
just the complex numbers, or

Implies:
V (∅) = C
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Because ∅ ∪ Σ = Σ and C⊗ V (Σ) = V (Σ) so the result follows1.

AXIOM 3: If M is a (d+ 1)-dimensional manifold with boundary Σ = ∂M , then we associate
a particular element of the vector space V (Σ) with this manifold. We write

Z(M) ∈ V (∂M)

where the association, i.e, which state in the vector space is chosen, again depends only on the
topology of M.

Here we should think of ∂M as being the space-like slice of the system at a fixed time, and
V (∂M) as being the possible Hilbert space of ground states. The rest of M is the space-time
history of the system, and Z(M) is the particular wavefunction that is picked out.

Figure 6.1: Two depictions of a space-time manifold M with boundary ∂M. The left depiction is
problematic because the only boundary of the manifold is supposed to be the top surface ∂M . The
right depiction is more accurate in this sense, although it depicts a 2D M and 1D ∂M

The point of this axiom is to state that the particular wavefunction of a system Z(M) which is
chosen from the available vector space depends on the space-time history of the system. We have
seen this principle before several times. For example, we know that if a particle-antiparticle pair is
taken around a handle, this changes which wavefunction we are looking at – this process would be
part of the space-time history.

Implies: For M closed, we have ∂M = ∅, the empty space, so

Z(M) ∈ C

i.e., the TQFT must assign a manifold a topological invariant which is a complex number.

AXIOM 4: Reversing Orientation

V (Σ∗) = V ∗(Σ)

where by Σ∗ we mean the same surface with reversed orientation, whereas by V ∗ we mean the dual
space — i.e., we turn bras into kets. It is a useful convention to keep in mind that the orientiation
of the normal of ∂M should be pointing out of M. See Fig. 6.2

GLUING: If we have two manifoldsM andM′ which have a common boundary ∂M = (∂M)∗

we can glue these two manifolds together by taking inner products of the corresponding states as
shown in Fig. 6.3. Here we have Σ = ∂M = (∂M′)∗ so we can glue together the two manifolds
along their common boundary to give

Z(M∪ΣM′) = 〈Z(M′)|Z(M)〉

1If this sounds confusing, remember the space C is just the space of length 1 complex vectors, and tensoring a
length n vector with a length m vector gives a size n by m matrix, so tensoring a vector of length n with a length 1
vector gives back a vector of length n.
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CHAPTER 6. TOPOLOGICAL QUANTUM FIELD THEORY

Figure 6.2: In this pictureM andM′ are meant to fit together since they have a common boundary
but with opposite orientation Σ = ∂M = ∂M′∗. Here 〈ψ′| = Z(M′) ∈ V (Σ∗) lives in the dual space
of |ψ〉 = Z(M) ∈ V (Σ)

Figure 6.3: Gluing two manifolds together by taking the inner product of the wavefunctions on their
common, but oppositely oriented, boundaries.

COBORDISM: Two manifolds Σ1 and Σ2 are called ”cobordant” if their disjoint union is the
boundary of a manifold M.

∂M = Σ1 ∪ Σ2

(or we say that M is a cobordism between Σ1 and Σ2. See Fig. 6.4. We thus have Z(M) ∈
V (Σ∗1)⊗ V (Σ2), so that we can write

Z(M) =
∑
αβ

Uαβ |ψΣ2,α〉 ⊗ 〈ψΣ1,β |
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Figure 6.4: M is the cobordism between Σ∗1 and Σ2. I.e., ∂M = Σ∗1 ∪ Σ2. Note that we have
reversed orientation of Σ1 here.

where |ψΣ2,α〉 is the basis of states for V (Σ2) and 〈ψΣ1,β | is the basis of states for V (Σ∗1). We can
thus think of the cobordismM as being the unitary evolution between the vector spaces V (Σ1) and
V (Σ2) (here U is unitary).

IDENTITY COBORDISM: If we have M = Σ × I where I is the one dimensional interval
(We could call it the 1-disk, D1 also, perhaps a better notation?) then the boundaries as Σ and Σ∗

(See fig.6.5, and the cobordism implements a map between V (Σ) and V (Σ). Since the interval can
be topologically contracted to nothing, we can take this map to be the identity, see fig. 6.5.

Z(Σ× I) =
∑
α

|ψΣ,α〉 ⊗ 〈ψΣ,α| = identity

We can now consider taking the top of the interval I and gluing it to the bottom to construct a
closed manifold M = Σ × S1, where S1 means the circle (or 1-sphere). See figure 6.5. We then
obtain

Z(Σ× S1) = Tr

[∑
α

|ψΣ,α〉 ⊗ 〈ψΣ,α|

]
= Dim[V (Σ)] (6.1)

We simply obtain the dimension of the Hilbert space V (Σ), or in other words, the ground state
degeneracy of the 2-manifold Σ.

As we have discussed above for the torus T 2 we have

DimV (T 2) = # of particle species (6.2)

which we argued based on non-commutativity of taking anyons around the handles of the torus. On
the other hand, for a 2-sphere S2, we have

DimV (S2) = 1 (6.3)

since there are no noncontractable loops. (We will justify these statments more later!)

6.2 Adding Particles

We now consider extending the ideas of TQFT to space-time manifolds with particle world-lines in
them. This is sometimes called a ”relative” TQFT, as compared to the case with no particles, which
is sometimes called an ”absolute” TQFT.
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Figure 6.5: Top: A cobordism that can be topologically contracted to nonthing acts as the identity
on the Hilbert space V (Σ). Bottom: Gluing the top of Σ× I to the bottom we obtainM = Σ×S1.
The important fact is that Z(Σ× S1 is just the ground state degeneracy of Σ as a 2-manifold.

Figure 6.6: A 2-manifold with particles in it, which are marked and labeled points. We now call the
combination (the manifold and the marked points) Σ for brevity.

At any rate, let us imagine there are different particle types which we can label as a, b, c, and
so forth. We now imagine a 2-manifold with some marked and labeled points as shown in Fig. 6.6.
We call the combination of the 2-manifold with the marked points Σ for brevity. As with the case
we studied above, Σ is associated with a Hilbert space V (Σ). The dimension of this Hilbert space
depends on the number and type of particles in the manifold (as we expect for non-abelian particles,
the dimension will grow exponentially with the number of particles). We can span the space V (Σ)
with some basis states |ψα〉 which will get rotated into each other if we move the marked points
around within the manifold (i.e., if we braid the particles around each other).

Similarly a 3-manifold M is now supplemented with labeled links indicating the world lines of
the particles. The world-lines should be directed unless the particles are their own antiparticles.
The world lines are allowed to end on the boundary of the manifold ∂M. See Fig. 6.7. Analogously
we may sometimes call the combination of the manifold with its world linesM, although sometimes
we will write this asM;L where L indicates the ”link” (or knot) of the world lines. As in the above
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Figure 6.7: A 3-manifoldM with particles in it, which are marked and labeled lines (the lines should
be directed unless the particle is its own antiparticle). These world lines may end on the boundary
Σ = ∂M. The wavefunction on the boundary ∂M is determined by the spacetime history given by
M.

discussion, the spacetime history specifies exactly which wavefunction

|ψ〉 = Z(M) ∈ V (∂M)

is realized on the boundary Σ = ∂M.
We can now think about how we would braid particles around each other. To do this we glue

another manifold M′ to ∂M to continue the time evolution, as shown in Fig. 6.8. The final wave-

Figure 6.8: M′ evolves the positions of the particles in time. Note that by M′ we mean not just
the manifold, but the manifold along with the world-lines in it.

function is written as
|ψ′〉 = Z(M∪M′) ∈ V (Σ′)

If we put the positions of the particles in Σ′ at the same positions as the particles in Σ, then the
Hilbert spaces, V (Σ′) is the same as V (Σ), and we can think of Z(M′) as giving us a unitary
transformation on this Hilbert space – which is exactly what we think of as nonabelian statistics.
We can write explicitly the unitary transformation

Z(M′) =
∑
αβ

Uαβ |ψΣ′,α〉 ⊗ 〈ψΣ,β |
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Note that if the particles stay fixed in their positions (or move in topologically trivial ways) then
M′ can be contracted to nothing (i.e., to its boundary) and we can think of the unitary transfor-
mation as being the identity. As with the identity cobordism above, we can take such an identity
transformation, glue the top to the bottom and obtain

Z(Σ× S1) = Dim[V (Σ)] (6.4)

I.e., the partition function Z is just the dimension of the Hilbert space of the wavefunction. This
holds true even when Σ has marked points, or particles, in it.

6.2.1 Particles or No-Particles

In the same way that the ground state of a topological system “knows” about the types of anyons
that can exist in the system, it is also the case that the TQFT in the absence of particles actually
carries the same information as in the presence of particles. To see this consider a manifold M
with labeled and directed world-lines Li in them, as shown in Fig. 6.9. Now consider removing the
world lines along with a hollow tube surrounding the paths that the world-lines follow as shown
in the Figure. We now have a manifold with a solid torus removed for each world-line loop (think

Figure 6.9: Removing the world-lines on the left along with a thickened tube. Imagine a worm
burrowing along the path of the world lines and leaving a hollow hole.

of a big worm having eaten a path out of the manifold.) In this configuration, the boundary ∂M
of the manifold M now contains the surface of these empty tubes — i.e, the surface of a torus T 2

for each world-line loop. Note that the empty tube is topologically a solid torus D2 × S1 even if
the world-line forms some knot. The statement that it forms a knot is some statement about the
embedding of the S1 loop in the manifold.

Note that the Hilbert space of the torus surface T 2 is in one-to-one correspondence with the
particle types that can be put around the handle of the torus. Indeed, each possible state |ψa〉 of
the torus surface corresponds to a picture like that of figure 6.10, where a particle of type a goes
around the handle. Obviously, gluing such a torus back into the empty torus-shaped tube recovers
the original picture of labeled world lines following these paths. We can think of this solid torus
manifold as being a space-time history where t = −∞ is the central core of the torus (the circle that
traces the central line of the jelly filling of the donut) and the surface is the present time. Somewhere
between t = −∞ and now a particle of type a has been dragged around the handle.

The manifold with the tori excised from it (the right of fig. 6.9) contains all of the information
necessary to give a partition function for the left of fig. 6.9 for any particle types that we choose to
follow the given world lines. For the manifold on the right we have

Z(M) =
∑
i,j,k

Z(M ; i, j, k) 〈ψL1,i| ⊗ 〈ψL2,j | ⊗ 〈ψL3,k|

where Z(M ; i, j, k) is the partition function for the torus with three particle types i, j, k following the
three world line loops L1, L2 and L3, and the three wavefunctions are the corresponding boundary
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Figure 6.10: The possible wavefunctions |ψa〉 that we can have on the surface of the torus can be
realized by having a world-line of a particle of type a going around the handle of the torus. We can
call these Z(solid torus with a running around handle) = |ψa〉

condition. Thus, if we want to extract Z(a, b, c), where the particle lines are labeled with a, b, c we
simply glue in the torus wavefunctions |ψL1,a〉, |ψL2,b〉, |ψL3,c〉.

6.3 Building 3-Manifolds

6.3.1 S3 and the modular S-matrix

We will now consider building up 3-manifolds from pieces by gluing objects together. The simplest 3-
manifold to assemble is the three sphere S3. Remember that S3 can be thought of as R3 compactified
with a single point at infinity (the same way that S2 is a plane, closed up at infinity — think of
stereographic projection.) Recall also that a solid torus should be thought of as a disk crossed with
a circle D2 × S1. I claim that we can assemble S3 from two solid tori

S3 = (S1 ×D2) ∪ (D2 × S1)

There is a very elegant proof of this statement. Consider the 4-ball D4. Topologically we have2

D4 = D2 ×D2

Now applying the boundary operator ∂ and using the fact that the boundary operator obeys the
Leibniz rule (i.e, it distributes like a derivative), we have

S3 = ∂D4 = ∂(D2 ×D2) = (S1 ×D2) ∪ (D2 × S1)

where we have used that the boundary of a disk is a circle, ∂D2 = S1. Note that the two solid
toruses differ in that they have the opposite D2 filled in. Note that the two solid tori here are glued
together along a common T 2 = S1 × S1 boundary. To see this note that

∂(S1 ×D2) = S1 × S1 = ∂(D2 × S1)

The toruses are glued together meridian-to-longitude and longitude-to-meridian. (I.e., the con-
tractable direction of one torus is glued to the non-contractable direction of the other, and vice
versa) A sketch of how the two solid tori are assembled together to make S3 is given in Fig. 6.11.

OK, so here we have two solid tori which are glued together on their boundaries to make up S3,
so we can write the partition function as the overlap between wavefunctions on the outside and and
inside toruses.

Z(S3) = 〈Z(D2 × S1)|Z(S1 ×D2)〉

where the ψ’s are the wavefunctions on the surface of the torus.

We can further consider including world lines around the non-contractable loops of the solid
torus, as in Fig. 6.10. There is a different state on the surface of the torus for each particle type we
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Figure 6.11: Assembling two solid toruses to make S3. One torus (labeled ”inside solid torus”) is
obvious. Here the contractable disk D2 is shaded and the noncontractable S1 is the handle. The
remainder of space, including the point at infinity is the other ”outside” solid torus. The central
line of the handle (i.e., the noncontractable S1 runs vertically through the center of the picture. It
is a circle because it connects up at the point at infinity. All of the other non-contractable loops
can be deformed continuously to the central line. The contractable disks (or contractable loops) are
also drawn.

have running around the handle. We then assemble S3 with these new solid tori and get an S3 with
two particle world lines linked together as shown in Fig. 6.12. Gluing the two tori together we get

Z(S3; a loop linking b loop) = 〈Z(D2 × S1; b)|Z(S1 ×D2; b)〉 ≡ Sab (6.5)

This quantity Sab is known as the modular S-matrix, and it is a very important quantity in
topological theories as we shall soon see. Since this is an overlap we must have 0 ≤ S00 ≤ 1 (by this
we mean the element of the S-matrix where the vacuum particle is put around both handles — or
no particle at all — we are using 0 to mean the vacuum now!). This tells us that

Z(S3) = S00 ≤ 1

And in fact, invoking unitarity, unless S0a = 0 for all other particle types a (which is never true!)
we must have S00 be strictly less than 1.

Note that the S-matrix is unitary, since it is simply giving a basis transformation between the
two sets of wavefunction which both span the vector space V (T 2) of the torus surface T 2 where the
two solid toruses are glued together.

Soon we will construct a set of diagramatic rules to help us ”evaluate” the matrix Sab. These
rules will be somewhat similar to the rules for the Kauffman invariant, only now we need to keep
track of labels on world lines as well.

2Topologically it is easiest to think about Dn as being the interval I = D1 raised to the nth power. I.e., the disk,
is topologically a filled-in square D2 = D1 ×D1. The usual 3-ball is topologically a cube D3 = D1 ×D1 ×D1. The
4-ball is topologically a 4-cube D4 = D1 ×D1 ×D1 ×D1 = D2 ×D2.
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Figure 6.12: Here we assemble a partition function for S3 with world lines of a linking b embedded
in the S3. To do this we glue together two solid tori each with a world line running around the
handle. The end result is known as the modular S-matrix, and it gives a basis transform converting
between the two bases which both span the hilbert space of the torus surface where the two solid
tori are glued together.

6.3.2 S2 × S1

There is another way we can put two solid tori together to make a closed manifold. Instead of
attaching longitude-to-meridian and meridian-to-longitude, we instead attach meridian-to-meridian
and longitude-to-longitude. (This is perhaps even simpler!) See Figure 6.13 Here we want to show

Figure 6.13: Assembling two solid tori to make S2 × S1. Here the two contractable disks D2 are
sewed together along their boundaries to make S2.

that
S2 × S1 = (D2 × S1) ∪ (D2 × S1)

The sewing together is again done along the common boundary T 2 = S1 × S1. The S1 factors in
both solid tori are the same, and both of the D2 have the same S1 boundary. Thus we are sewing
togther two disks D2 along their S1 boundaries to make a 2-sphere S2 (imagine cutting a sphere in
half and getting two disks). As in the previous case, we can put world lines through the handles of
the toruses if we want.
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In this case we have
〈Z(D2 × S1; b)|Z(D2 × S1; a)〉 = δab

The reason it is a delta function is that both the bra and ket are really the same wavefunctions (we
have not switched longitude to meridian). So except for the conjugation we should expect that we
are getting the same basis of states for both toruses

In particular, we have the case where we put no particle (the vacuum) around both handles, we
have (i.e., a = b = I)

〈Z(D2 × S1)|Z(D2 × S1)〉 = δab = 1

So we have the result
Z(S2 × S1) = 1

Note that this agrees with our prior statement Eq. 6.4 that Z for any manifold ×S1 should be
the dimension of the Hilbert space for that manifold along with Eq. 6.3 that the dimension of the
Hilbert space on a sphere is 1.

6.4 Surgery and More Complicated Manifolds

The understanding of 3-manifolds is a very difficult problem3 The methods that I will describe here
are fairly powerful for describing 3-manifold topology (as well as 4-manifold topology). For more
detailed discussion of Surgery and Kirby Calculus, see the book by Kirby or the book by Gompf
and Stipcitz.

In order to describe complicated manifolds it is useful to think in terms of so-called surgery.
Similar to what we were just discussing — assembling manifold by gluing pieces together – the idea
of surgery is that we remove a part of a manifold and we glue back in something different. (imagine
replacing someone’s foot with a hand! Prehensile toes could be useful I suppose!)

The general scheme of surgery is to first write a manifold as the union of two manifolds with
boundary sewed along their common boundaries. First let us split a closed manifold M into two
pieces with boundary,M1 andM2 such that they are sewed together along their common boundary
∂M1 = ∂M∗2. So we have

M =M1 ∪∂M1
M2

We then find another manifold with boundary M′2 whose boundary matches M2, i.e,

∂M2 = ∂M′2

We can then replace M2 with M′2. To construct a new closed manifold M′ as

M′ =M1 ∪∂M1
M′2

We say that we have performed surgery on M to obtain M′.

6.4.1 Simple example of surgery on a 2-manifold

To give an example of this consider the sphere M = S2 as shown in Fig. 6.14. Here we write the
sphere as the union of two disksM2 = D2∪D2 and the remainder of the sphereM1 = S2−(D2∪D2).
These are glued along their common boundary S1 ∪ S1.

Now we ask the question of what other 2-manifolds have the same boundary S1 ∪ S1. There is
a very obvious one, the cylinder surface! Let us choose the cylinder surface M′2 = S1 × I where I
is the interval (or D1). It has boundary ∂M′2 = S1 ∪ S1. Thus we can glue it in place where we
remove M2,as shown in Fig. 6.15. The resulting manifold M′ is the torus T 2

T 2 =
(
S2 − (D2 ∪D2)

)
∪S1×S1 (S1 × I)

3Many important results have been discovered recently. Particularly Perelman’s proof of Poincare Conjecture,
along with the methods he used are apparently extremely powerful. But I can’t say I understand these!.
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Figure 6.14: Writing a sphere M = S2 as the union of two manifolds glued along their boundaries.
M2 is the union of two disks D2 ∪D2. M1 = S2 − (D2 ∪D2) is the remainder. The two manifolds
are glued along their common boundary S1 ∪ S1.

Figure 6.15: Gluing the cylinder surface M′2 = S1 × I to the manifold M1 = S2 − (D2 ∪D2) along
their common boundary S1 ∪ S1 gives the torus T 2.

Thus we have surgered a sphere and turned it into a torus. Note that there is another way to
think of this procedure. If M = ∂N then surgery on M is the same as attaching a handle to N .
In the case we just considered we would take N = D3 the 3-ball (sometimes denoted B3). And we
attach a handle D2× I, the solid cylinder. We obtain the new manifold N ′ which is the solid torus,
whose boundary is T 2 the torus surface. This is written out in the diagram Fig. 6.16

Figure 6.16: Surgery on a manifold M = ∂N is the same as handle attaching on the manifod N .

6.4.2 Surgery on 3-manifolds

OK, here is the part that is guaranteed to make your head explode.
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Start with a 3-manifoldM, such as perhaps the R3 space around us, or maybe S3. Now consider
a solid torus

M2 = D2 × S1

embedded in this manifold. The surface ∂M2 = S1 × S1 = T 2 is a torus surface. Now, there is
another torus with exactly the same surface. It is

M′2 = S1 ×D2

These two solid tori differ in that they have opposite circles filled in. Both have the same S1 × S1

surface, but M2 has the first S1 filled in whereas M′2 has the second S1 filled in.
The idea of surgery is to remove M2 and replace it with M′2 to generate a new manifold M′

with no boundary. (Stop here, think about what we have done. Collect pieces of your exploded
head) The reason your head should explode is because it is hard to visualize the end result because
the new structure is not embeddable within the original R3. This is torus surgery on a 3-manifold,
and it is called Dehn surgery. Another way to describe what we have done is that we have removed
a torus, switched the meridian and longitude (switched the filled-contractable and the unfilled-
uncontractable) and then glued it back in. In fact, one can make more complicated transformations
on the torus before gluing it back in (and it is still called Dehn surgery) but we will not need this.

It is worth noting that the torus we removed could be embedded in a very complicated way
within the original manifold — i.e, it could follow a complicated, even knotted, path, as in the figure
on the right of Fig. 6.9.

Lickorish-Wallace Theorem

This is quite an important theorem of topology4.

Theorem: Starting with S3 one can obtain any closed 3-manifold by performing successive torus
surgeries, where the initial torus may be nontrivially embedded in the manifold (i.e, it may folllow
some knotted path)

So one has the following procedure. We start with a link (some knot possibly of several strands),
embedded in S3. Thicken each line to a torus. Excise each of these toruses, and replace them by
a torus with longitude and meridian switched. If you start with the correct link, you can get any
possible 3-manifold. We summarize with

Link in S3 surger−→ Some M3

Kirby Calculus

It is not the case that all topologically different links, when surgered, give topologically different
manifolds. Fortunately, the rules for which knots give the same manifolds have been worked out.
These rules, known as Kirby calculus, are stated as a set of transformations on a link which change
the link, but leave the resulting manifold unchanged. There are several different sets of moves that
can be taken as “elementary” moves, but perhaps the simplest elementary moves are known as Kirby
moves:

(1) Blow up/ Blow Down One can add or remove an unlinked loop with a single twist, as
shown in Fig. 6.17.

(2) Handle-Slide A string can be broken open and pulled along the full path of another string,
and then reconnected. See Fig. 6.18.

Two links describe the same manifold if and only if one link can be turned into the other by a
sequence of these Kirby moves.

4In Witten’s groundbreaking paper, he states the theorem without citation and just says “It is a not too deep
result..”. Ha!
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Figure 6.17: Blow up/ Blow down.

Figure 6.18: A handle-slide move

Witten-Reshitikhin-Turaev Invariant

Given knowledge of the rules of Kirby calculus, in order to construct a manifold invariant for three
manifolds, one need only construct a knot invariant that is invariant under Kirby moves. Being that
the Chern-Simons path integral is not really well defined as a path integral, it turns out that this
scheme is a way to make mathematically rigorous the manifold invariants of Chern-Simons theory.

Without ever saying the words ”path integral” or ”Chern-Simons action” we can think of an
anyon theory as simply a way to turn a link of labeled world lines into a number. (Like evaluating
a knot invariant, but with rules for labeled links). It turns out that for any well behaved anyon
theory one can put together a combination of world-line types that will obey the Kirby calculus and
therefore allow one to construct a manifold invariant.

The first Kirby move (The blow up/blow down) does not sound so hard to finagle just by using
some normalization factor for each twist and loop. The second Kirby move seems harder to achieve,
but can be achieved if one uses the so-called Kirby color combination (Or Ω string)

|Ω〉 =
∑
a

S0a|a〉

where here we mean that we are summing over particle types a, and S is the modular S-matrix.
Diagrammatically we have Fig. 6.19 It turns out (and we will show this later) that the corresponding
knot invariant that comes from evaluating a knot of Kirby color is invariant under handle-slides. The
manifold invariant that results from evaluating the corresponding knot invariant of the Kirby-color
string is known as the Witten-Reshitikhin-Turaev invariant and it gives a rigorous re-definition of
the Chern-Simons manifold invariants defined by Witten.
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Figure 6.19: A String of Kirby Color is a weighted superposition of all anyon string types
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Chapter 7

Fusion and Structure of Hilbert
Space

So far we have discussed that each 2-d surface (a slice of a 3-d space-time manifold) has associated
with it a Hilbert space. In the case where there are particles in this surface, the dimension of the
Hilbert space will reflect the nature of the particles. We now seek to understand the structure of
the this Hilbert space and how it depends on the particles.

7.1 Basics of Particles and Fusion — the abelian case

Particle types: There should be a finite set of labels which we call particle types. For now, let us
call them a, b, c, etc.

Fusion: World lines can merge to give fusion diagrams, or do the reverse, which we call a
splitting. If an a particle merges with b to give c, we write a × b = b × a = c. This is shown
diagrammatically in Fig. 7.1.

Figure 7.1: Left: Fusion of two particle types to make a third a×b = c. Right: Splitting of a particle
type to make two others.

It should be noted that we can think of two particles as fusing together even if they are not close
together. We need only draw a circle around both particles and think about the “total” particle
type inside the circle. For example, we sometimes draw pictures like shown in Fig. 7.2.
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Figure 7.2: Fusion of two particle types to make a third a × b = c. The two particles need not be
close to each other.

For example, in our abelian anyon model of charges and fluxes, if the statistical angle was
θ = πp/m (p and m relatively prime) we had m species a = (aq, aΦ) for a = 0 . . .m − 1, where
qΦ = πp/m. The fusion rules were simply addition modulo m. That is a× b = (a+ b) mod m.

Identity: Exactly One of the particles should be called the identity or vacuum. This is written
as 1 or 0 or I or e. It fuses trivially with any particles.

a× I = a

for all possible a. In the above abelian model we should think of the identity as being no charge and
no flux. Fusion with the identity is depicted schematically in fig. 7.3

Figure 7.3: Two depictions of fusion of a particle with the identity a × I = a. On the right, the
empty space with a light dotted circle is supposed to indicate the identity. The circle surrounding a
and the identity, has particle type a.

Antiparticles: Each particle a should have a unique antiparticle which we denote as ā. The
antiparticle is defined by a× ā = I. A particle going forward should be equivalent to an antiparticle
going backwards as shown in Fig. 7.4.

Figure 7.4: A particle going forward should be equivalent to an antiparticle going backwards

Fusion to the identity can be thought of as particle turning around as shown in Fig. 7.5.

Figure 7.5: A particle going forward should be equivalent to an antiparticle going backwards
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A particle may be its own inverse, in which case we do not need to draw arrows on its world lines.
An example of this in our charge-flux model would be the a = 2 particle with m = 4 for θ = πp/m.

7.2 Multiple Fusion Channels - the Nonabelian Case

For the nonabelian theories as we have discussed above, the dimension of the Hilbert space must
increase with the number of particles present. How does this occur? In nonabelian models we have
multiple possible fusion channels

a× b = c+ d+ . . .

meaning that a and b can come together to form either a c or a d or . . .. See Fig. 7.6. A theory is
nonabelian if any two particles fuse in such a way that there are multiple possible fusion channels
(i.e., there is more than one particle listed on the right hand side).

Figure 7.6: Multiple possible fusion channels

If there are s possible fusion channels for a×b, then the two particles a and b have an s dimensional
Hilbert space (part of what we called V (Σ)).

So what is this Hilbert space. A slightly imperfect analogy is that of angular momentum addition.
We know the rule for adding spin 1/2

1

2
⊗ 1

2
= 0⊕ 1

which tells us that two spin 1/2’s can fuse to form a singlet or a triplet. As with the case of spins,
we can think about the two particles being in a wavefunction such that they fuse in one particular
fusion channel or the other — even if the two particles are not close together. The singlet or J = 0
state is the identity here, it has no spin at all. The analogy spins is not exact though — unlike the
case of spins, the individual particles have no internal degrees of freedom (analogous to the 2-states
of the spin 1/2), nor do any results of fusion have an mz degree of freedom (like a triplet would).

Locality

The principle of locality is an over-arching theme of anyon physics (if not of physics altogether).
The quantum number (or ”charge”) of a particle is locally conserved in space. So for example in

Fig. 7.7, on the left, a particle a is propagating along and suddenly something complicated happens
locally. If only a single particle comes out of this region it must also be a particle of type a. (If
two particles come out of this region, we could have a split into two other species as in the right
of 7.1). This principle we can call the no transmutation principle. It allows us to conclude that
the complicated picture on the left of Fig. 7.7 must be equal to some constant times the simple
propagation of an a particle as shown on the right.

Figure 7.7: Multiple possible fusion channels
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If two particles (maybe far away from each other) fuse to some other particle type (in a case
where multiple fusion channels are available) it is not possible to determine what the fusion channel
is by measuring only one of the initial particles. In order to determine the fusion channel of the two
particles, you have to (for example) perform an interference measurement that surrounds both of
these particles. The fusion channel is local to the pair.

Similarly, if we have some particles, b and c and they fuse to d (See Fig. 7.8), no amount of
braiding b around c will change this overall fusion channel. Similarly, if these two then fuse with a
to give an overall fusion channel f , no amount of braiding a, b and c will change the overall fusion
channel f . However, if a braids with b and c, then the fusion of b and c might change, subject to
the constraint that the overall channel of all three particles remains f .

Figure 7.8: In this picture b and c fuse to d. Then this d fuses with a to give an overall fusion
channel of f .

Antiparticles with Multiple Fusion Channels: When we have multiple fusion channels we
define antiparticles via the principle that a particle can fuse with it antiparticle to give the identity,
although other fusion channels may be possible.

a× ā = I + Other Fusion Channels

It should be the case that for each particle a there is a unique ā that can fuse to the identity.

7.2.1 Example: Fibonacci Anyons

Perhaps the simplest nonabelian example is the anyon system known as Fibonacci1 Anyons. Some-
thing very close to this is thought to occur in the so-called ν = 12/5 quantum Hall state. It is closely
related to the SU(2)3 Chern-Simons theory2

In this system the particle set includes only two particles, the identity I and a nontrivial particle
which is often called τ .

Particle types = {I, τ}

The fusion rules are

I × I = I

I × τ = τ

τ × τ = I + τ

The first two of these rules hardly need to be written down (they are implied by the required
properties of the identity). It is the final rule that is very nontrivial. Note that it implies that τ is
its own antiparticle τ = τ̄ which means we do not need to put arrows on world lines.

With two Fibonacci anyons the Hilbert space is two dimensional (since the two particles can fuse
to I or τ . See Fig. 7.9.

1Fibonacci’s real name was Leonardo Bonacci and he lived around 1200 AD.
2Fibonacci anyons can be described exactly by the G2 level 1 Chern-Simons theory. This involves a messy Lie

algebra called G2. The SU(2)3 Chern-Simons theory contains some additional particles besides the Fibonacci particles,
but ignoring these, it is the same.
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Figure 7.9: Two different notations for the two different fusion channels of two Fibonacci anyons

With three fibonacci anyons the Hilbert space is 3 dimensional, as shown in Fig. 7.10. The key
thing to notice is that if the first two particles fuse to τ , then this combination acts as being a single
particle of overall charge τ — it can fuse with the third τ in two ways.

Figure 7.10: Notations for the three different fusion channels of three Fibonacci anyons. The notation
|N〉, |0〉 and |1〉 are common notations for those interested in topological quantum computing with
Fibonacci anyons!

There are two states in the Hilbert space of three anyons (labeled |0〉 and |1〉 in Fig. 7.10) which
both have an overall fusion channel of τ . As mentioned above, due to locality, no amount of braiding
amongst the three particles will change this overall fusion channel. Further since in these two basis
states the first two particles furthest left are in an eigenstate, either I in state |0〉 or τ in state |1〉)
no amount of braiding of the first two particles will change that eigenstate. However, as we will see
below, if we braid the second particle with the third, we can then change the quantum number of
the first two particles and rotate between |0〉 and |1〉.

For our Fibonacci system, with 2 particles the Hilbert space is 2 dimensional. With 3 particles
the Hilbert space is 3 dimensional. It is an easy exercise to see that with 4 particles the Hilbert
space is 5 dimensional, and with 5 particles, 8 dimensional and so forth. This pattern continues
following the Fibonacci sequence (Try to show this!).

Since the N th element of the Fibonacci sequence for large N is approximately

Dim of N Anyons = FibN ∼

(
1 +
√

5

2

)N

we have the quantum dimension of this particle is d = (1 +
√

5)/2.
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7.2.2 Example: Ising Anyons

The Ising anyon system is extremely closely related to SU(2)2 Chern-Simons theory3, and this
general class of anyon is believed to be realized in the ν = 5/2 quantum Hall state, topological
superconductors, and other so-called Majorana systems.

The Ising theory has three particle types.

Particle types = {I, σ, ψ}

The nontrivial fusion rules are

ψ × ψ = I

ψ × σ = σ

σ × σ = I + ψ

where we have not written the outcome of any fusion with the identity, since the outcome is obvious.
Again, each particle is its own antiparticle ψ = ψ̄ and σ = σ̄ so we need not put arrows on any
world-lines.

Fusion of many ψ particles is fairly trivial, since each pair fuses to the identity in only one way
(we say that ψ is an abelian particle, although the theory is nonabelian).

Fusion of many σ particles is nontrivial . The first two σs can either fuse to I or ψ, but then
when the third is included the overall fusion channel must be σ (since fusing σ with either ψ or I
gives σ. Then adding a fourth σ to this cluster whose overall quantum number is σ again gives two
possible outcomes. See the fusion tree in Fig.7.11

Figure 7.11: The Ising Fusion Tree.

The total number of different fusion channels for N σ-particles is 2N/2. To see this in another
way, we can group σ particles together in pairs where each pair gives either ψ or I, so two σ particles
comprises a qubit. Then the I’s and ψ’s fuse together in a unique way. Since the Hilbert space
dimension is (

√
2)N so the quantum dimension of the σ particle is d =

√
2.

7.3 Fusion and the N matrices

We are well on our way to fully defining an anyon theory. A theory must have a finite set of particles,
including a unique identity I, and each particle having a unique inverse.

The general fusion rules can be written as

a× b =
∑
c

N c
ab c

3The fusion rules are the same, but there are some spin factors which differ.
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where the N ’s are known the fusion multiplicities. N c
ab is zero if a and b cannot fuse to c. N c

ab is
one if we have a× b = . . .+ c+ . . ., and c only occurs once on the right hand side. If c occurs more
than once on the right hand side, then N c

ab simply counts the number of times it occurs.
What does it mean that a particle type can occur more than once in the list of fusion outcomes?

It simply means that the fusion result can occur in multiple orthogonal ways .4 in which case
a diagram with a vertex showing a and b fusing to c should also contain an index at the vertex
indicating which of the possible c fusion channels occurs. For most simply anyon theories N c

ab is
either 0 or 1, and indeed, we will not consider the more complicated case in any examples below.

In terms of these fusion multiplicity matrices we have

N c
ab = N c

ba

which is just commutativity of fusion a× b = b× a.
Fusion with the identity implies

N b
aI = δab

Uniqueness of inverse implies that for each a there is exaclty one anyon b such that

N I
ab = 1

and we call this b the inverse of a and denote it ā. Note that we can never have N I
ab > 1. Also note

that a can be the same as ā.
If we are to fuse, say, five particles a together, we can do so via a tree as shown in Fig. 7.12.

Figure 7.12: Fusing five a particles together

To find the dimension of the Hilbert space, we write

Dimension of fusing five a particles =
∑
bcde

N b
aaN

c
baN

d
caN

e
da

and we identify each factor of N as being one of the vertices in the figure.
We recall that the quantum dimension da of the particle a is defined via the fact that the Hilbert

space dimension should go as dNa where N is the number of a particles fused together. To find this
we should think of N c

ab as a matrix Na with indices b and c, i.e, we write [Na]cb. We then have that

da = largest eigenvalue of [Na]

Example of Fibonacci: The fusion matrix for the τ particle in the Fibonacci theory is

Nτ =

(
0 1
1 1

)
4While this does not occur for angular momentum addition of SU(2) (and also will not occur in Chern-Simons

theory SU(2)k correspondingly) it is well known among high energy theorists who consider the combination of repre-
sentations of SU(3). Recall that

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 1̄0⊕ 27

and the 8 occurs twice on the right.
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where here the first row and first column represent the identity and the second row and second
column represent τ . The first row of this matrix says that fusing τ with identity gives back τ and
the second row says that fusing τ with τ gives I and τ . It is an easy exercise to check that the
largest eigenvalue of this matrix is indeed dτ = (1 +

√
5)/2.

Example of Ising: The fusion matrix for the σ particle in the Fibonacci theory is

Nσ =

 0 1 0
1 0 1
0 1 0


where the first row and column represent the identity, the second row and column represent σ and the
third row and column represent ψ. So, for example, the second row here indicates that σ×σ = I+ψ.
Again, it is an easy exercise to check that the largest eigenvalue of this matrix is dσ =

√
2.

Associativity: It should be noted that the fusion multiplicity matrices N are pretty special
since the outcome of a fusion should not depend on the order of fusion. I.e., (a× b)× c = a× (b× c).

For example, let us try to calculate how many ways a× b× c can give an outcome of e. We can
either try fusing a × b first as on the left of Fig. 7.13 or we can try fusing b and c first as on the
right. Correspondingly to these two possibilities we have

Figure 7.13: Fusing (a× b)× c should be equivalent to a× (b× c)

∑
d

Nd
abN

e
cd =

∑
f

Nf
cbN

e
af

Again, thinking of N c
ab as a matrix labeled Na with indices b and c, this tells us that

[Na, Nc] = 0

So all of the N matrices commute with each other. This means they are all simultaneously diago-
nalizable,

[UNaU
−1]xy = δxyλ

(a)
x (7.1)

and all Na’s get diagonalized with the same U . Surprisingly (as we will see below!) the matrix U is
precisely the modular S-matrix we discussed above!

7.4 Fusion and Hilbert Space

The structure of fusion rules can be used to calculate the ground state degeneracy of wavefunctions
on certain 2-dimensional manifolds.

Let us start by considering the sphere S2, and let us assume that there are no anyons on the
surface of the sphere. As mentioned previously there is a unique ground state in this situation
because there are no non-contractable loops. The dimension of the Hilbert space is just 1

Dim V (S2) = 1

This will be the starting point for our understanding. We should assume that all other configurations
(change of topology, adding particles etc) should be related back to this reference configuration.
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Now let us consider the possibility of having a single anyon on the sphere. In fact such a thing
is not possible because you can only pair create particle-antiparticle pairs (the total anyon charge
must be conserved — i.e., everything on the sphere must fuse together to total quantum number of
the identity). Thus, we have

Dim V (S2 with one anyon) = 0

Another way to explain this is to realize that, since particle-antipartiles are made in pairs, there is
no space-time history that could prepare the state with just a single particle on the sphere!

We can however consider the possibility of two anyons on a sphere. We can create an a and ā
particles, and since these two particles must fuse back to the identity in a unique way we have

Dim V (S2 with one a and one ā) = 1

The two particles must be antiparticles of each other, otherwise no state is allowed and the dimension
of the Hilbert space is zero. This is a general principle, we must require that the fusion of all the
particles on the sphere must be the vacuum, since these particles must be (at some point) pulled
from the vacuum.

Now we could also imagine puncturing the sphere to make a hole where the particles were.
(Note that the twice punctured disk, without labeling the particle type looks like punctured disc in
Fig.6.14.). In the spirit of what we did in section 6.2.1 we could re-fill the hole with any particle
type. However, if we refill one hole with a particular particle type a, then the other hole must get
only filled in with the anti-particle type ā. Nonetheless, we can conclude that

Dim V (S2 with two unlabled punctures) = Number of particle types

Now consider the procedure shown in Fig. 7.14. We start with the twice punctured sphere. The
two punctures can be labeled with any particle-antiparticle pair labels. We can then deform the
sphere to sew the two punctures together in a procedure that is identical to the surgery described in
Fig. 6.15. The result of this surgery is to give the torus surface T 2 and we conclude that we should
have

Figure 7.14: Surgering the twice punctured sphere into a torus. This is the gluing axiom in action.

Z(T 2 × S1) = Dim V (T 2) = Number of particle types

as we have already discussed. The general rule of surgery is that two punctures can be sewed together
when they have opposing particle types.

This is exactly the gluing axiom of the TQFT. Although we are doing this surgery on a 2-
dimensional surface, we should realize that there is also a time direcction, which we have implicitly
assumed is compactified into to S1. Thus we are sewing together the 2-surface (puncture×S1) with
another 2-surface (puncture×S1), and the inner product between the two wavefunctions on these
two-surfaces assures that the quantum number on these two punctures are conjugate to each other.

We can continue on to consider a sphere with three particles. Similarly we should expect that
the three particle should fuse to the identity as shown in Fig. 7.15
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Figure 7.15: Three particles that fuse to the identity

We can then think of the sphere with three particles similarly as being a sphere with three labeled
punctures which is known as a “pants”, for reasons that are obvious in Figure. 7.16. It turns out
that any orientable 2-dimensional manifold (except S2 or T 2 which we have already considered can
be constructed by sewing together the punctures of pants diagrams. For example, in Fig. 7.17 we
sew together to pants to obtain a two handled torus.

Figure 7.16: A three-times punctured sphere is known as a “pants” diagram.

Figure 7.17: A three-times punctured sphere is known as a “pants” diagram.

To find the ground state degeneracy of the two handled torus Dim V (Two handled Torus) =
Z(Two handled Torus × S1), we simply need to figure out the number of possible fusion channels
where we could satisfy a× b× c→ I and ā× b̄× c̄→ I – this is precisely N c̄

ab (which is also the same
as N c

āb̄
). Essentially we are just looking at the number of ways we can assign labels to the punctures

when we glue the objects together5. Looking at the fusion diagram 7.15 we then have

DimV (Two handled Torus) =
∑
abc

N ā
bcN

a
b̄c̄

5If N ā
bc = 2 then we need to count this configuration twice!
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Example: Fibonacci Anyons on The Two-Handled Torus

With the Fibonacci fusion rules, there the five ways we can fuse three particles and get the
identity.

I × I × I →I
I × τ × τ →I
τ × I × τ →I
τ × τ × I →I
τ × τ × τ →I

Note: Here there are several things to note about the notation. Here, the order of the three elements
being multiplied together does matter, since the first element represents the first hole etc. Secondly,
I use the → notation to indicate that it is a particular fusion channel out of many that could be
possible. For example, if τ × τ = I + τ to indicate that we mean the two τ ’s to fuse in the I channel
only, I will write τ × τ → τ .

At any rate, there are 5 possible labelings of the punctures that allow overall fusion to the
identity. These are matched together on both sides of the diagram of 7.17 and we conclude that in
the Fibonacci theory we have

Z(Two Handled Torus× S1) = DimV (Two handled Torus) = 5

7.5 Change of Basis and F -symbols

As mentioned in Fig. 7.13, one can describe the same space in two different ways. If we are considering
the space spanned by the fusion of a × b × c as in the figure, we can describe the space by how a
fuses with b (the value of d on the left of the figure), or by how b fuses with c (the value of f in the
figure). Either of these two descriptions should be able to describe the space, but in different bases.
We define the change of basis as a set of matrices called F . See figure 7.18

Figure 7.18: The F matrix makes a change of basis between the two differnt ways of describing the
space spanned by the fusion of three anyon charges a, b, and c when they all fuse to e.

This idea of change of basis is familiar from angular momentum addition — where the F -matrix
is known as a 6j symbol (note it has 6 indices). One can combine three objects with L2 angular
momenta values a, b and c in order to get L2 angular momentum e, and quite similarly you can
descibe this space in terms of a combined with b to get d or in terms of b combined with c to get f .
(In fact, even when studying TQFTs, sometimes people refer to F -matrices as 6j symbols.)

Example: Fibonacci Anyons

Again we turn to the example of Fibonacci anyons for clarification of how this works. We imagine
fusing together three τ particles. As shown in Fig. 7.10, there is a single state |N〉 in which the
three fuse to the identity I. It should not matter if we choose to fuse the leftmost two anyons first,
or the rightmost two. In either case there is only one possible state for the outcome. We can thus
draw the simple identity shown in Fig. 7.19
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Figure 7.19: There is only one state in the Hilbert space of three fibonacci anyons fusing to the
identity. Thus it does not matter if you fuse the left two first or the right two first, you are
describing the same state.

The more interesting situation is the case where the three Fibonacci anyons fuse to τ . In this
case, there is a two dimensional space of states, and this two dimensional space can be described in
two ways. We can fuse the left two particles first to get either I (yielding overall state |0〉) or to get
τ (yielding overall state |1〉). See the top of Fig. 7.20. On the other hand, we could fuse the right
two particles first to get either I (yielding overall state |0′〉) or to get τ (yielding overall state |1′〉).
See the bottom of Fig. 7.20.

Fusing The Two Particles on the Left First

Fusing The Two Particles on the Right First

Figure 7.20: Two ways to describe the same two dimensional space. The basis {|0〉, |1〉} fuses the
left two particles first, whereas the basis {|0′〉, |1′〉} fuses the right two particles first.

The space of states spanned by the three anyons is the same in either description. Thus, there
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must be a unitary basis transform given by(
|0〉
|1〉

)
=

(
F00′ F01′

F10′ F11′

)(
|0′〉
|1′〉

)
(7.2)

Thus here F is a two by two matrix, and in the notaion of the F matrix defined in Fig. 7.18, this
two by two matrix is [F ττττ ]ab and the indices a, b should take the values I and τ instead of 0 and 1,
but it is perhaps easier to use the notation shown here for more clarity.

For the Fibonacci theory the F matrix is given explicitly by

F =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)

where φ−1 = (
√

5− 1)/2. As one should expect for a change of basis, this matrix is unitary. Below
in the next section we will discuss how this matrix is derived.

It is important to emphasize that the F-matrix is the same even if one of the anyons charges
being fused is actually a cluster of several anyons. For example, in Fig. 7.21, this is precisely the
same transformation as in Eq. 7.2, but we must view the cluster of two anyons on the left (underlined
in red), which fuse to τ as being a single τ particle.

Figure 7.21: The F -matrices are the same even if one of the anyon charges is made up of a cluster
of other anyons. In this particular picture, the cluster of two anyons on the left (underlined in red)
has charge τ . if one were to replace this with just a single τ , this would be precisely the same
transformation as in Eq. 7.2.

7.5.1 Pentagon

It is possible to describe the same Hilbert space in many ways. For example, with three anyons, as
in Fig. 7.13, one can describe the state in terms of the fusion channel of the two anyons on the left,
or in terms of the two on the right. Ie., we can describe (a× b)× c or a× (b× c) And as in Fig. 7.18,
these two descriptions can be related via an F -matrix.

When there are four anyons, there are still more options of how we group particles to describe
the states of the Hilbert space, and these can also be related to each other via F matrices similarly,
as shown in Fig. 7.21. The fact that we can should be able change the connectivity of these tree
diagrams then allows one to make multiple changes in the trees as shown in Fig. 7.22 (the step in
the furthest upper left is equilvalent to that shown in Fig. 7.21). Indeed, in this figure one sees that
one can go from the far left to the far right of the diagram via two completely different paths (the
top and the bottom path) and the end result on the far right should be the same either way.
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Figure 7.22: Pentagon Diagram. Figure Stolen from Bonderson’s thesis.

This diagram, known as the pentagon diagram, puts a very strong contraint on the F-matrices,
which written out algebraically would be

[F fcde ]gl[F
abl
e ]fk =

∑
h

[F abcg ]fh[F ahde ]gk[F bcdk ]hl

where the left hand side represents the top route of the figure and he right hand side represents the
bottom route.

For very simple theories, such as the Fibonacci anyon theory, the Pentagon diagram is sufficient
to completely define the F -matrices (up to some gauge convention choices). This is a nice exercise
to try!

One might think that one could write down more complicated trees and more complicated paths
through the trees and somehow derive additional constraints on the F -matrices. A theorem by
MacLane, guarantees that no more complicated trees generate new identities beyond the pentagon
diagram.

Topological Quantum page 80



Chapter 8

Braiding and Twisting

8.1 Twists

In an Anyon theory (or topological quantum field theory in general) each particle a is endowed with
a topological spin, or conformal scaling dimension, usually called ha related to the twist
factor θa

θa = e2πiha

We note that in many cases quantities of interest will depend only on the twist factor, i.e., the
fractional part of the topological spin ha mod 1. It is often hard to pin down the value of the
topological spin itself.

In our diagrammatic notation, we have

Figure 8.1: Twist Factor
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Figure 8.2: Pulling Straight

Recall, we should treat particle world-lines as ribbons, so that a little loop of this type can be
pulled straight as in Fig. 8.2 to represent a particle twisting around its own axis, as well as giving
the phase of exchange for two identical particles. Two cases are well known to us if the spin ha is
an integer, then e2πiha is the identity, and this particle is a boson. If ha is a half-odd-integer, then
the phase is −1 and the particle is a fermion. The vacuum, or identity particle, should have zero
scaling dimension, hI = 0.

8.2 R-matrix

Consider the possibility of two particles fusing to a third as shown in Fig. 8.3

Figure 8.3: Two particles fusing to a third. For this anyon system a × b = c + . . ., and c is the
particular fusion channel that has occured in this diagram.

We have a × b = c + . . .. I.e., c is among the possibile fusion channels that can occur and we
assumes in the diagram that c is the particular fusion channel that has occured. Now let us consider
braiding a and b around each other before fusing them as in Fig. 8.4. This diagram defines the so-
called R-matrix. Here we have dropped the arrows and we show the particle world lines as ribbons
to show that there are no additional self-twists.
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Figure 8.4: Definition of R-matrix. Here we drop the arrows for convenience of notation and we
draw the particle world lines as ribbons to show that no additional self-twists are incurred by the
particles.

Note that braiding anything with the identity particle should be trivial.

To see the relationship between braiding and twisting, consider applying the R matrix twice to
make a double twist as in Fig. 8.5. By pulling tight the double twist, the diagram can be reduced
to twist factors previously defined, and this fixes Rcab up to a possible minus sign.

Figure 8.5: Relation of R-matrix to twist factors.

Which we can generally write as

[Rcab]
2 = e2πi(hc−ha−hb) = θc/(θaθb)

Example: Fibonacci Anyons. In the Fibonacci theory, two τ particles can fuse to either τ or
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I. Applying the above relationship, we have

[Rτττ ]2 = e2πi(hτ−hτ−hτ ) = e−2πihτ (8.1)

[RIττ ]2 = e2πi(hI−hτ−hτ ) = e−4πihτ (8.2)

Using the F and R matrices for a general anyon theory we can evaluate the unitary transform
associated with any braid. Recall the two possible states of three τ particles fusing to τ as shown
in Fig. 8.6.

Figure 8.6: The two stats of three τ particles fusing to τ . Unmarked dots are τ particles.

Now consider braiding the two leftmost particles around each other.

Figure 8.7: Braiding the two left particles in this basis gives a phase dependenet on the fusion
channel of the two particles.

The result of this fusion gives a phase, either RIττ if the fusion channel of the two particles is I
or Rττtau if the fusion channel of the two particles is τ .

Note that the braiding operator is a linear quantum mechanical operator, so it acts on superpo-
sitions.

R : (α|0〉+ β|1〉) = αRIττ |0〉+ βRτττ |1〉

This is what is known as a controlled phase gate in quantum information processing – the phase
accumulated depends on the state of the qubit.

Now how can we evaluate the braid shown in Fig. 8.8? The trick here is to use the F -matrix to
change the basis such that we know the fusion channel of the right two particles, and then once we
know the fusion channel we can use the R-matrix, and if we want we can then use the F -matrix to
transform back to the original basis.
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Figure 8.8: How does one evaluate this braid?

To see how this works, Recall that we can use the F matrix to write (See Eq. 7.2)

|0〉 = F00′ |0′〉+ F01′ |1′〉

or in diagrams (see Fig. 8.9).

Figure 8.9: The F-matrix relation in diagram form. See Eq. 7.2

On the right hand side (i.e., in the prime basis) we know the fusion channel of the rightmost
two particles, so we can braid them around each other and use the R-matrix to accumulate the
corresponding phase.

Figure 8.10: To braid particles, switch basis until we know the fusion channel of the two particles
we want to braid, and then we can apply the F -matrix.

To describe this in equations, we can write the operator that braids the rightmost two particles
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as R23 and then we have

R23|0〉 = R23(F00′ |0′〉+ F01′ |1′〉)
= F00′R23|0′〉+ F01′R23|1′〉
= F00′R

I
ττ |0′〉+ F01′R

τ
ττ |1′〉 (8.3)

= F00′R
I
ττ

(
[F−1]0′0|0〉+ [F−1]0′1|1〉

)
(8.4)

+ F01′R
τ
ττ

(
[F−1]1′0|0〉+ [F−1]1′1|1〉

)
=
(
F00′R

I
ττ [F−1]0′0 + F01′R

τ
ττ [F−1]1′0

)
|0〉

+
(
F00′R

I
ττ [F−1]0′1 + F01′R

τ
ττ [F−1]1′1

)
|1〉

Where between Eq. 8.3 and 8.4 we have used the inverse F transform to put the result back in the
original |0〉 and |1〉 basis. Note that for this particular case F and F−1 are the same matrix (however
we write out the inverse explicitly for clarity!).

This general principle allows us to evaluate any braiding of particles. We always convert to a
basis where the fusion channel of the two particles to braided is known, then we apply the R matrix
directly. At the end we can transform back to the original basis if we so desire.

8.3 The Hexagon

As with the case of the F -matrix, there are strong consistency constraints on the R-matrices given a
set of F -matrices (indeed, it is possible that for a given set of F -matrices that satisfy the pentagon,
there may not even exist a set of consistent R-matrices!). The consistency equations are known as
the hexagon equations and are shown diagrammatically in Fig. 8.11

Figure 8.11: The hexagon equations in graphical form. (nice picture stolen from Bonderson thesis)

In equations this can be expressed as

Rcae [F acbd ]egR
cb
g =

∑
f

[F cabd ]efR
cf
d [F abcd ]fg

[Rcae ]−1[F acbd ]eg[R
cb
g ]−1 =

∑
f

[F cabd ]ef [Rcfd ]−1[F abcd ]fg

The top equation is the left diagram whereas the lower equation is the right diagram in Fig. 8.11.
The left hand side of the equation corresponds to the upper path, whereas the right hand side of
the equation corresponds to the lower path.
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In simple theories such as the Fibonacci theory (knowing the F matrices) the Hexagon equation,
almost uniquely defines the R-matrices. In fact there are two consistent solutions to the Hexagon
equations for the Fibonacci theory.

Rτττ = e±3πi/5

RIττ = e∓4πi/5

These two solutions correspond to left and right handed versions of the Fibonacci theory correspond-
ing to twist factors for the elementary Fibonacci anyon of.

θτ = e±4πi/5

8.4 Ocneanu Rigidity

Given a set of fusion rules, the pentagon and hexagon equation are very very strong constraints on
the possible F and R matrices that can result. (For example, as mentioned above, with Fibonacci
fusion rules, there is only one solution of pentagon and then only two solutions the hexagon). In
fact, it is a general principle that the pentagon and hexagon for any set of fusion rules for a finite
set of particles will have a finite set of solutions. In particular, once we have a set of solutions, in
no sense is there a way that we can deform the values of F and R by a small amount and have
another solution. This is a principle known as rigidity of the solutions, and it was first pointed out
by Ocneanu. This principle makes it possible to contemplate putting together a sort of “periodic
table” of possible anyon theories, starting with those having very few particle types. In fact, such
periodic tables have been compiled up to about 5 or 6 different particle types (See Rowell Strong and
Wang1). There is nothing in principle that prevents one from listing all the possible anyon theories
even for more particle types although the search for all solutions becomes extremely difficult for
greater numbers of particles.

1It is often useful to impose one more condition, that the theory is ”modular” which we will discuss below in
section ***. Most well behaved theories are modular, although the presence of a fermion makes a theory non-modular
— indicating how difficult it is to properly treat fermions! As far as we can tell from the known periodic table, all
modular theories can be described in terms of some sort of Chern-Simons theory or closely related construction!
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Chapter 9

Kauffman Categories

Good reference is the book by Kauffman,

To give a definite example of an anyon theory, let us back up to the Kauffman invariant. What
was missing in that picture was the idea of multiple particle types and fusion. Here we try to
construct fusion rules based on the Kauffman rules of Fig. 2.2. In fact, to begin with we don’t even
want to consider braiding, just fusion. So for now we can neglect the braiding rule and focus only
on the loop rule shown in Fig. 9.1.

Figure 9.1: The loop rule for the Kauffman invariant and the Temperly-Lieb algebra.

If we consider an algebra of loops (using the loop rule that one loop gets a value d) — but no
braiding allowed — this algebra is known as the Temperly-Lieb algebra.

Now we would like to ask whether we can fuse two of these strings together to make another
particle. Since we are going to construct multiple particle types, let us call the basic string the
particle type ”1” and the vacuum will be denoted by the particle type ”0”.

One possibility is to fuse the two particles to the vacuum as shown in Fig. 9.2

Figure 9.2: Fusing two 1-particles to the vacuum
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The fact that two 1-particles can fuse to the vacuum tells us immediately that 1 is its own
antiparticle.

1 = 1̄

We might also consider the possibility that two of these 1-particles can fuse to something besides
the vacuum, in a way similar to that shown in Fig. 9.3.

Figure 9.3: Attempting to Fuse two 1-particles to something different from the vacuum

This is a good idea, but it isn’t yet quite right. We need to assure that if we have two different
particle types they are appropriately “orthogonal” to each other. This orthogonality must be in the
sense of the locality, or no-transmutation rule. A particle type must not be able to spontaneously
turn into another particle type (without fusing with some other particle or splitting). To help us
construct particles which will obey this rule, we must construct projection operators.

9.1 Jones-Wenzl Projectors

The definition of a projector is an operator P such that P 2 = P , so it has eigenvalues 0 and 1. We
would like to construct projectors out of strings.

To begin with, we will construct projectors out of two incoming 1-particles (two elementary
strings). We can construct the projector P0 that forces the two incoming particles to fuse to the
vacuum.

Figure 9.4: The projector of two strings to the vacuum P0.

We now need to check that P 2
0 = P0. To apply the P0 operator twice we connect the strings

coming out the top of the first operator to two strings coming in the bottom of the second operator.
As shown in Fig. 9.5, using the fact that a loop gets value d we see that P 2

0 = P0 meaning that P0

is indeed a projector.
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Figure 9.5: Checking that P 2
0 = P0.

We now consider the possibility that two strings near each other can fuse to something else,
which we call P2. Let us define P2 = I − P0 where I is the identity operator, i.e, just two parallel
strings. Diagrammatically we have Fig. 9.6

Figure 9.6: The projector of two strings to the nontrivial particle P2 = I − P0.

We can then algebraically check that this is indeed a projector

P 2
2 = (I − P0)(I − P0) = I − 2P0 + P 2

0 = I − P0 = P2

and also we can check that it is orthogonal to P0, by

P0P2 = P0(I − P0) = P0 − P 2
0 = 0

and similarly to show P2P0 = 0.

Often it is convenient to draw these projection operators as a labeled box, as shown in Fig. 9.7.

Figure 9.7: Drawing the two possible fusion channels of two strings as a box labeled P0 or P2

Sometimes we simply draw a single line with a label, 0 or 2 respectively.
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Abelian Case: In the case where d = ±1 we proved for Homework that two horizontal lines
equals ± two vertical lines as shown in Fig. 9.8. In this case, notice that the projector P2 = 0 (the
two terms in the projector are equal with opposite signs).

Figure 9.8: Two cases where the Kauffman invariant rules become very simple. If you have not
convinced yourself of these rules, try to do so!. Note that d = 1 occurs for bosons or fermions and
d = −1 occurs for semions.

The theories in queston here are bosons or fermions for d = 1 and semions for d = −1. All of
these theories are abelian, so it is not surprising that two particles that can fuse to the identity
cannot fuse to another species as well. We have only the fusion to the vacuum shown in Fig. 9.2.
Thus the entire fusion rules of these theories are

1× 1 = 0

where again 0 is the identity or vacuum.

General Case:

For other values of d, however, two strands (each labeled 1) can fuse either to 0 or to 2 as shown
in Fig. 9.9.

Figure 9.9: Possible fusions of two strands

We can write the fusion rule

1× 1 = 0 + 2

We might ask whether it is possible to assemble a third type of particle with two strands. It is
obvious this is not possible since P0 + P2 = I forms a complete set.

Three Strands:

We can move on and ask what kind of particles we can make if we are allowed to fuse three
strands together. We want to try to construct a three leg projector of the form in Fig. 9.10.
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General Form:

Figure 9.10: A three-leg Jones-Wenzl projector. The most general possible form of P3 is written in
the lower line.

We should certainly enforce that P 2
3 = P3 so that this acts as a projector. However, there are

other things we want to enforce as well. We want 0× 1 = 1 which means we should not be able to
fuse P0 with a single strand to get P3. Diagrammatically we insist on relations like Fig. 9.11.

or Equivalently

Figure 9.11: Insisting that 0× 1 does not give 3

However, we should alllow fusions of the form 1× 2 = 3 as shown in Fig. 9.12

Figure 9.12: We allow 1× 2 = 3

Enforcing the condition in Fig. 9.11, along with P 2
3 = P3 gives the form of P3 shown in Fig. 9.13.
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Figure 9.13: Form of the P3 projector in terms of the parameter d.

(deriving this is a good exercise!).
Ising Anyons
Consider the case where d =

√
2. Here it is possible to show that P3 vanishes when evaluated in

any diagram (this is also a good exercise, try it!). It is similarly possible to show that P4 = 0 and
so forth. Thus, in this theory there are only three particle types P0, P1 and P2. We have 2× 2 = 0
as shown in Fig.9.14 and 2 × 1 = 1 as shown in Fig. 9.15. (Note that showing 2 /∈ 2 × 2 requires
another explicit calculation, not shown here!)

Figure 9.14: 2× 2 = 0.

Figure 9.15: 2 × 1 = 1. We recognize this as the fusion 1 × 1 = 2 from Fig. 9.9 just turned on its
sid.e

We then have the full set of nontrivial fusion rules

1× 1 = 0 + 2

2× 2 = 0

1× 2 = 1

which we recognize as Ising fusion rules (see 7.2.2) where 1 = σ and 2 = ψ.
Note: It is not coincidence that the quantum dimension of the nonabelian particle (the 1-particle,

or σ) is
√

2 (see section ’7.2.2), and that d =
√

2 as well. It is a general principle that the value of a
loop will be the same as the quantum dimension of the corresponding particle, as we will see below.
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9.2 F-matrices

We can determine the F -matrices directly from the graphical algebra. Let us consider the case of
3 single strands coming in the bottom and fusing to a single strand going out the top. I.e, we are
looking at the matrix F 1

111. The F matrix is nontrivial since there is more than one fusion channel
when we fuse the 1’s together: 1× 1 = 0 + 2. Let us write the F -matrix as

F =

(
α β
γ δ

)
by which we mean the diagram Fig. 9.16

Figure 9.16: An F-move. The boxes are either P0 or P2 projectors.

We now realize that graphically a P0 projector is 1/d times a simple turnaround, whereas a P2

projector is the sum of two terms, the first being just two strands going parallel (i.e,, the identity)
and the second being −P0. (See Figs. 9.4 and 9.6). We can then write graphically Fig. 9.17

Figure 9.17: Plugging in the form of the projectors.

We then match up terms. In the first line we see the the diagram on the left is topologically like
the first term in the brackets on the right, so we have β = 1/d. Similarly the first term on the right
is the same as the second term in the brackets, so α = β = 1/d. Then in the second line we have
the second term in brakets on the left is the same as the first term in brackets on the right, so we
have δ = −1/d. Then the remaining terms, the first term in brakets on the left, the first term on the
right, and the secon term in brackets on the right, are all the same shape, so we have 1 = γ/d− δ/d
or γ = d− 1/d. Thus obtaining the form of the F matrix

F =

(
1/d 1/d

d− 1/d −1/d

)
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9.3 Twisting and Braiding

So far we have not yet used the braiding rules of the Kauffman invariant, we have only used the
loop rule. We finally can reintroduce the braiding rules for the Kauffman invariant for evaluating
crossings as in Fig. 2.2. As shown in Fig. 2.5, comparing to Fig. 8.1 we see that the twist factor
of the single strand is θ1 = −A−3. It is a reasonably straightforward exercise to use these crossing
rules to evaluate the twist factors for other particles in the theory, as well as the R-matrices. Just
to do a simple example, let us evaluate R2

11 shown in Fig. 9.18

Figure 9.18: Evaluation of R2
11 = A−1.

Here the term with the coefficient A vanishes because of the orthogonality of P2 and P0.
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Chapter 10

Diagrammatic Algebra, the
S-matrix and the Verlinde Relation

We have built up our anyon theories and now, using F and R matrices we can generally figure out
how the degenerate Hilbert space V (Σ) evolves (where by Σ we mean a surface with particle in it).

We are almost at the point where we have a full diagramatic calculus — which would produce a
number as an output given any world-lines as input

Z(Manifold with particle world lines in it)→ C

Note that while diagrammatic calculus for the Kauffman case is often quite simple, there can
be some nasty bookkeeping glitches for other anyon theories. For careful details of how all of the
details, see Kitaev 2005 or Bonderson thesis.

First, we should be careful about our normalization when we evaluate some knot or link of world
lines1. We choose our evaluation of a world line link to be of the form

〈Link〉 ≡ Z(S3 with embedded Link)

Z(S3)
= Z(S2 × S1 with embedded Link)

where in the case of S2×S1 we require that the Link not go around the nontrivial handle of the S1.
This normalization is chosen so that the evaluation of the empty link will give unity (as discussed
in chapter 6).

By using F ’s and R’s we hope to reduce diagrams to a collection of non-linking labeled loops
(labeled with their particle type), similar to what we did in evaluating the Kauffman invariant. We
then need to know what value to give a particular loop.

10.1 Normalizations and Loops

Let us define da > 0 to be the value associate with the a loop of particle of type a as shown in
Fig. 10.12 These quantities will turn out to be the quantum dimensions of the particles, but we have
not shown this yet!

1We allow branching world lines which correspond to fusion or splitting
2In some cases it is convenient to define the value of a loop to be negative, as in the case of the semion Kauffman

theory discussed above. However, by redefining some F -matrix elements, one can always work with the convention
that da is positive, although this comes at the expense of having troublesome minus signs pop up in other places!
These minus signs are known as Frobenius-Schur indicators.
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Figure 10.1: A loop of particle type a is given value da > 0. This will turn out to be the quantum
dimension of the particle.

We have not yet decided what value this loop should get. However, we can look back to 6.5 to
note that we have

Z(S3; a loop linking b loop) = Sab

where Sab is the unitary matrix known as the modular S-matrix. Recall that S should be unitary
because it can be interpretated as a change of basis. (Theories where the S matrix comes out
non-unitary are considered badly behaved, or ”non-modular”. We will ignore this harder case for
now!).

We can then think of the single loop da as particle a linking the vacuum, so we write

Z(S3; a loop) = Sa0 = S0a

and further we can write the normalizing factor Z(S3) as vacuum linking vacuum, so we have the
value of a single loop as

da = Sa0/S00

The fact that S is unitary gives us a useful identity

1 =
∑
a

|Sa0|2 = |S00|2
∑

d2
a

which gives us

Z(S3) = S00 = 1/D

where D is known as the total quantum dimension and is given by

D2 =
∑
a

d2
a

Note that, as of this point we still have not shown that the da’s, i.e., the values of the loops, are
related to the quantum dimensions.

10.2 Quantum Dimensions

Now, we claim that these loop quantites da should satisfy the fusion algebra

dadb =
∑
c

N c
ab dc (10.1)

or diagrammatically we have Fig. 10.2

Topological Quantum page 98
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Figure 10.2: The quantum dimensions satisfy the fusion algebra.

This rule seems rather natural, that a and b can fuse together to form c in all possible ways.
However, to prove it is a bit more complicated than this argument, and is given in the appendix to
this chapter.

Now, given Eq. 10.1, if we think of the fusion multiplicity for particle a, as a matrix Na with
indices b and c, and we think of dc as a vector ~d we can write

da~d = [Na]~d

I.e, the vector ~d is an eigenvector of Na with eigenvalue da.

Note that the matrix Na has only non-negative elements and ~d has only positive elements. This
allows us to apply the Perron-Frobenius theorem which says that for matrices with only non-negative
elements3 there is a unique eigenvector with all positive entries, and it corresponds to the largest
eigenvalue. Thus we conclude that da is actually the largest eigenvalue of the matrix Na and it has
eigenvector ~d.

Recall that our previous definition of the quantum dimension da is that it is the largest eigenvalue
of the fusion multiplicity matrix Na. Thus we have rigorously shown that the value da of the loop
in the graphical algebra is precisely the quantum dimension!

10.3 Verlinde Algebra

Using the locality principle (or no-transmutation) principle (See Fig. 7.7) we can show that a closed
loop of type a around a world line of type x gives some constant which we call S̃ax as shown in
Fig. 10.3.

Figure 10.3: The locality priniciple tells us that the value of a loop around a world line is some
number which we call S̃ax

3Actually the simplest version of Perron-Frobenius requires all positive elements. Using the theorem for non-
negative matrices allows there to be a second eigenvalue with same magnitude but opposite sign — this does not
change the conclusion.
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by bending the top of x and forming a closed loop with the bottom of x, we construct linked
rings on the left of this equation which we relate to the modular S-matrix, but on the right we form
just a single x-loop.

Sax = Z(S3, a loop links x loop) = S̃axZ(S3, x-loop) = S̃axS0x

from which we conclude

S̃ax =
Sax
S0x

(10.2)

On the other hand, if we have two loops a and b around x, we can fuse the two loops to all
possible loops c as shown in Fig.10.4. This identity is entirely analogous to that of Fig. 10.2, and
the rigorous derivation is given in the appendix.

Figure 10.4:

On the other hand, we could also evaluate the left hand side of Fig. 10.4 by applying the identity
of Fig. 10.3 twice in a row, and similarly we can evaluate the right hand side of Fig. 10.4 by applying
Fig. 10.3once. Thus we obtain the identity

S̃axS̃bx =
∑
c

N c
abS̃cx

This important result can be re-presented in two important ways. First, inverting this matrix
equation gives

N c
ab =

∑
x

S̃axS̃bx[S̃−1]xc

Plugging in the value of S̃ from Eq. 10.2, and using the fact that the modular S matrix is unitary,
we obtain the famous Verlinde formula

N c
ab =

∑
x

SaxSbxS
∗
xc

S0x

which tells us that all the information about the fusion algebra is contained entirely within the
modular S matrix!

A second way to present this important results is to write it in the form

[S†NaS]xy = S̃ayδxy

where Na here is the matrix N c
ab with indices b and c. Thus the result tells us that the modular S

matrix is precisely the unitary diagonalizing matrix we were looking for in Eq. 7.1!
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10.4 Return of Kirby Color

As mentioned in section 6.4.2, one can assemble a string called the ”Kirby Color” (or Ω string) that
is the sum of all strings weighted by the S-matrix.

|Ω〉 =
∑
a

S0a|a〉 =
1

D
∑
a

da|a〉

This string has some remarkable properties. Suppose we loop this string around a string x similar
to that of Fig. 10.3. The result then looks like∑

a

S0aS̃ax|x〉 = Dδx0|0〉

where we have used the fact that S is unitary, that S0a = Sa0 is real, and that S00 = 1/D. This is
shown explicityly in fig. 10.5

Figure 10.5: The kirby color string projects to the vacuum going through it

Thus, a loop of Kirby color string projects to zero (or vacuum) flux going through it! This
principle is extremely useful in later attempts to construct topological models.

Further, the Kirby color string can be used, as mentioned in section 6.4.2 to build up a manifold
invariant from anyon braiding rules. Indeed we can check this. The evaluation of the empty knot is
defined to be 1 = Z(S3)/Z(S3). Surgery on a single loop takes S3 to S2 × S1. And evaluation of a
single loop of Kirby color gives D = Z(S2 × S1)/Z(S3). So this appears to be working! One should
be a bit careful with this because one needs to properly account for twists in loops which we have
not done here.

10.5 S and θ and that is all?

In building up an anyon theory, we now have compiled a larege amount of data. Say there are M
particle types, then we have F matrices, which have 6 indices, each running from 1 to M , we have
N matrices with three indices, we have R matrices with three indices, we have S matrices with two
indices, and d’s and θ’s. This seems like a huge amount of data needed to keep track of (and in some
sense it is a huge amount of data). However, due to the idea of Rigidity, it is believed that you need
only specify the matrix Sab and the values of the twists θa and you completely pin down the rest of
the theory. I do not believe this statement is proven, but there are no counter-examples known.

10.6 Appendix: Quantum Dimensions Satisfy the Fusion Al-
gebra

We would like to show the identity shown in Fig. 10.2. We need a few useful pieces. First note that
we can use an F -move on parallel lines to show the identity shown in Fig. 10.6.
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Figure 10.6: An F-move. If a and b do not fuse to c, then the coefficient κcab must be zero. And if a
and b do fuse to c then κcab is not zero. Note that the constant κcab shown here is typically notated
as F ab0abc . This is quite similar to [F a

abb̄
]0c except that some lines pointing up have been turned down.

This incurs certain normalization factors that one needs to keep track of.

Further we can use the locality principle (See Fig. 7.7) to give us Fig. 10.7

Figure 10.7: Removal of a bubble gives a factor, which we call ∆c
ab 6= 0.

We can then use these two identities to directly fuse the loop of a with the loop of b incurring a
factor of κcab∆

c
ab as shown in Fig. 10.8

Figure 10.8: We have applied first the result of Fig. 10.6 then Fig. 10.7. Note that if a and b cannot
fuse to c then that term is zero in the sum.

However, we can also apply the same reasoning to split the loops into multiple bubbles as shown
in Fig. 10.9.
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Figure 10.9: Applying the result of Fig. 10.6 twice then Fig. 10.7 twice.

From these two results we can immediately conclude that κcab∆
c
ab = 0 or 1. Since both of these

factors are nonzero when a and b can fuse to c, and are zero when they cannot, we can write
κcab∆

c
ab = N c

ab (assuming no N c
ab > 1)4. This then proves our Lemma.

Once it is established that the factor κcab∆
c
ab = N c

ab then this can be also used to directly prove
the identity in Fig. 10.4.

4In cases where Nc
ab > 1 we would have had to keep track of an additional index µ at the a, b, c vertex. However,

this index is also conserved around the loop meaning that the sum eventually becomes
∑
c,µ which will then generate

a factor of Nc
ab as desired.
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Chapter 11

Quantum Error Correction and
The Toric Code

We now change subjects a bit towards quantum error correction and the toric code. While initially
the ideas may seem somewhat different from what we have been discussing, we will see that it is
extremely closely related and brings us to an extremely important application of many of the ideas
we have been discussing.

11.1 Classical Versus Quantum Information

11.1.1 Memories1

Classical Memory
The unit of classical information is a bit — classical two state system which can take the values

0 or 1. A memory with N bits can be in any one of 2N states — each state corresponding to a
particular bit-string, such as 011100111.

Quantum Memory
The unit of quantum information is the quantum bit or qubit2 which is a quantum two state

system – i.e. a 2-dimensional complex Hilbert space spanned by vectors |0〉 and |1〉. A qubit can be
in any state

|ψ〉 = α|0〉+ β|1〉

with arbitary complex prefactor α, β (where we normalize wavefunctions so |α|2 + |β|2 = 1.
A quantum memory with N qubits is a vector within the 2N dimensional complex Hilbert space.

So for example, with 2 qubits the general state of a system is specified by four complex parameters

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉 (11.1)

with the normalization condition |α|2 + |β|2 + |γ|2 + |δ|2 = 1. So to specify the state of a quantum
memory with 2 bits, you have to specify four complex parameters, rather than, in the classical case
just stating which of the four states the system is in!

11.1.2 Errors

An error is some process which accidentally changes the state of the memory away from the intended
state. Often we take as an error model the case where only one bit or one qubit is effected at a time
(a “minimal” error) although more complicated errors can occur.

1All alone in the moonlight!
2Sometimes q-bit, but never cubit.
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Classical Error Correction There is a simple way to correct small errors for a classical memory.
Instead of storing a single bit 0 or 1, instead store multiple copies of the bit (say, three copies). So
we use three physical bits to store one ”logical” bit of information. Our memory should either be in

logical bit physical bits
0 000
1 111

Table 11.1: Three bit repetition code. Stores a single logical bit of information using three physical
bits.

the state 000 or 111 — we call these two possibilities the code space. If we detect the system being
in any other state of the three bits (i.e., not in the code space) we know an error has occured. If
an error does occurs on one of the physical bits (i.e,, if one of the bits is accidentally fliped) we can
easily find it, because it would leave our memory with not all of the physical bits being the same.
For example, if our system starts as 000, an error introduced on the second bit would leave it in the
form 010. But then, by just using a majority-rule correction system, it is easy to figure out what
happened and flip the mistaken bit back. So our error correction protocol would be to continuously
compare all three bits, if they don’t match, switch the one back which would bring them back to
matching. Assuming errors are rare enough (and only occur on one bit at a time) this scheme is an
effective way to prevent errors. For added protection one can use more redundant bits, such as 5
bits or 7 bits.

One might think the same sort of approach would work in the quantum world: make several copies
of the qubit you want to protect, and then compare them to see if one has changed. Unfortunately,
there are two big problems with this. The first is the so-called no-cloning theorem — it is not
possible to make a perfect clone of a qubit. The second reason is that measuring a state inevitably
changes it.

Quantum No Cloning Theorem: (Zurek et al 1982). The result is such a straightforward
result of quantum mechanics some people have argued whether it deserves to be called a theorem.
The statement of the ”theorem” is as follows:

Theorem: Given a qubit in an arbitrary unknown state |φ1〉 and another qubit in
an initial state |φ2〉, there does not exist any unitary operator U (i.e., any quantum
mecahnical evolution) such that

U(|φ1〉 ⊗ |φ2〉) = eiχ|φ1〉 ⊗ |φ1〉

for all possible input |φ1〉.

The point here is that we do not have a way to copy |φ1〉 into the auxiliary qubit |φ2〉.
Proof of Theorem: Suppose we have two states |0〉 and |1〉 which are properly copied.

U(|0〉 ⊗ |φ2〉) = eiχ|0〉 ⊗ |0〉
U(|1〉 ⊗ |φ2〉) = eiχ|1〉 ⊗ |1〉

Now quantum mechanical operators are linear so we can try applying this operator to the linear
superposition α|0〉+ β|1〉 and we must get

U([α|0〉+ β|1〉]⊗ |φ2〉) = eiχ(α|0〉 ⊗ |0〉+ β|1〉 ⊗ |1〉)

but this is now not what a putative cloning device must give. Instead it should have given the
outcome

eiχ[α|0〉+ β|1〉]⊗ [α|0〉+ β|1〉]

Thus no cloning device is consistent with the linearity inherent in quantum mechanical evolution.
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11.2 The Toric Code

Perhaps the most surprising thing about quantum error correction is that it is possible at all! This
was discovered by Peter Shor in 1995 (and shortly thereafter by Andrew Steane). We will describe
the Toric code approach to error correction which is potentially the conceptually most simple error
correction scheme, as well as being very possibly the most practical to implement in real systems3!

As with so many great ideas in this field, the Toric code was invented by Kitaev (Kitaev 1997).

11.2.1 Toric Code Hilbert Space

We imagine an Nx by Ny square lattice with spins on each edge, where the edges of the lattice are
made periodic hence forming a torus (hence the name). The total number of spins is N = 2NxNy
and correspondingly the dimension of the Hilbert space is 2N .

Figure 11.1: The Hilbert space of the toric code — an Nx by Ny square lattice with spins (dots)
on each edge wrapped up to make it periodic in both directions — i.e., a torus. Hence the name.
There are 32 spins in this picture so the Hilbert space has dimension 232.

We will work with a basis in our Hilbert space of up and down spins4. A convenient notation is
then to color in the edges containing down spins but leave uncolored the edges with up spins. See
Fig. 11.2.

Figure 11.2: A particular basis state of the Hilbert space, working in the up-dpwn basis (z-
eigenstates). Here we denote down spins by thick (red) lines. And up spins are denoted by not
coloring in the edges.

3The statement that it is the most practical is based on the fact that the so-called surface codes (which is essentially
the toric code) has the highest known error threshold — meaning you can successfully correct even highly faulty qubits
with this technique compared to other techniques which require your qubits to be much closer to perfect to begin
with.

4Caution: In the literature about half of the world uses the up-down or z-eigenstates as a basis, and half of the
world uses the x-eigenstates as a basis.
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Note that it is not crucial that we are working with a square lattice, or that we are even working
on a torus (although it is crucial that the surface has noncontractable loops). We could work with
other types of lattices — the honeycomb will be useful later — or triangular lattice could be used.
In fact even irregular lattices (which are not really lattices, since they are irregular, and should be
called ’graphs’) can be used. However it is a lot easier to continue the discussion on this simple
square-lattice-torus geometry.

11.2.2 Vertex and Plaquette Operators

Let us now define some simple operators on this Hilbert space.

First, given a vertex α which consists of four incident edges i ∈ α, we define the vertex operator

Vα =
∏

i∈vertexα
σzi

This operator simply counts the parity of the number of down spins (number of colored edges)
incident on the vertex. It returns +1 if there are an even number of incident down spins at that
vertex and returns −1 if there are an odd number. (And in either case, as is obvious V 2

α = 1). This
is depicted graphically in Fig. 11.3.

Figure 11.3: The vertex operator returns +1 if there are an even number of incident down spins at
that vertex and returns −1 if there are an odd number.

There are a total of NxNy vertex operators.

Note that it is possible (and useful) to define a corresponding projection operator

Ṽα =
1

2
(1− Vα) (11.2)

which has eigenvalues 0 for an even number of incident down spins or 1 for an odd number. This is
a projection operator because Ṽα = Ṽ 2

α .

We now define a slightly more complicated operator known as the plaquette operator. Given a
plaquette β which contains four edges in a square i ∈ β we define

Pβ =
∏

i∈plaquette β

σxi

which flips the state of the spins on all of the edges of the plaquette as depicted in Fig. 11.4. There
are a total of NxNy plaquette operators.
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Figure 11.4: The plaquette operator flips the state of the spin on the four edges of a plaquette.

As with the vertex operator P 2
β = 1 meaning Pβ has eigenvalues +1 and −1. As with the vertex

operator, we can define a projector

P̃β =
1

2
(1− Pβ) (11.3)

which satisfies P 2
β = Pβ .

It is a bit more difficult to describe what these eigenstates of the plaquette operators are. In
the basis we are using, the spin-up/spin-down basis corresponding to uncolored and colored edges,
the Pβ operator is off-diagonal — it flips spins around a plquette. As such, the 0 eigenstate of P̃β
operator (i.e, the 1 eigenstate of Pβ) is obtained by adding the state of a plaquette to the flipped
state of the plaquette as shown in Fig. 11.5. The orthogonal superposition (adding the two states
with a - sign) will give the other eigenstate.

Figure 11.5: A linear superposition of a flipped and unflipped plaquette is a +1 eigenstate of Pβ or

equivalently a 0 eigenstate of P̃β . The -1 eigenstate is given by the orthogonal superposition, i..e,
the superposition with a - sign between the two terms.

Operators Commute

I claim all of the plaquette operators and all of the vertex operators commute with each other. It is
obvious that

[Vα, Vα′ ] = 0

since Vα’s are only made of σz operators and all of these commute with each other. Similarly

[Pβ , Pβ′ ] = 0

since Pβ ’s are made only of σx operators and all of these commute with each other.
The nontrivial statement is that

[Vα, Pβ ] = 0
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for all α and β. The obvious case is when Vα and Pβ do not share any edges — then the two
operators obviously commute. When they do share edges, geometrically they must share exactly
two edges, in which case the commutation between each shared σxi and σzi accumulates a minus sign,
and there are exactly two shared edges so that the net sign accumulated is +1 meaning that the two
oprators commute.

Is the set of operators complete?

We have NxNy vertex operators and NxNy plaquette operators — all of these operators commute,
and each of these operators has 2 eigenvalues. This appears to match the fact that there are 2NxNy
spins in the system. So is our set of V and P operators a complete set of operators on this Hilbert
space? (I.e., is it true that describing the eigenvalue of each of these operators must determine a
unique state of the Hilbert space?)

It turns out that the V and P operators do not quite form a complete set of operators on the
Hilbert space. The reason for this is that there are two constraints on these operators∏

α

Vα = 1∏
β

Pβ = 1

To see that these are true, note that each edge occurs in exactly two operators Vα. Thus when we
multiply all the Vα’s together, each σzi occurs exactly twice, and (σzi )2 = 1. Thus the product of all
the Vα’s is the identity. The argument is precisely the same for multiplying together all of the Pβ ’s.

Thus we can freely specify the eigenvalues of (NxNy − 1) operators Vα, but then the value of the
one remaining Vα is then fixed by the values chosen for the other (NxNy−1) of them. Similarly with
the Pβ ’s. So specifying the eigenvalues of these commuting operators specifies only 2(NxNy − 1)
degrees of freedom, and since we started with 2NxNy spins, we still have 2 degrees of freedom
remaining. These two degrees of freedom are going to be two error protected qubits in this scheme
for building an quantum error correcting code.

Note that this result, of having two degrees of freedom that remain unspecified by the plaquette
and vertex opertaors, is not unique to having used a square lattice (we can use triangular lattice,
honeycomb, or even irregular grids), but depends only on having used a torus. If we use a g-handled
torus we will have 2g degrees of freedom (i.e., 2g qubits) remaining. To see this we use the famous
Euler characteristic. For any decompositon of an orientable 2-manifold into a grid, we have the
formula

2− 2g = (Number of Vertices)− (Number of Edges) + (Number of Faces)

where g is the number of handles on the manifold. Since there is one spin on each edge we have

Number of Vertex Operators + Number of Plaquette Operators− 2 + 2g

=Number of Spins

We can read this as follows. The right hand side is the total number of degrees of freedom. On
the left we can specify all the eigenvalues of the vertex and plaquette operators, then there are 2
constraints, so subtract two, and this leaves us with 2g unspecified degrees of freedom.

11.2.3 Building the code space

We are going to state two rules for constructing our code. We are imagining here that we have
a great deal of control over the spins (the microscopic qubits) making up our system and we can
impose these rules by fiat.

Rule 1: Specify that Vα = 1 for every vertex (or equivalently Ṽα = 0.).

This assures that there are an even number of down spins (red lines) incident on every vertex.
It is easy to see that this can be interpreted as a constraint that one must consider only loop
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configurations of these red lines. There can be no ends of lines, and no branching of lines. See, for
example, fig. 11.6

Figure 11.6: A loop configuration consistent with the constraint that Vα = 1 on every vertex. There
must be an even number of red lines incident on every vertex.

The idea of an error correcting code is that once we construct our code, we will have some way to
check that this Rule 1 is satisfied and if it is not satisfied we should have some way to fix it without
destroying our encoded quantum information.

Rule 2: Specify that Pβ = 1 for every plaquette (or equivalently P̃β = 0.).

As mentioned above in Fig. 11.5 this assures that every plaquette is in an equal superpositon
of flipped and unflipped states with a plus sign between the two pieces. Note in particular that,
because the Pβ and Vα operators commute, the action of flipping a plaquette will not ruin the fact
that Rule 1 is satisfied (that is, that we are in a loop configuration).

The quantities Vα and Pβ are known as the stabiizers of the code — they are meant to stay
constant and are checked for any errors which are indicated by the fact that their value has changed.

We thus have the following prescription for constructing a wavefucntion that satisfies both Rule
1 and Rule 2: First start in any state of spins up and spins down which satisfies rule 1, i.e., is a
loop configuration. Then add to this in a superposition every configuration that can be obtained by
flipping plaquettes. We thus have

|ψ〉 =
∑

all loop configs that can
be obtained by flipping pla-
quettes from a reference
loop config

|loop config〉 (11.4)

By adding up all such configurations, we assure that every plaquette is in the correct superpositon
of flipped and upflipped and we satisfy Rule 2.

The key queston is whether one can obtain all loop configurations by starting in a referecnce
configuratation and flipping plaquettes. The answer is that you cannot: Flipping plaquettes never
changes the parity of the number of loops running around the handle. To see this, try making a cut
around a handle of the torus, as shown in Fig. 11.7. If one flips a plaquette (blue in the fig) along
this cut (green inn the fig), it does not change the number of red bonds that the cut goes through.
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Figure 11.7: Making a cut around one of the handles of torus, one can see that flipping a plaqutte,
such as the blue one, does not change the parity of the number of red bonds cutting the green line.
Further, it does not matter where (at which y-coordinate) the green cut is made, the number of red
bonds it cuts is always even.

Thus there are four independent wavefunctions of the form of Eq. 11.4, which are different in
whether the reference configuration has an even or an odd number of red bonds going around each
handle. All of these states satisfy the constraints rules that all Vα = 1 and all Pβ = 1 . We will call
these states

|ψee〉 |ψeo〉 |ψoe〉 |ψoo〉

where e and o stand for an even or an odd number of red lines going around a given handle. So for
example, we have

|ψee〉 =
∑

all loop configs that have
an even number of red
bonds around both handles

|loop config〉

Or graphically, we have Fig. 11.8

Figure 11.8: Graphical depiction of |ψee〉 which has an even number of strings running around each
handle, and |ψeo〉 which is even around the first handle odd around the second.

The most general wavefunction we can write that satisfies the two above rules, that all Vα = 1
and all Pβ = 1 is thus of the form

|ψ〉 = Aee|ψee〉+Aeo|ψeo〉+Aoe|ψoe〉+Aoo|ψoo〉 (11.5)
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for arbitrary coefficients Aee, Aeo, Aoe, Aoo. It is these coefficients which are the two qubits of
quantum information that we are trying to protect with this coding scheme (exactly like Eq. 11.1).
We will refer to wavefunctions of the form of Eq. 11.5 as the “code-space”. We refer to these two
bits as being the ”logical” qubits – the information we are trying to protect. The underlying spins
on the lattice that make up the code are sometimes called the ”physical” qubits.

Note that in order to turn the |ψee〉 wavefunction into the |ψeo〉 we need to insert a single loop
around a handle — this involves flipping an entire row of spins at once. If one were to try to flip
only some of these spins, we would have an incomplete loop — or an endpoint – which violates the
rule that Vα = 1 for all vertex sites — i.e, not in the code-space. It is this fact that allows us to test
for errors and correct them efficiently, as we shall see.

11.3 Errors and Error Correction

Let us now turn to study possible errors in more detail. What does an error look like in this system?
Imagine a demon arrives and, unbeknownst to us, applies an operator to one of the spins in the
system.

11.3.1 σx errors

Let us first consider the case where that operator happens to be a σx on bond i. This operator
commutes with all the plaquette operators Pβ but anticommutes with the vertex operators Vα which
intersect that bond. This means, if we start in the code space (all Vα = +1), and apply this error
operator σxi , we then end up in a situation where the the two vertices attached to the bond i are
now in the wrong eigenstate Vα = −1. To see this more clearly starting in the original state |ψ〉 we
have

Vα|ψ〉 = |ψ〉

meaning we start in the +1 eigenstate, now apply the error operator σxi to both sides

σxi |ψ〉 = σxVα|ψ〉 = −Vασxi |ψ〉

or
Vα[σxi |ψ〉] = −[σxi |ψ〉]

showing we end up in the −1 eigenstate of the vertex operator.
To show these errors graphically we will no longer draw the up and down spins (the red bonds)

but instead we just draw the σx operator as a blue line, and the vertices which are in the −1
eigenstate as a red X as shown in Fig. 11.9.

Figure 11.9: A σx operator applied to the bond creates two vertices in the Vα = −1 eigenstate.
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So it is clear what our error correction protocol must do. It must frequently measure the state
of the Vα operators, and if it finds a pair in the V = −1 state, we know that a σx has been applied
on the intervening bond. Once we have identified the error it is easy to correct it by applying σx on
the same bond, thus returning the system to its original state and to the code space.

Now suppose that the demon is very fast and manages to make several such errors very quickly.
If these errors are well separated from each other, we will easily find multiple pairs of vertices in the
V = −1 state, with the pair separated from each other by one bond distance. These can similarly
be caught by our correction scheme and repaired, returing us to the code space again.

However, it could be the case that two errors are on bonds that share a vertex , as shown on the
left of Fig. 11.10, the vertex that is shared gets hit by σx twice and is thus in the V = +1 state.
Only the two vertices at the end of the ”string” are in the V = −1 state and are then detectable as
errors.

Figure 11.10: Left: When two σx errors are made on bonds that share a vertex, the shared vertex is
hit with σxi twice, and thus becomes V = +1 again. Only the two vertices at the end of the ”string”
are in the V = −1 state. Middle: A longer string of errors. Note that we can only measure the
endpoints of the string, not where the errors were made, so we cannot tell if the error string goes
down two steps then two steps to the right, or if goes two steps to the right then down two steps.
Right If we detect the errors as in the middle panel and we try to correct it by dragging the errors
back together, but we choose the incorrect path for the string, we end up making a closed loop of
σx operators – which acts as the identity on the code space, so we still successfully correct the error!

Nonetheless, the error correction scheme is still fairly straightforward. One frequently checks the
state of all the vertices and when V = −1 is found, one tries to find the closest other error to pair
it with – and then apply σx operators to correct these errors (you can think of this as dragging the
errors back together and annihilating them with each other again).

It is important to realize that we cannot see the error operators (which we have drawn as a blue
string) themselves by making measurements on the system – we can only detect the endpoints of
string, the vertices where V = −1. For example, in the middle panel of figure 11.10 we cannot tell
if the error string goes down two step and then to the right, or if it goes to the right one step and
then down two steps. We only know where the endpoints of the string are.

Now if we detect the two errors in the middle panel of Fig. 11.10, we may try to correct these
errors by guessing where the blue string is and applying σx along this path to bring the endpoints
back together and reannihilate them. However, it is possible we guess incorrectly as shown in the
right panel of Fig. 11.10. In this case we will have ended up producing a closed loop of σx operators
applied to the original state. However, a product of σx operators around a closed loop is precisely
equal to the product of the plaquette operators Pβ enclosed in the loop. Since the code space is
defined such that all of hte plaquettes operators are in the +1 eigenstate, this loop of σx acts as the
identity on the code space, and we still successfull correct the error.

On the other hand, if a loop of errors occurs which extends around a handle , and the V = −1
errors annihilate again (think of this as dragging the error all the way around the handle and re-
annihilating it again) then, although we return to the code-space (there are no V = −1 verteices) we
have changed the parity of the number of down spins around a handle thus scrambling the quantum
information and make an error in the logical bits. In fact what we get in this case is the transform
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that switches the even and odd sectors around one handle :

Aee|ψee〉+Aeo|ψeo〉+Aoe|ψoe〉+Aoo|ψoo〉 −→
Aoe|ψee〉+Aoo|ψeo〉+Aee|ψoe〉+Aeo|ψoo〉

However, the general idea of the toric code is that by having a very large torus, it requires
a very large number of errors to make this loop around the handle and actually scramble the
quantum information (the logical qubits). If we are continuously checking for V = −1 errors we can
presumably correct these errors before a logical error can arise.

11.3.2 σz errors

We can also consider what happens if the error is not a σx operator applied to the system, but
rather a σz operator. Much of the argument in this case is similar to that above.

Since the σz operator on an edge anticommutes with the two neighboring plaquettes Pβ which
share that edge, the resulting state will have Pβ = −1 for these two plaquettes as shown on the left
of Fig. 11.11. Recall that this eigenstate of the plaquette operator is a superposition of the flipped
and unflipped plquettes similar to that shown in Fig. 11.5 but with a minus sign between the two
terms.

Figure 11.11: Left: When a σz error is applied to a bond, the plaquettes on either side end up in
the P = −1 state Middle: A string of several σz errors. Right A closed loop of σz errors. This is
equal to the product of all of the enclosed Vα operators. In the code space, this is equal to +1.

Analogous to the above discussion, our σz error correction protocol should frequently check for
pairs of neighboring plaquettes where Pβ = −1 and if these are found the protocol should correct
the error by applying σz to the intervening edge. As above, if several σz errors are created, they
can form a string, as shown as blue bonds in the middle of Fig. 11.11. As above, one is not able to
actually detect the string, but can only see the endpoints as plaquettes where P = −1. Analogous to
the above case, if from errors, or from an attempt to correct errors, the σz error string forms a closed
loop as in the right of Fig. 11.11, this loop of σz operators is equal to the product of the enclosed Vα
operators. Since within the code space, Vα = 1, a closed loop returns the system its original state.
Another way of seeing this is to think in terms of the red loops of down spins discussed above. The
σz operators register −1 each time they intersect a red loop. On the other hand the red loops must
be closed so the number of intersections between a red loop and a dlow3e loop of the blue σz error
string in the figure must be even (since a red loop going into the region surrounded by the string
must also come out), thus forcing the product of the blue σz operators to have a value of 1.

On the other hand, if the loop of σz operators goes all the way around the handle, it then
scrambles the logical qubits. In particular, one can see that if there is a string of σz going all the
way around a handle as shown as the blue bonds in Fig. 11.12, this operator then counts the parity
of the number of red bonds going around the dual handle, as shown in the figure.
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Figure 11.12: If a string of σz goes around a handle, it measures the parity of the number of red
strings going around the dual handle.

Thus, applying the string of σz operators around the handle makes the transformation

Aee|ψee〉+Aeo|ψeo〉+Aoe|ψoe〉+Aoo|ψoo〉 −→
Aee|ψee〉+Aeo|ψeo〉 −Aoe|ψoe〉 −Aoo|ψoo〉

11.3.3 σy errors

A basis for a complete set of operators applied to a single spin is given by σx, σy, and σz (as well as
the identity). We have discussed errors created by σx and σz, but what about σy. Here we simply
use the fact that

σy = iσxσz

So if we have an error correction protocol that removes both σx and σz errors, being that the two
procedures don’t interfere with each other, we will automatically correct σy errors in the process!

11.3.4 More Comments on Errors

(1) A key point to take away here is that the only process which can cause logical erorrs is if an error
string goes all the way around one of the handles. Further (and this is a related statement) the only
operator that can distinguish the different elements of the code space from each other are string
operators that go all the way around the handles. The latter (related) statement is qutie necessary,
since being able to distinguish the different wavefunctions from each other is equivalent to causing
an error since it amounts to a measuremtn of the logical bits.

(2) As mentioned above, the toric code as method of storing quantum information is considered the
”best” quantum error correcting code. We define the quality of a code as follows: We define a time
unit as the amount of time it takes us to make a measurement of a quantity such as Vα or Pβ . Then
we assume there is some rate of errors being introduced to they underlying physical bits (the spins)
per time unit. Given these parameters, the toric code is able to reliably correct the largest possible
error rate per time unit of any known quantum error correcting code.

(3) While we have introduced the toric code on a torus (hence the name) so that it stores 2 logical
qubits of information, as mentioned above, if we go to a higher genus surface (either a closed manifold
with handles, or a surface with holes cut in it) we can store 2g qubits where g is the genus of the
surface.
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11.4 Toric Code as Topological Matter

We have introduced the toric code as a way to store quantum information — being stabilized by
an error correction protocol that actively checks the value of the vertex and plaquette operators.
However, it is quite easy to convert this story to a a realization of topologically ordered quan-
tum matter — a physical system that is described at low temperature and long wavelength by a
topological quantum field theory. In this case the physical system will be stabilized by the existence
of an energy gap to excitations and the fact that our system will be kept at low temperature.

To recast the toric code as topologically ordered matter, we simply write a Hamiltonian which
is a sum of commuting operators

H = −
∑

vertices α

Vα −
∑

plaquettes β

Pβ (11.6)

Here we have set the energy unit to unity. The Hamiltonian is made of a sum of commuting projectors
with eigenvalues ±1 so the ground state space is described by simply setting all of the Vα = 1 and
Pβ = 1. I.e., the ground state space is exactly the code space. There will be a four-fold degenerate
ground state corresponding to the four orthogonal wavefunctions in the code space. If Vα = −1 or
Pβ = −1 this corresponds to a particle excited out of the ground state.

It is sometimes more convenient to work with the projectors Ṽα and P̃β defined by Eqs. 11.2 and
11.3. Writing

H̃ =
∑

vertices α

Ṽα +
∑

plaquettes β

P̃β (11.7)

which differs from Eq. 11.6 only be a factor of 2 and an overall constant. The advantage of H̃ is
that it is a sum of commuting projection operators. This is often convenient because it means that
the ground state has energy 0 and each excitatation has unit energy.

11.4.1 Excitations

The types of particle-excitations we can have are given as follows:
(1) We can have a vertex where Vα = −1 instead of Vα = +1. We call this an “electric particle”

which we write as e.
(2) We can have a plaquette where Pβ = −1 instead of Pβ = +1. We call this a “magnetic

particle” which we write as m.
The nomenclature for these particles due to a relationship with lattice gauge theories which we

will discuss below.
Since vertex defects e’s are produced in pairs, and can be brought back together and annihilted

in pairs, we know we must have

e× e = I

Similarly since plaquette defects m are produced in pairs, and can be brought back together and
annihilated in pairs we must also have

m×m = I

We might then wonder what happens if we bring together a vertex and a plaquette defect. They
certainly do not annihilate, so we define another particle type, called f , which is the fusion of the
two

e×m = f

We then have

f × f = I

which we can see by associativity and commutativity

f × f = (e×m)× (e×m) = (e× e)× (m×m) = I × I = I
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These are the only particle types there are. Note that they form a closed set under the fusion rules.
There are no non-abelian fusions here so we assume we have an abelian model of some sort.

Note that there are exactly four particle types (including the identity), and there are exactly
four ground states!

The full fusion relations are given by

× I e m f
I I e m f
e e I f m
m m f I e
f f m e I

11.4.2 Braiding Properties

e is a boson

Let us first consider the e particles. These are both created and moved around by applying σx
operators. All of the σx operators commute with each other, so there should be no difference in
what order we create, move, and annihilate the e particles. This necessarily implies that the e
particles are bosons. There are several ”experiments” we can do to sow this fact. For example, we
can create a pair of e’s move one around in a circle and reannihilate, then compare this to what
happens if we put another e inside the loop before the experiment. We see that the presence of
another e inside the loop does not alter the phase of moving the e around in a circle5.

m is a boson

Entirely analogously we can argue that m is also a boson. m is both created and moved by the
σz operator and all of these operators commute with each other. The exact same argument (here
without detail) shows us that m must be a boson.

5The experiment just described, while quite clear only tells us that e is either a boson or a fermion (since a fermion
taken in a loop all the way around another fermion also accumulates no phase since it is equivalent to two exchanges).

To determine the phase of an exchange, we are going to attempt to do a twist in a world line as in Fig. 2.5 or 8.1.
Considering Fig. 11.13

Figure 11.13: Vertices are labeled with letters and bonds are labeled with numbers.

Now suppose there is initially an e particle at position a. One experiment we can do is to apply (reading right to
left) σx1σ

x
7σ

x
6σ

x
5σ

x
4σ

x
3σ

x
2σ

x
1 . This just moves the particle starting at a around in a loop (reading right to left abgfedcba)

and brings it back to the original position. We can compare this to the following operations σx1σ
x
2σ

x
1σ

x
7σ

x
6σ

x
5σ

x
4σ

x
3 .

This instead creates a pair of e particles at positons c and d, moves the particle at d in a loop (bgfe) around c and
anihilates it with the particle at a, then finally moves the particle from e to replace the particle initially at a. This
process is precisely the twist factor process from Fig. 2.5 or 8.1. However, since the σx operators all commute, it must
also be equal to the previously described process which just moves one particle around in a loop without introducing
any twist. Hence we conclude that the e particle is a boson.
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Braiding e and m

Here is where it gets interesting. Suppose we create an e particle and move it around in a circle then
reannihilate. This is exactly the process shown in the right panel of Fig. 11.10 and is the product of
a string of σx operators. Recall that the reason this process does not accumulate a phase is because
the string of σx operators around the loop is equivalent to the product of the Pβ plaquette operators
enclosed — and in the ground state, the Pβ operators are in the +1 state. However, if there is one
m particle inside the loop, this means that one of the Pβ operators is actually in the −1 state. In
this case the phase of taking the e particle around in a loop is actually −1. So there is a phase of -1
for taking e around m.

We can check that it is precisely equivalent if we take an m particle around an e. Taking an m
around in a loop is the process shown on the right of Fig. 11.11 and is the product of a string of
σz operators. Recall that the reason this process does not accumulate a phase is because the string
of σz operators around the loop is equivalent to the product of the Vα vertex operators enclosed —
and in the ground state, the Vα operators are in the +1 state. However, if there is one e particle
inside the loop, this means that one of the Vα operators is actually in the −1 state. In this case the
phase of taking the m particle around in a loop is actually −1. So there is a phase of -1 for taking
m around e.

Properties of f , the fermion

Since f is made up of an m bound to an e, it is easy to see that taking e around f accumulates a
phase of -1 and taking m around f also accumulates a phsae of -1. More interesting is the properties
of a single f . We claim that f is a fermion. The easiest way to see this is to check its phase under
a twist as shown in Fig. 11.14

Figure 11.14: The f = e×m particle is a fermion, since e braiding around m gives a -1 sign.

Note that taking f all the way around f will result in a net + sign.

11.4.3 Modular S-matrix

We can summarize these findings with a modular Sij matrix, which lists the braiding result obtained
by taking particle i around particle j as shown in Fig.6.12. Listing the particles in the order I, e,m, f
we can write S as in

S =
1

D


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


where unitarity fixes the total quantum dimension D = 2.
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11.4.4 Flux Binding Description

We can describe the physics of the toric code phase in a flux binding description somewhat analogous
to Chern-Simons theory. Here let us define

electric particle = e = particle bound to 1 unit of electric charge
magnetic particle = m = particle bound to π units of magnetic flux
fermion = f = particle bound to 1 unit of electric charge and π units of magnetic flux

It is easy to see that this charge and flux will correctly give the +1 and -1 phases accumulated
from braiding particles.

11.5 Robustness of the Toric Code Phase of Matter – Exam-
ple of Topologically Ordered Matter

The excitation gap in of the toric code “protects” it from small perturbations and changes in the
Hamiltonian. Indeed, the phase is “robust” against any small variations in the details of the Hamil-
tonian. To see this, let us suppose we have

H = Htoric code + λδH

where H is the toric code Hamiltonian defined above, and δH is some arbitrary Hamiltonian (with
local terms only) and λ is some small parameter. The claim is that for small enough λ, the topological
properties of the phase of matter (such as the 4-fold degenerate ground state, and the exitations
with their braiding statistics) will remain unchanged.

The easiest fact that we can test is that the four ground states remain robust and unmixed by
the perturbation. To see this, let us pick some particular form for the δH such as a sum of σx on
all edges

δH =
∑
i

σxi

(we will realize that the actual form we choose won’t matter for the argument we make here). Now
let us treat δH in perturbation theory. In the absence of the perturbation, we have four ground
states |ψee〉, |ψeo〉, |ψoe〉, |ψoo〉. Then if we add the perturbation order by order to one of these
ground states, qualitatively we obtain6

|ψ̃〉 = |ψ〉+ (GδH)|ψ〉+ (GδH)2|ψ〉+ . . .

and the energy modified by the perturbing Hamiltonian is then

E = 〈ψ̃|Htoric + δH|ψ̃〉

where here G is the greens function, which includes an energy denominator at least as big as the
excitation gap ∆, so that successive terms in the expansion are smaller by order λ/∆. The point
here is that at M th order in perturbation theory, we can only generate wavefunctions that differ from
the original ground state by M applications of δH. Now recall that one cannot even distinguish the
ground state sectors from each other unless one has a string operator that wraps all the way around
the torus. Thus, the result of this calculation is identical for the four ground states out to very high
order of perturbation theory, and any splitting of the four ground state sectors (or any mixing of the
sectors) will be suppressed exponentially as (λ/∆)L which can be made arbitrarily small for a big
system. It is clear that this general argument is not specific to the particular form of δH we have
chosen.

One can go further and ask what happens to the excited particles when a perturbation is applied
to the system. Similarly, we can perform a perturbation series. Here what happens is that the

6This is a Brillouin-Wigner perturbation theory, where successive terms are rigorously λ/∆ smaller.
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particles — which started as point defects — develop a nonzero length scale. As one moves a
distance x further away from the particle, the influence of the presence of that particle decays as
(λ/∆)x. Again, if λ is small, then from a sufficiently far distance away, the particle again looks
like a point. In particular, if one particle is braided around another at a sufficient distance away, it
accumulates the expected phase that the pure toric code would have predicted. There are several
strong arguments for this. First, we can explicitly write an expression for the braiding phase and
show that the corrections do indeed drop exponentially by exactly the same arguments. Secondly,
we recall the idea of rigidity presented in section 8.4 — it is not possible that the braiding phases
in a theory change an arbitrarily small amount.

11.6 The Notion of Topological Order

The type of protection from small perturbations that we have just discovered is the basis for a very
useful definition of topological order. A topologically ordered system will have multiple degenerate
ground states when put on a surface with nonzero genus (i.e., a a torus, or a system with a hole cut
in it) which we call |ψα〉. To have topological order we should expect

〈ψi|any local operator|ψj〉 = Cδij

where C depends on the particular operator and there may be corrections that are only exponentially
small in the size of the system. In other words, the multiple ground states locally look just like each
other, but are mutually orthogonal.
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Chapter 12

Kitaev’s Generalized Toric Code:
The Quantum Double of a Group
— Lattice Gauge Theory

Kitaev constructed an ingenious way to build a topological model from an arbitrary group G on a
lattice. This is very much the generalization of the toric code, except that instead of using simple
spins on edges, we give the edges values of elements of the group. The construction is based on
lattice gauge theory, and will include the toric code as a simple example, where the group is Z2, the
group with two elements1.

We begin by defining a graph (which could be a regular lattice, or could be disordered). We
define an orientation to each edge as an arrow as given in Fig. 12.1

Figure 12.1: Part of a directed graph.

We choose a group G with group elements g ∈ G. The Hilbert space is defined by labeling edges
with the group elements g. Inverting the arrow on an edge has the effect of inverting the group
elemetn g → g−1 as shown in Fig. 12.2.

1I present this model on the “dual” graph compared to Kitaev’s presentation.
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Figure 12.2: Inverting the direction on an edge inverts the group element.

We now define a vertex operator Vα for a vertex α with all arrows pointed in as a projector
which enforces that the product of group elements around the vertex to be the identity e, as shown
in Fig. 12.3. This is the string-net vertex fusion rule.

Figure 12.3: Definition of Vα when all arrows are directed into the vertex (if a vertex is directed out,
one can invert the arrow and invert the group element). The vertex operator gives zero unless the
product of group elements around the plaquette gives the identity element e

We can then define a plaquette operator Pβ(h) to premultiply the (clockwise orientied) group
elements around a plaquette β by the group element h, as shown in Fig. 12.4.

Figure 12.4: The plaquette operator Pβ(h) premultiplies all of the clockwise oriented bonds by the
element h.

The total plaquette operator that (the one that will enter the Hamiltonian) is then defined to be

Pβ =
∑
g∈G

Pβ(g)

It is easy to see that the plaquette operator and the vertex operator commute.

Relation to toric code

How does this related to the toric code? Consider the group Z2 of two elements where we write the
two elements as {1,−1}. We can think of these as being spin up and spin down on the lattice. Since
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g = g−1 for every element we don’t need to put arrows on the lattice.

Pβ(1) = identity operator

Pβ(−1) = multiply all edges by -1. (i.e. flip all edges)

and we have
Pβ = Pβ(1) + Pβ(−1)

whereas the vertex operator is given by

Vα =

{
1 if an even number of edges are spin down
0 if an odd number

we see that (up to the constants being added which are not interesting) these are simply the toric
code vertex and plaquette operators.

The generalization of the toric code to theories built on the group Zn (group of integers under
addition modulo n) is rather straightforward, and also results in an abelian TQFT. The electric and
magentic particles then have Zn fusion rules instead of Z2 as in the toric code. We can think of this
still as being a string net — with the new string net fusion rules at the vertex being now given by
the structure of the group G.

The generalization to nonabelian groups is more nontrivial, and requires some amount of group
theory to understand. The resulting TQFT is known as the quantum double (or Drinfeld double) of
the group. The particles types of the TQFT are given by (C,χ) where C is a conjugacy class and χ
is an irreducible representation of the centralizer of the conjugacy class2. Generically one will have
nonabelian anyons. I will not go through this argument in detail. See Kitaev for more.

This model by Kitaev is essentially a lattice gauge theory. Essentially the wavefunction is given
by a unique state plus everything that is “gauge equivalent” (meaning can be obtained by plaquette
flips). Let us think in terms of the dual lattice for a moment (so plaquettes become dual-vertices and
vertices become dual-plaquettes). The sum over group elements of Pβ(h) enforces gauge invariance
of the theory at the dual vertices. The vertex operator Vα then assures there is no magnetic flux
penetrating the dual plaquette.

2Two elements g and h of a group are called conjugate if g = uhu−1 for some u in the group. A conjugacy class is
a set of elements of a group that are all conjugate to each other. A group is naturally partitioned into nonintersecting
conjugacy classes. A centralizer of an element g is the set of all elements of the group u that commute with it ug = gu.
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Chapter 13

More Generalizing The Toric
Code: Loop Gases and String Nets

The general ideas presented with the toric code can be further generalized topologically ordered
phases of matter. They key generalizations were made by Levin and Wen. Also we will discuss in
some of the language of the work of Freedman et al. And for the doubled fibonacci model, Fidkowski
et al.

A key idea is that the underlying lattice is not very crucial to the details of the toric code.
Indeed, we can write the toric code on any lattice structure and even on an irregular lattice, so it is
often useful to dispense with the lattice altogether. This simplifies a lot of the thinking and allows
us to generalize the model fairly simply. In fact it will allow us to manipulate our loop gas using
the same sort of diagrammatic algebra we have been using all along! If we want to put the model
back on a lattice at the end of the day, we can do this (we show an example in the double semion
model) although it can start to look a bit more ugly.

13.1 Toric Code Loop Gas

We start by abstracting the toric code to simply a gas of fluctuating non-intersecting loops — no
longer paying attention to a lattice. An example of a loop gas configuration is shown in Fig. 13.1

Figure 13.1: A loop gas in 2d. We can think of this as particle world-lines in 1+1 d.

Note, since this is in 2d, there are no over and under crossings — we can think about this picture
as being some sort of world-lines for particles in 1+1d.
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We can write the toric code wavefunction in the form of

|ψ〉 =
∑

all loop configs that can be
obtained from a reference
loop config

|loop config〉 (13.1)

Where the types of “moves” one can make are similar to the diagrammatic moves we have been
discussing for world lines in 2+1 d previously.

Move 1: ”Isotopy” = smooth deformation of a loop. As shown in Fig. 13.2. We have always
allowed smooth deformations in our diagrammmatic algebras.

Figure 13.2: Isotopy (Top) Off the lattice this is just deformation of a line. (Bottom) on the lattice,
this is implemented by flipping over the blue plaquettes.

Move 2: ”Adding or removing a loop”. As shown in Fig. 13.3
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Figure 13.3: Adding or Removing a loop (Top) Off the lattice (Bottom) On the lattice we flip
the shown plaquettes.

Move 3: ”Surgery” or reconnection of loops. As shown in Fig. 13.4

Figure 13.4: Loop Surgery (Top) Off lattice surgery (Bottom) On lattice, flip the shown plaquettes

We can summarize these rules with simple skein-like relations as shown in Fig. 13.5
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Figure 13.5: ”Skein” relations for the toric-code loop gas. The unity on the right of the top line
means that the amplitude in the superposition that forms the wavefunciton is unchanged (multiplied
by unity) under removal or addition of a loop.

The ground state obviously decomposes into four sectors on a torus depending on the parity of
the number of loops going around the handles of the torus.

13.1.1 Excitations of the Loop Gas

An end of a string in a loop gas corresponds to some sort of excitation (like a vertex excitation on
the lattice). However, on the lattice, the vertex excitation could be either e or f , so how do we
distinguish these off the lattice?

First we note that the string can end in many ways as shown in Fig. 13.6.

Figure 13.6: Ends of strings can be wrapped either way, and multiple times. a and b are different,
c is equivalent to b by surgery. Similarly d and e are both the equivalent to a.

However, it turns out, due to the surgery rule, that there are actually only two inequivalent
endings, a, and b from this list. To see this
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Figure 13.7: Loop equivalences. Surgery is done inside the light green circles. The final equality on
the lower right is just pulling the string tight.

We now attempt to figure out the nature of these excitations by applying the twist operator θ̂
which rotates the excitation by 2π. This rotation wraps an untwisted particle’s string into a loop as
shown in Fig. 13.8

Figure 13.8: Rotation

From these relations we can determine that the eigenvalues of the rotation operator are +1,
correpsonding to the e particle and −1 corresponing to the f particle, as shown in Fig. 13.9.
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Figure 13.9: The eigenvectors of the rotation operator θ̂

Thus, the electric particle is the superposition of a straight line and a twisted line. This may
seem surprising, because on the lattice it seems that we can make a pair of e particles flipping a
single bond, which might seem like just a straight line between the two endpoints. However, we
must also consider the possibility that the endpoint is surrounded by a loop when the defect line is
created!

The magnetic particle m can be constructed by fusing together e × f . The result should be
the same as our prior definition of the magnetic particle. Recall that the ground state should be a
superposition of no-loop and loop (with a positive sign). This is what we learned from considering
a plaquette operator to be a minimal loop. If we take a superposition with a minus sign, we get
something orthogonal to the ground state, which should be the magnetic particle, as shown in
Fig. 13.10.

Figure 13.10: The black disk is some region of our model. Forming a superposition of this region,
and this region with a loop around it, with a minus sign between the two pieces, must be orthogonal
to the ground state — it puts a magnetic excitation m in the region.

13.2 The Double Semion Loop Gas

A rather minor modification of the skein rules for the loop gas results in a somewhat different
topological phase of matter. Consider changing the rules so that each loop removal/addition, and
each surgery, incurs a minus sign. Note that these two minus signs are consistent with each other
because each surgery changes the parity of the number of loops in the system.
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Figure 13.11: ”Skein” relations for the double-semion loop gas. Each loop removal/addition and
each surgery incurs a minus sign. Note that these are the same as the Kauffman rules when we
considered semions.

Note that these rules were precisely the skein rules we used for the Kauffman invariant when we
considered semions!

From these rules we expect wavefunctions of the form

|ψ〉 =
∑

all loop configs that can be
obtained from a reference
loop config

(−1)Number of Loops|loop config〉 (13.2)

We can think of the prefactor (−1) to the number of loops, as being the wavefunction written in the
basis of loop configurations.

As with the toric code, there should be four ground states on the torus corresponding to the
different possible parities around the two handles.

13.2.1 Microscopic Model of Doubled Semions

We now turn to try to build a microscopic hamiltonian for the doubled semion loop gas. First,
however, we realize that there is a problem with constructing this on a square lattice. When
four red lines touch at a corner we cannot tell if we have a single loop or two loops (See right of
Fig.13.12). To avoid this problem we switch to using a trivalent network (the word ”lattice” is not
really appropriate, despite the fact that most people in condensd matter would call it a trivalent
lattice). The simplest trivalent network is the honeycomb.

Honeycomb’s Good

A rather trivial generalization is to change the lattice to a honeycomb as shown in Fig. 13.12. The
advantage of this structure is that loops cannot intersect as they can (at the 4-fold corner) on the
the square lattice.
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Figure 13.12: Left: Toric code on a honeycomb, loops are nonintersecting. Right: On the square
lattice loops can intersect at corners and one cannot tell if this picture represents one loop or two.

As in the previous square case, the vertex operator must assure that an even number of red
bonds intersect at each vertex, and the plaquette operator now flips all six spins around a plaquette.

In fact, any trivalent network will be suitable. In all cases the vertex operator enforces that we
are considering only loop gases – now with no self-intersections allowed. The plaquette operators
will flip all of the bonds around a plaquette, as in the toric code, but will now assign signs such that
creating or destroying a loop incurs a minus sign.

To see how this can be achieved consider Fig. 13.13. Depending on the initial state, when the
plaquette is flipped, one may or may not obtain a minus sign.

Figure 13.13: Some plaquette flips for the double semion model on the hexagon. The top line
obviously adds a loop, so should get a minus sign. The second line just stretches a loop over a
plaquette, so does not get a minus sign. The third line is a surgery so gets a minus sign. The fourth
line is a double surgery, so gets no minus sign.

One way of determining if one should or should not get a minus sign is to count the number of
red bonds touching the outside of the hexagon (sometimes called the outside ”legs”). Because red
bonds form closed loops, the number of red legs of a hexagon must be even. If the number of red
legs is a multiple of four, then one gets a minus sign in the flip.

One can thus write a plaquette operator for the hexagon as

P ′β =

 ∏
i∈ plaquette β

σxi

 (−1)
1
4

∑
j∈ legs of β (σzj+1)
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The overall Hamiltonian for this model is then

H = −
∑

vertices α

Vα −
∑

plaquettes β

P ′β

This Hamiltonian was first written down by Levin and Wen.

13.2.2 Double Semion Excitations

The addition of the sign in the surgery rule changes the effect of rotations. We now have the added
sign in Fig. 13.14

Figure 13.14: Surgery incurs a minus sign. Compare to fig. 13.7

Resulting in the effect of rotation being Fig. 13.15

Figure 13.15: Surgery incurs a minus sign. Compare to fig. 13.7

Again we can use these to give us the eigenstates of the rotation operator as shown in Fig. 13.16

Figure 13.16: Eigenstates of the rotation operator for the doubles semion model.

Thus we have two particle types with twist factors i and −i. These are right and left-handed
semions. It is interesting that we used the skein rules for a model of semions to build our loop gas,
and we got out two types of particles — Both right and left handed semions. This is perhaps to
be expected, since nowhere in our input rules did we ever break “time-reversal” or say whether the
original theory was right or left handed — it comes out to be both!

As with the toric code, there is also a magnetic particle which can be thought of as a fusion
between the left and right handed particle — or could just be considered as a superposition analagous
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to Fig. 13.10, except now with a plus sign (since the ground state now is a superposition with a
minus sign, being that a loop addition now incurs a minus sign). Thus the duouble semion model
has four particles I, φ, φ∗,m where φ and φ∗ are the right and lefthanded semions. The full fusion
rules are

× I φ φ∗ m
I I φ φ∗ m
φ φ I m φ∗

φ∗ φ∗ m I φ
m m φ∗ φ I

Quantum Doubling: We emphasize again that we started with a theory having the kauffman
rules of a model of semions (but we did not need to put in the braiding by hand) and we got out
a theory that has both right and left handed semions. This priniciple is very general. If we start
with any theory of anyons and build a quantum loop gas from it (not putting in any of the braiding
relations) we will get out the doubled theory, meaning it has both right and left handed versions of
the theory.

As mentioned above the ground state should be thought of a the positive eigenstate of the
operator shown in Fig. 13.10 (including the minus sign). Note that this combination of identity
minus the string with a prefactor of 1/D = 1/

√
2 is precisely the Ω strand (or Kirby color) of the

original semion theory (which has only two particles, the identity or vacuum, and the semion or
single string)1 If we think in three dimensions, the ground state is defined as having no flux through
any loops.

13.3 General String Net

Given our success with the loop gases, we would like to generalize the idea to more general so-called
”string-nets”. In the case of the double semion model as discussed above, we can really think of the
loops as being particle world-lines living in the plane (but with no crossings allowed). We would
like to upgrade this idea to a set of world-lines, still living in a plane, but where different types
of particles are allowed, and they can fuse and split (but again, we allow no braiding). This type
of multi-valued loop gas should look familiar from Kitaev’s generalized toric code, although the
construction here is more general still since the edge labels need not form a group.

Thus in these string net models, we allow branching of loops, and we allow strings of different
colors as shown in Fig. 13.17. We can think of this as being similar to the fusion diagrams we have
encountered before – the allowed branchings being given by the allowed fusions of the string types.
(We do not allow strings to go over or under each other though!).

Figure 13.17: A general string net, that allows branching, here with two colors.

1To check that this is indeed the Kirby color, show that a loop of this Kirby string will annihilate a flux going
through the loop as in Section 10.4, and gives D on the vacuum.
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We would like to similarly define a wavefunction to be of the form

|ψ〉 =
∑

string
nets

Φ(net config) |net config〉

where the prefactors Φ(net config) satisfy some graphical rules as shown in Fig. 13.18.

Figure 13.18: Rules for a string net. The grey regions are meant to be the same on both the left
and the right of the diagram. Figure stolen from Levin and Wen.

The meaning of these rules are as follows: The first rule is simply saying that we can deform one
of the strings without chaning the value of the prefactor Φ. The second rule says that removal of
a loop multiplies the prefactor Φ by a constant which we call the quantum dimension of the loop
da. The third rule is just our ”locality” principle — if a quantum number i enters a region, that
quantum number must also come out of the region. This rule is irrelevant in the case of teh the
toric code and the double semion theory, because loops are not allowed to branch. The final rule
is a more complicated one which allows for the possibility of making an “F-move” on a diagram –
relating the prefector on the left to a sum of prefactors of diagrams on the right. The analogue F
move in the toric code and double semion model are the second lines of Fig. 13.5 and Fig. 13.11.

It is important to note that the F -matrix used to define define the string net (last line of
Fig. 13.18) must satisfy the pentagon equations for consistency. It is crucial to note that one need
not have define any R matrices, since the string net model is defined entirely in 2d without having
any crossings of strings — so the F matrices do not have to correspond to an actual anyon theory.
The theory that results is known as a Drinfeld double or quantum double.

Note however, certain F -matrices do have corresponding R matrices which solve the hexagon
equations. In this case, it is possible to think of the string net model as being built from an
underlying anyon theory — the resuling topological theory is the simple ”double” of the underlying
anyon theory (i.e, just a right handed and a left handed copy of the theory). The ground state will
then be the D eigenstate of the Kirby color loop – which makes it fairly easy to write a Hamiltonian
on a lattice for this string net model.
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13.4 Doubled Fibonacci Model

As an example, let us try to build a string net model from from the Fibonacci anyon theory. Again
we will not put in the braiding information, we only put in the fusion algebra.

We will write the identity (or vacuum) particle as no-line and the fibonacci particle τ as a red
line, Since τ × τ can fuse to τ we expect that this loop gas will allow our (red) loops to branch. We
thus call this version of a loop gas a ”string net” (or a branching loop gas) as in Fig. 13.19.

Figure 13.19: A branching string net for the doubled Fibonacci model.

Starting with Eq. 7.2, we consider the following F -moves as shown in Fig. 13.20

Figure 13.20: Rules for building the doubled fibonacci model.

Where here φ = (1 +
√

5)/2 and (the values of these coefficients come from the values of the
F -matrix in Eq. 7.2.

We also expect to have rules of the form of Fig. 13.21
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Figure 13.21: Rules for building the doubled fibonacci model.

The first and second rules2 are results of locality. The final rule is the usual rule that a loop
can be removed and replaced by a number. This final rule also tells us that the ground state should
be a D eigenstate of the Kirby string operator — since the Kirby Ω string is a sum of 1/D times
the identity operator and d/D times a loop of τ , whose value is now d, adding a Kirby string give
1/D + d2/D = D

We can then pin down the values of d and X in these equations. To do this, we connect the
strings on the right of Fig. 13.20 to give Fig. 13.22.

Figure 13.22: Starting with Fig. 13.20 and closing strings to the right hand. The black strings should
be imagined to be red — they are drawn black so one can see what is added compared to Fig.!13.20

Using the laws above we these equations are translated to

d = φ−1 + φ−1/2X

0 = φ−1/2 − φ−1X

which we solve to obtain

X = φ1/2

d = φ−1 + 1 = φ

The fact that d = φ is not surprising being that this is the expected quantum dimension for a
Fibonacci particle.

2In fact we can prove that the tadpole rule must be zero. This is a homework problem!
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With the values we obtain for X and d, we now have a full set of rules in Fig. 13.20 and 13.21.
We can then write a ground state wavefunction of the form

|ψ〉 =
∑

all string net configs that
can be obtained from a ref-
erence config

Φ(net config) |net config〉

This looks quite similar to our above toric code loop gas, except now we allow branching string nets
instead of just loops, and also the kets have a prefactor φ. These prefactors are chosen such that
the algebraic rules described above are satisfied. I.e., removing a loop increases Φ by a factor of
d. Removing a bubble (as in the upper left of 13.21) increases Φ by a factor of X. Then F tell
us the relationship between three values of Φ where changes in the diagram are made as shown in
Fig. 13.20.

13.4.1 Excitations

As with the double-semion model we should be able to determine the quasiparticle eigenstates by
looking at how a single line can end in a defect. We claim that all possible line endings can be
reduced, by F -moves, to one of the three possible endings shown in Fig. 13.23

Figure 13.23: Possible string endings in the doubled fibonacci string net model.

Just as an example, consider the ending shown on the left of Fig. 13.24. By using an F -move, it
is reduced to a combination of the three presented above.

Figure 13.24: An example of reducing a more complicated string ending into one fo the three endings
shown in Fig. 13.23.

As in the case of the toric code and the double semion model, we can figure out the twist factors
by rotating these diagrams as shown in Fig. 13.25 and then using F -matrices to reduce the result
back to linear combinations of the same three possible endings.
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Figure 13.25: The rotation operator Θ̂ applied to the possible string endings. Then using F matrices
we reduce the results to linear combinations of the same endings.

We can write these diagrammatic equations more algebraically by

Θ̂

 a
b
c

 =

 0 φ−1 φ−1/2

1 0 0
0 φ−1/2 −φ−1

 a
b
c


The eigenvectors of this matrix are the particle types with definite twist factrors given by their
eigenvalues under rotation.

With a bit of algebra it can be shown that the eigenvalues of this matrix are given by

θ = eiπ4/5, e−iπ4/5, 1,

The first two correspond to the expected spin factors for a right-handed fibonacci anyon τ or left-
handed fibonacci anyon τ∗ (recall that we worked out the spin factor using the hexagon equation
earlier. See 8.3.). The final possibility represents the fusion of these two objects τ×τ∗. Indeed, these
are all of the possible particle types in the doubled-fibonacci theory. Since the theory was based on
a full anyon theory with braiding fully defined, we expected to get both a right- and left-handed
copy of the Fibonacci model and indeed we did. (We never broke time reversal in the definition of
the model so we should get both hands of the theory!).

13.4.2 Ground State Degeneracy

It is a bit tricky to figure out the ground state degeneracy here. Using the above skein rules, any
configuration can be reduced to a linear combination of four simple configuation – corresponding to
the possibilities of having a loop, or not having a loop, around each handle. An example of reducing
two loops around a handle to a linear combination of zero and one loop is given in Fig. 13.26
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Figure 13.26: Reducing two loops around a handle to a linear combination of one loops and zero
loops.

13.5 Add details of Levin Wen Model on the lattice?

13.6 Appendix: S-matrix for Fibonacci Anyons

Without doing much work, we can figure out the S-matrix for Fibonacci anyons. There are only 2
particles in the theory I and τ . Further we know that the quantum dimension of τ is φ = (1+

√
5)/2.

Thus, the total quantum dimension is D2 = 1 + φ2 = 2 + φ and the S matrix must be of the form

S =
1

D

(
1 φ
φ y

)
where the constraint of unitarity immediately fixes y = −1.

We can check this by using F and R matrices to determine the value of two linked rings explicitly
as shown in Fig. 13.27

Figure 13.27: Calculating the nontrivial element of the Fibonacci anyon S-matrix.
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Chapter 14

Introduction to Quantum Hall —
The Integer Effect

The fractional quantum Hall effect is the best studied of all topologically ordered states of matter.
In fact it is the only system which is extremely convincingly observed to be topologically ordered
in experiment1. We will thus spend quite a bit of time discussing quantum Hall effects in detail.
Before we can discuss fractional quantum Hall effect we need to discuss the basics, i.e., the integer
quantum Hall effect.2

14.1 Classical Hall Effect

In 1879 Edwin Hall discovered that when a current is run perpendicular to a magenetic field, a voltage
is generated perpendicular to both field and current, and proportional to both (See Fig. 14.1). This
voltage is now known as the Hall voltage. Drude theory, treating a metal as a gas of electrons,
explains the Hall voltage as being a simple result of the Lorentz force on electrons.

Figure 14.1: Hall voltage VH perpendicular to both magnetic field and current, and proportional
to both. Also one measures a longitudinal voltage in the same direction as the current, roughly
independent of magnetic field.

1There are a good number of other contenders now. Probably the most convincing other case is 3HeA phase 2d
films. Although very few experiments have actually been done on this. Other strong contenders include Majorana
wires, certain exotic superconductors, and a few frustrated quantum spin systems.

2There is quite a bit further to be learned from integer quantum Hall effect as this is the simplest case of a so-called
topological insulator. While there are obviously strong overlaps between the ideas of topological insulators and our
explorations of topological quantum field theories, this connection would take us too far afield, so we defer this for
another time.
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14.2 Two-Dimensional Electrons

In the late 1960s and early 70s semiconductor technology made it possible to do experiments with
electrons that live in two dimensions. First MOSFETs3 and later quantum wells were used to
provide a confining potential for electrons in one direction, leaving motion only in the two remaining
dimensions. As an example we will consider a quantum well structure, which is layered in the ẑ
direction as shown in Fig. 14.2.

Figure 14.2: Top A quantum well structure is a quasi-two-dimensional layer of one semiconductor
sandwiched between two other semiconductors. Bottom The potential felt by an electron is like
a particle in a box. If the energy is low enough, the electron is stuck in the lowest particle-in-box
wavefunction ϕ0(z) giving a total wavefunction Ψ = ϕ0(z)ψ(x, y) and having strictly two dimensional
motion.

The electron moving in the z-direction experiences a strong confinement, such as the particle-in-
box confinement shown in Fig. 14.2. The wavefunction of the electron then takes the form ϕ(z) in
the z-direction. If the energy (i.e. the temperature and coulomb interaction) is very low compared
to the gap between the particle-in-box states, then the electron is frozen in the lowest particle-in-box
state ϕ0(z) and the total wavefunction of the electron is Ψ(x, y, z) = ϕ0(z)ψ(x, y) leaving only the
x and y degrees of freedom. Thus we have a strictly two dimensional electron.

More recently two dimensional electronic systems have also been observed in single-layer atomic
systems such as graphene. (Although even then, the same argument needs to be used — that the
motion of the electron is “frozen” in the z-direction and only has freedom to move in x and y).

14.3 Phenomenology of Integer Quantum Hall Effect

In 1980 Klaus von Klitzing, having just left a postdoctoral position at Oxford, went to a new job at
Grenoble carrying some new high mobility4 two dimensional electron samples grown by (now Sir)
Michael Pepper at Cambridge. He put them in high magnetic field and cooled them down to a few
degrees Kelvin temperature where he discovered something very different from what Hall had seen
a hundred years earlier. An example of this type of experiment is shown in Fig. 14.3.

3Metal Oxide Semiconductor Field Effect Transistors
4Meaning very clean
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Figure 14.3: An example of an Integer Quantum Hall experiment. The plateaus in VH are such that
VH = (1/i)(h/e2)I with i the integer displayed over the plateau — where h is Planck’s constant and
e is the electron charge. At the same magnetic field where a plateau occurs in VH the longitudinal
voltage drops to zero. Note that at very low field, the Hall voltage is linear in B and the longitudinal
voltage is independent of B, as would be predicted by Drude theory.

At low magnetic field, the longitudinal voltage is relatively constant whereas the Hall voltage is
linear in magnetic field — both of these are precisely what would be predicted by Drude theory.
However, at high magnetic field, plateaus form in the Hall voltage with concomitant zeros of the
longitudinal voltages. The plateaus have precisely the value

VH =
1

i

h

e2
I

where I is the current, h is Planck’s constant and e is the electron charge. Here i is an integer as
shown in the figure. Or equivalently we have

RH =
1

i

h

e2
= 1/GH (14.1)

with RH the Hall resistance where GH the Hall conductance. Where we have plateaus in the Hall
voltage, we have zeros in the longitudinal voltage and resitstance

RL = 0

which implies we have a dissipationless state — similar to a superfluid. These statements become
increasingly precise as the temperature is lowered.

We should remember that conductivity and resistivities are both 2 by 2 matrices and are inverses
of each other5. In this quantum Hall state, these matrices are both purely off-diagonal. Thus we have
the interesting situation that both the diagonal part of the conductivity (the longtidinal conductivity)
is zero, and the diagonal part of the resistivity (the longitudinal resistivity) is also zero.

The plateau RH = (1/i)(h/e2) occurs near the magnetic field such that the so-called filling
fraction ratio

ν =
nφ0

B
5These are 2 by 2 matrices because they relate the vector electric field E to the vector current j
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is roughly the integer i. Here n is the 2d electron density and φ0 is the quantum of magnetic flux

φ0 = h/e

When von Klitzing discovered this effect he noticed mainly that the plateaus in the Hall resistance
are extremely precisely given by Eq. 14.1 and the plateaus are extremely flat. He submitted his
manuscript to PRL claiming that this would be a useful way to make a new resistance standard 6,7.
In fact the result has been shown to be precise and reproducible to better than a part in 1010. This
is like measuring the distance from London to Los Angeles to within a fraction of a millimeter. This
accuracy should be extremely surprising. The samples are dirty, the electrical contacts are soldered
on with big blobs of metal, and the shape of the sample is not very precisely defined.

14.4 Transport in Zero Disorder

In strictly zero disorder it is easy to show that the longitudinal resistance is zero and the Hall
resistance is precisely linear in the magnetic field. This is a simple result of Galilean/Lorentz
invariance. Suppose we have a two dimensional disorder-free system of electrons in the x, y plane
and a magnetic field B = Bẑ in the ẑ-direction perpendicular to the plane. The Lorentz force on an
electron will be

F = −e (E + v ×B)

If we then boost into a moving frame where

v =
E× ẑ
|B|

in this new frame we obtain F = 0, so the ground state must be stationary in this frame.
Then we boost back into the lab frame, and we obtain a current

j = −env =
−enE× ẑ
|B|

thus giving us

RL = 0

RH =
B

ne

which is exactly the prediction that Drude would have made for a disorder free system.
While this calculation is rigorous even with the effects of quantum mechanics and interactions,

it relies on having strictly zero disorder.

14.5 The Landau Problem

In order to understand quantum Hall effect, we should start by understanding the physics of a charge
particle in a Magnetic field — a problem first studied by Landau. For simplicity we assume our
electrons are spinless (indeed, the spins tend to be polarized by the magnetic field anyway.) We will
consider an electron in the x, y plane, with a magnetic field of magnitude B in the z direction. We
will assume the system is periodic in the y direction with length Ly, but opern in the x direction,
with length Ly (i.e., we are working on a cylinder actually). We will eventually consider a small

6The referee (who we now know was Steve Girvin) mentioned that at the time they already had resistance standards
which were better than his initial measurement of one part in 106, but proposed would be a uniquely good measurement
of the ratio h/e2. The paper was resubmitted proposing to use the effect as a precise measurement of the fine structure
constant. The paper was accepted and the Nobel prize for von Klitzing followed in 1985.

7The quantum Hall effect is used as a metrological resistance standard, and it is proposed that the Ohm will soon
be defined in terms of the result of quantum Hall experiments.
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amount of disorder (as we showed above this is crucial!), but for now let us assume the system has
no disorder.

The Hamiltonian is

H0 =
(p + eA)2

2m

where e and m are the electron charge and mass, and A is the vector potential. We then have to
choose a particular gauge to work in. Later on we will want to work in symmetric gauge (there is a
homework problem on this!) For now we will work in the so-called “Landau” gauge

A = Bxŷ

which does indeed satisfy

B = ∇×A = Bẑ

as desired. The Hamiltonian is thus

H0 =
1

2m

(
(p2
x + (py + eBx)2

)
where pj = −i~∂j .

The Hamiltonian is then translationally invarient in the ŷ direction, so we can write the wave-
function as

ψ(x, y) = φky (x)eikyy

and due to the periodicity in the y-direction, we have

ky =
2πn

Ly

for some integer n. Plugging in this form gives a familiar Schroedinger equation(
p2
x

2m
+

1

2
mω2

c (ky`
2 + x)2

)
φky (x) = Eφky (x) (14.2)

where ` is the so-called magentic length

` =
√

~/(eB)

and ωc is the cyclotron frequency

ωc = eB/m.

We recognize this Schroedinger equation as being just a harmonic oscillator where the center of
the harmonic potential is shifted to x = −ky`2. Thus the eigenenergies are of the usual harmonic
oscillator form

Ep = ~ωc
(
p+

1

2

)
(14.3)

where p is an integer. These quantized energy states are known as Landau levels. The form of the
wavefunction will be harmonic oscillator on the x direction and plane-wave in the y-direction as
shown in Fig. 14.4.
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Figure 14.4: The shape of the wavefunction of an electron in a magnetic field using Landau gauge.
The form of the wavefunction will be harmonic oscillator on the x direction and plane-wave in the
y-direction

Fixing the energy by fixing p in Eq. 14.3, the value of ky is quantized in units of 2π/Ly. Further,
the position x ranges over Lx, meaning that ky ranges over Lx/`

2. Thus the total number of possible
values of ky is

Number of states in a Landau level =
LxLy
2π`2

=
Area B

φ0

where
φ0 = h/e

is the magnetic flux quantum. Thus, the number of states in a Landau level is equal to the number
of magnetic flux quanta of magnetic field incident on the plane.

We can plot the density of states for electrons in a magnetic field, as shown in Fig. 14.5

Figure 14.5: The density of states for spin-polarized (or spinless) electrons in a magnetic field. At
energies equal to half-odd integer multiples of the cyclotron frequency, there is a spike of degenerate

states, with degeneracy Area B
φ0 .

When there are multiple electrons present, we define the filling fraction to be the number of
these Landau levels which are completely filled with electrons.

ν =
nφ0

B

where n is the density of electrons. Or equivalently we can write a relationship between the number
of electrons in the system, Ne and the number of magnetic flux Nφ

Ne = νNφ
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Incompressility of Integer Number of Filled Landau Levels:

When some integer number of Landau levels is filled, the chemical potential lies in the middle of
the gap between the filled and unfilled states — analogous to a band insulator. In this case the
the system is incompressible. This means there is a finite energy gap to creating any excitations
— i.e., all excitations must involve removing an electron from a filled Landau level, promoting it
above the energy gap to place it in an empty state. In particular excitations which change the
density (compressions) are gapped. Further, at this precise integer filling fraction, the longitudinal
conductivity is zero, and the Hall conductivity is precisely the quantized value RH = ne/B =
(1/i)(h/e2).

If we were to control the chemical potential in the experiment, we would have our answer as
to why the Hall conductivity shows plateaus — for any value of the chemical potential, except for
the special values µ = (~ωc)(p + 1/2) with integer p, the electron number is pinned to N = Nφ/i
where i is an integer, precisely i Landau levels are filled, there is a gap to excitations, and the Hall
conductivity would be precisely quantized. However, in real experiments, it is actually the density
that is fixed — which means that generically the chemical potential does sit in the degenerate band
µ = (~ωc)(p+ 1/2) for some integer p and generically the filling fraction is tuned continuously and
is not quantized.

Thus the incompressible state is very fine tuned. It occurs only for a very precise (integer) value
of the filling fraction —for all other values of the filling fraction, some Landau level is partially filled
and (at least neglecting interactions) the system would be extremely compressible, as there are many
zero energy excitations corresponding to rearrangements of the electrons (which orbitals are filled
and which are empty) within the partially filled Landau level.

While the system does have a gap under fine tuning, we will need something that will preserve
the special properties of the fine tuned state even when we move away from the filling fraction which
is precisely an integer. What does this is actually disorder — it will provide a reservoir for excess
electrons (or holes) added (or subtracted) from the integer filled state. With disorder, the special
properties of the quantized state are made robust.

What Does Disorder Do?

As mentioned above, we will need to add disorder to the system in order to achieved quantized
Hall effect. What is the effect of this disorder? Disorder will spread out the energies in the band by
having some regions where the potential is higher than average and some regions where the potential
is lower than average. This spreads the sharp peak in the density of states into a broader band, as
shown in Fig. 14.6.

Figure 14.6: The density of states for spin-polarized (or spinless) electrons in a magnetic field with
disoder. The Landau bands are spread out, with localized eigenstates in the tails and extended
eigenstates near the middle.
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Since current tends to flow perpendicular to potential gradients (i.e., it is hall current), eigenstates
tend to follow contours of constant potential. Thus many of the eigenstates at high and low energy
will be trapped in local minima or maxima — isolated in a hill or valley and circling the peak or
bottom. The result is that the eigenstates in the edge of the band experience localization, whereas
(at least some) eigenstates near the center of the band as shown in Fig. 14.6.

When the chemical potential is anywhere in the localized states, then at low enough temperature,
the electrons cannot move at all. Although there are states at this energy, they are all localized
and electrons cannot jump between them. Hence we expect in this case that the DC dissipitave
conductance goes to zero. (For dissipitive conductance to occur, an electron has to be excited up
to the next delocalized band.) The state remains incompressible for filling fractions even away from
the precise integer value of ν.

What is not obvious is (a) that the Hall conductance should be precisely quantized, and (b) that
we should have Hall conductance at all.

14.6 Laughlin’s Quantization Argument

In 1981, shortly after von Klitzing’s discovery of quantum Hall effect, Bob Laughlin8 presented an
argument as to why the Hall conductance must be precisely quantized. The argument relies on
gauge invariance. We first need to present a key theorem which comes from gauge invariance.

14.6.1 Byers and Yang Theorem

Consider any system (made of electrons and protons and neutrons) with a hole cut in it, as in
Fig. 14.7.

Figure 14.7: The Byers-Yang theorem states that threading any integer number of flux quanta
through a hole in a system leaves the eigenspectrum unchanged.

Now put some magnetic flux Φ through the hole in such a way that the flux does not touch any
piece of the system, but just goes through the hole. By the Aharanov-Bohm effect, the charged
particles in the system cannot detect the flux if it is an integer multiple of the flux quantum φ0. In
fact the statement can be made stronger: The eigenspectrum of the system is precisely the same when
an integer number of flux is inserted through the hole. This result is known as the Byers9-Yang10

theorem (1961).

8Laughlin would later go on to win a Nobel prize for his explanation of fractional quantum Hall effect, which we
will start discussing in the next chapter.

9Nina Byers was just starting as an assistant professor at UCLA when she proved this theorem. In the late 60s
and early 70s she oscillated between Oxford (Somerville college) and UCLA, but eventually converged to UCLA. She
told me personally that she regretted leaving Oxford. She passed away in 2014.

10Yang is C.N.Yang, who won a Nobel prize in 1957 along with T. D. Lee for his prediction of parity non-conservation
of the weak interaction.
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To prove this theorem we use gauge invariance. One is always free to make a gauge transformation

A′(r) = A(r) + (~/e)∇χ(r)

Ψ′(r1, . . . rN ) =

 N∏
j=1

eiχ(rj)

Ψ(r1, . . . rN )

which leave the physical electromagentic field completely unchanged and changes the gauge of the
wavefunction. The meaning of gauge invariance is that if we have a solution to the Schroedinger
equation for Ψ and A at energy E, then we also have a solution at the same energy E for Ψ′ and
A′.

When the physical geometry we are concerned with is non-simply connected, we can make gauge
transforms which are non-single-valued, such as

χ(r) = mθ(r)

wnere θ is the angle around the center. Making this gauge transform leaves the eigenspectrum of
the system unchanged. However, the flux enclosed

Φ′ =

∮
A′ · dl =

∮
A · dl + 2mh/e = Φ +mφ0

has changed by an integer number of flux quanta.

14.6.2 Quantization of Hall Conductance

Laughlin’s argument applys the Byers-Yang theorem to the Quantum Hall case. Consider a two
dimensional electron system cut in an annulus11 as shown in Fig. 14.8.

Figure 14.8: Insertion of Flux Φ(t) through the center of an annulus of two-dimensional electrons
in a uniform magnetic field. Adiabatically increasing the flux creates an electric field in the annular
direction which then, by the Hall conductivity, creates current in the radial direction.

Here we put the entire system in a uniform magnetic field (so that we have Landau levels) and
we arrange such that the chemical potential is in the localized part of the band so that at low enough
temperature the longitudinal (dissipitive) conductivity is zero.

11For studying current flow in magnetic fields, the annulus is knowni as ”Corbino” geometry, after O. M. Corbino,
who studied this in 1911.
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We then adiabatically insert an additional flux Φ(t) through the center of the annulus and turn
it on slowly from zero to one flux quantum. Due to the Faraday’s law, an EMF is generated around
the annulus

E = −dΦ

dt
=

∮
dl ·E

If there is a Hall conductance, GH then this generates a radial current

J = GHE

As we slowly increase the flux by an amount ∆Φ we have a total charge ∆Q moved from the inside
to the outside of the annulus given by

∆Q =

∫
dtJ(t) = GH

∫
dt E(t) = −GH

∫
dt
dΦ(t)

dt
= −GH∆Φ

Now the key to the argument is the Byers-Yang theorem. If we choose ∆Φ = φ0 a single flux
quantum, then the final eigenstates of the system must be precisely the same as the initial eigenstates
of the system. Since we have changed the system adiabatically (and there is a gap to excitations
when the states at the chemical potential are localized due to disorder) the system must stay in the
ground state12 and the insertion of the flux quantum must take us from the ground state back to
the very same ground state. The only thing that might have changed during this process is that
an integer number p of electrons may have been transferred from the inside of the annulus to the
outside. Thus we have

−pe = ∆Q = −GH∆Φ = −GHφ0 = −GH(h/e)

Thus we obtain the quantized Hall conductance

GH = p(e2/h)

with p an integer!

Thus we see that the Hall conductance experiment is really some sort of ”spectroscopy” to
measure the charge on the electron! (hence the precision of the effect).

14.6.3 The Halperin Refinement

Although we have shown the the Hall conductance must be quantized, what we have not shown is
that it must be nonzero! Afterall, since the chemical potential is in a localized band, it looks like
electrons simply can’t move at all.

A more careful argument was made by Halperin immediately after Laughlin’s initial work. The
key here is to think of a geometry where much of the system is free of disoder. In particular we
consider the geometry shown in Fig. 14.9.

12There is a subtlely here. With disorder, there are actually low energy excitations, but they require very long
range hops of localized electrons which cannot be made. So the system is ”locally” gapped.
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Figure 14.9: The Halperin geometry. The same as the Laughlin annulus geometry, except here we
add disorder only in part of the annulus. We have also shown (dark blue) a single particle eigenstate
in the clean region, which forms a circle (with a small gaussian cross-section).

Here, the disorder is confined to only part of the annulus, the inner-most and outer-most regions
of the annulus being disorder-free. Within the clean regions we can solve for the eigenstates using
symmetric gauge (this is a homework problem, but we will also discuss further in the next chapter).
The eigenstates are indexed by their angular momentum m, and in the Lowest Landau level, for
example, they are given by

ϕm ∼ zme−|z|
2/(4`2)

where z = x+iy is the complex representation of the position. A radial cut of one of these eigenstates
gives a gaussian wavepacket13 at radius `

√
2m— very similar to what we had in Landau gauge, but

now these eigenstates are indexed by angular momenta instead of linear momenta, and they go
around in circle instead of going straight.

Let us imagine the chemical potential above the middle of a Landau level (say above the middle
of the lowest Landau level) until it sits in a localized piece (at least within the disordered region the
wavefunctions are localized). Since this is above the middle of the Landau level, the Landau level is
completely filled in the clean region.

Now, let us track what happens to the eigenstates as we change the flux through the hole. If the
flux through the hole is an integer (in units of the flux quantum φ0), then the angular momentum
is also an integer. However, if the flux through the hole is an integer plus some fraction α, then
the angular momentum quantum number must also be an integer plus α. Thus, as we adiabatically
increase the flux by one flux quantum, we adiabatically turn each m eigenstate to m+ 1. Thus we
are continuously pushing out electrons to the next further out radial wavefunction.

Now when we are in the disordered region of the annulus, we do not know any details of the
shape of the eigenstates. All we know is that after insertion of a full flux quantum we must get back
to the same many body eigenstate that we started with. However, we also know that an additional
electron is being pushed into the disordered region from the clean region on the inside, whereas an
electron is also being extracted into the clean region on the outside. Thus the disordered region must
also convey exactly one electron (per Landau level) when a flux quantum is inserted adiabatically.

This argument pins down that the Hall conductance is not zero, but is h/e2 times the number
of Landau levels that are filled (in the clean regions).

13Just find the maximum of |ψm|2.
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Chapter 15

Introduction to Fractional
Quantum Hall Effect

Having just determined that the quantum Hall effect is some sort of spectroscopy on the charge of
the electron, it was particularly surprising in 1982 when Dan Tsui and Horst Stormer1 discovered
quantum Hall plateaus at fractional values of the filling fraction

ν = p/q

with Hall resistance

RH =
h

e2

q

p

with p and q small integers. This effect is appropriately called the Fractional quantum Hall effect.
The first plateau observed was the ν = 1/3 plateau2 , but soon thereafter many more plateaus

were discovered3. The Nobel prize for this discovery was awarded in 1998.
Given our prior gauge invariance argument that quantum Hall effect is measuring the charge of

the electron — and that this is enforced by the principle of gauge invariance, it is hard to understand
how the fractional effect can get around our prior calculation.

Two things must be true in order to have quantized Hall effect

(a) Charge must fractionalize into quasiparticles with charge e∗ = e/q, for example
in the case of ν = 1/q.

(b) The ground state on an annulus must be degenerate, with q different ground
states (in the case of ν = 1/q) which cycle into each other by flux insertion through
the annulus.

We should not lose sight of the fact that these things are surprising — even though the idea of
degenerate ground states, and possibly even fractionalized charges, is something we have perhaps
gotten used to in our studies of topological systems.

Given the Laughlin argument that inserting a flux though the annulus pumps an integer number
of electrons from one side to the other, it is perhaps not surprising that fractional quantization of
the Hall conductance must imply that a fractional charge has been pumped from one side of the
annulus to the other (hence point (a) above). The way we get around the gauge invariance argument
that implies the charge must be an integer is by having multiple degenerate ground states. In our
argument for the Integer quantum hall effect we used adiabaticity, and the existence of a gap, to
argue that we must stay in the ground state. However when there are multiple ground states (point

1Stormer had recently invented the idea of “modulation doping” semiconductors, which is a technique to obtain
extremely clean two dimensional electron systems — a prerequisite for observing fractional quantum Hall effect.

2The legend is that Tsui very presciently looked at the data the moment it was taken and said ”quarks!” realizing
that the fractional plateau implied charge fractionalization!

3Over 60 different fractional quantum Hall plateaus have been discovered!
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(b) above) we can only argue that we must always be in some ground state. Thus, for example, in
the case of ν = 1/3 where there are three ground states, the cycle of inserting flux is

insert φ0−→ |GS1〉
insert φ0−→ |GS2〉

insert φ0−→ |GS3〉
insert φ0−→ |GS1〉

insert φ0−→

where GS here means ground state. Each insertion of flux pumps e∗ = e/3 charge from one side to
the other. After three fractionally charged particles move from one side to the other, this amounts to
a single electron being moved from one side to the other, and we return to exactly the same ground
state as we started with.

So now we need only figure out how it is that this unusual situation of fractionalized charges, and
multiple ground states (indeed, this situation of a topological quantum field theory!) comes about.

Want an incompressible state: Ignore disorder for now

We need to understand how we have an incompressible state when a Landau level is partially filled.
As with the integer case, disorder will be important in allowing us to have plateaus of finite width,
but the fundamental physics of the fracitonal quantum Hall effect comes from the fact that we have
a gapped incompressible systems at a particular filling fraction. We can thus choose to consider a
system free from disorder with the understanding that localization of excitations will be crucial to
actually observe a plateau.

Why This is a Hard Problem: Massive Degeneracy

We restrict our attention to a clean system with a partially filled (say, 1/3 filled) Landau level. If
there are Ne electrons in the system, there 3Ne available single electron orbitals in which to place
these electrons. Thus in the absence of disorder, and in the absence of interaction, there are(

3Ne
Ne

)
∼ (27/4)Ne

multiparticle states to choose from — and all of these states have the same energy! In the thermo-
dynamic limit this is an insanely enormous degeneracy4. This enormous degeneracy is broken by the
interaction between the electrons, which will pick out a very small ground state manifold (in this
case being just 3 degenerate ground states), and will leave the rest of this enormous Hilbert space
with higher energy.

15.0.1 Our Model Hamiltonian

Since we are to neglect disorder, we can write the Hamiltonian for our system of interacting electrons
as

H =
∑
i

(pi + eA(ri))
2

2m
+
∑
i<j

V (ri − rj)

where the first term is just the kinetic energy of the electrons in the magnetic field, as discussed in
Section 14.5, and the second term is the interaction beween the electrons, which we might take to
be of 1/r Coulomb form, or perhaps a modified Coulomb form depending on the physical situation
we are concerned with5.

Now we have already analyzed the first term in this Hamiltonian back in Eq. 14.5, resulting
in the structure of Landau levels. If we further assume that the cyclotron energy ~ωc (the energy
gap between Landau levels) is very large compared to the interacton energy scale V , then we can
assume that there is very little effect of higher Landau levels — the interaction simply breaks the
massive degeneracy of the partially filled Landau level without mixing in the higher Landau levels

4For example, if our system of size 1 square cm has a typically 1011 electrons in it, the number of degenerate states
at ν = 1/3 is roughly 10 to the 100 billion power! Way way way more than the number of atoms in the universe.

5For example, we could have a screened Coulomb potential if there are polarizable electrons nearby. The finite
width of the quantum well also alters the effective Coulomb interaction.
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(or putting holes in any completely filled Landau levels below the chemical potential). Another way
to say this is that we are pursuing degenerate perturbation theory. The kinetic energy is completely
determined (we just fill up Landau levels from the bottom up) and interaction only plays a role to
break the degeneracy of the partially filled level.

The effective Hamiltonian is then just

H =
∑
i<j

V (ri − rj)

where the Hilbert state is now restricted to a single partially filled Landau level. But here it might
look like we are completely stuck. We have an enormously degenerate Hilbert space — and we have
no small parameter for any sort of expansion.

Laughlin’s insight was to simply guess the correct wavefunction for the system!6. In order to
describe this wavefunction we need to have a bit more elementary information about wavefunctions
in a magnetic field (some of this is a homework problem!).

15.1 Landau Level Wavefunctions in Symmetric Gauge

We will now work in the symmetric gauge where the vector potential is written as

A =
1

2
r×B

where the magnetic field is perpendicular to the plane of the sample. (We can check that this gives
∇×A = B.

In this gauge, lowest Landau level wavefunctions (as mentioned before in section 14.6.3) take the
form7

ϕm(z) = Cmz
me−|z|

2/(4`2) (15.1)

where
z = x+ iy = reiθ

is the complex representation of the particle coordinate, ` =
√

~/eB is the magnetic length, Cm
is a normaliztion constant and here m ≥ 0 is an integer. The most general lowest Landau level
wavefunction for a single particle would be f(z) times the gaussian factor for any analytic function
f .

Note that the higher Landau level wavefunctions can all be obtained by application of a raising
operator (which involve some prefactors of z∗) to the lowest Landau level wavefunctions. This
algebra is discussed in a homework problem, so we will not belabor it here. A key point is that all
Landau levels are effectively equivalent and one can exactly map any partially filled higher Landau
level is equivalent to a partially filled lowest Landau level with an appropriately modified interaction.
As such, we will focus exclusively on the lowest Landau level from here on.

Let us take a close look at the structure of the wavefunctions in Eq. 15.1. First we note that ϕm
is an eigenstate of the angular momentum operator L̂ (centered around the point z = 0)

L̂ ϕm = ~mϕm

Secondly we should examine the spatial structure of ϕm. Writing |φm|2 ∼ r2m exp(−r2/(2`2)) and
differentiating with respect to r we find that the maximum of this function is at radius

r = `
√

2m

Thus the function roughly forms a gaussian ring at this radius. The area enclosed by this ring is
πr2 = 2πm`2 = mφ0/B, which contains precisely m quanta of magentic flux.

6Decades of experience doing complicated perturbation theory led many people off on the wrong path — towards
complicated calculations — when they should have been looking for something simple!

7We will ignore the spin degree of freedom as before.

Topological Quantum page 157



15.2. LAUGHLIN’S ANSATZ

15.1.1 What We Want in a Trial Wavefunction

In building a trial wavefunction for fractional quantum Hall effect, several rules will be important
to follow

(1) Analytic Wavefunction: The wavefunction in the lowest Landau level should be comprised
of single particle wavefunctions ϕm — that is, it must be a polynomial in z (with no z∗’s) times the
gaussian factors. In other words we should have

Ψ(r1, . . . , rN ) = (Polynomial in z1, . . . zN )

N∏
i=1

e−|zi|
2/(4`2)

(2) Homogeneous in Degree: Since the Hamiltonian is rotationally invariant, we can expect
that the eigenstates will be angular momentum eigenstates. Since the L̂ operator counts powers of
z, this means that the (Polynomial in z1, . . . zN ) part of the wavefunction must be homogeneous of
degree.

(3) Maximum Power of zi is Nφ = Ne/ν: Since the radius of the wavefunction is set by the
exponent of zm, the full radius of the quantum Hall droplet is given by the largest power of any z
that occurs in the wavefunction. Since the area enclosed by the wavefunction should correspond to
Nφ fluxes, this should be the maximum power.

(4) Symmetry: The wavefunction should be fully antisymmetric due to Fermi statistics, as-
suming we are considering fractional quantum Hall effect of electrons. It is actually very useful
theoretically (and does not seem out of the question experimentally!8) to consider fractional quan-
tum Hall effect of bosons as well — in which case the wavefunction should be fully symmetric.

Even given these conditions we still have an enormous freedom in what wavefunction we might
write down. In principle this wavefunction should depend on the particular interaction V (r) that
we put in our Hamiltonian. The miracle here is that, in fact, the details of the interaction often do
not matter that much!

15.2 Laughlin’s Ansatz

Laughlin simply guessed that a good wavefunction would be of the form9

Ψ
(m)
Laughlin =

∏
i<j

(zi − zj)m
N∏
i=1

e−|zi|
2/(4`2)

The proposed wavefunction is properly analytic and homogeneous in degree. The maximum power
of the wavefunction is

Nφ = m(N − 1)

thus corresponding to a filling fraction

ν = N/Nφ → 1/m in large N limit

And the wavefunction is properly antisymmetric for m odd, and is symmetric for m even.
It is worth noting that for m = 1 the Laughlin wavefunction corresponds to a filled Landau level

— that is, a single slater determinant filling all of the orbitals from m = 0 to m = Nφ = N − 1.
(This is a homework problem!)

8While no one has yet produced fractional quantum Hall effect of bosons, proposals for how to do this with cold
atoms or interacting photons are plentiful, and it seems very likely that this will be achieved in the next few years.

9Note that this wavefunction is not normalized in any sense. The issue of normalization becomes important later.
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It is also worth noting that the density of the Laughlin wavefunctio is completely constant in a
disk up to its radius (and then the density falls quickly to zero). This constancy of density is proven
by plasma analogy (which is another homework problem)10.

Why should we think this wavefunction is particularly good? As two particles approach each
other, the wavefunction vanishes as m powers. This means that the particles have low probability
of coming close to each other — thus keeping the interaction energy low.

Being that the polynomial in each variable is of fixed total degree Nφ, the polynomial has a fixed
number of analytic zeros. For the Laughlin wavefunction all of these zeros are on the positions of
the other particles – thus the wavefunction arranges that the particles stay as far away from each
other as possible in some sense.

15.2.1 Exact statements about Laughlin Wavefunction

It turns out that the Laughlin wavefunciton is actually the exact ground state of a special inter-
particle interaction11.

Bosons at ν = 1/2

Consider a system of bosons with the interparticle interaction given by12

V = V0

∑
i<j

δ(ri − rj)

with V0 > 0. This is a non-negative definite interaction.

It is clear that the ν = 1/2 Laughlin state of bosons Ψ
(m=2)
Laughlin has zero energy for this interaction,

since there is zero amplitude of any two particles coming to the same point. Further, however,
the Laughlin state is the highest density wavefunction (lowest degree polynomial) that has this
property13. For example, the Laughlin state times any polynomial is also a zero energy state of this
interaction, but since it has been multiplied by a polynomial, the total degree of the wavefunction
is higher, meaning the wavefunction extends to higher radius, making the system less dense. A
schematic of the ground state energy as a function of filling fraction for this case is shown in
Fig. 15.1.

10Roughly the story is as follows. The probability |Ψ(z1, . . . , zN )| of finding particles at position z1, . . . , zN can be
phrased as a classical stat mech problem of a one-component 2d coulomb plasma in a background charge, by writing

|Ψ|2 = e−βU(z1,...,zN )

with β = 2/m and

U = −m2
∑
i<j

log(|zi − zj |) +
m

4

∑
i

|zi|2

where the first term is the coulomb interaction in 2d, and the second term is a background charge – which happens
to be the charge associated with a uniform positve background (an easy thing to check using gauss’s law). Assuming
this plasma screens the background charge, it will be of uniform density up to a constant radius

11This was discovered by Haldane in 1983, then again by Trugman and Kivelson and also Pokrovski and Talapov
in 1985.

12Actually this is a very realistic interaction for cold atom bosonic quantum Hall effect, should it be produced in
the future.

13Although with some thought this fact seems obvious, proving it rigorously is tricky.
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Figure 15.1: Schematic of the ground state energy as a function of filling fraction for bosons with
delta function interaction.

The key point is that the ground state energy has a cusp, which means there is a jump in the
chemical potential

µ =
∂E

∂N
This is precisely the same “incompressibility” as we have in the case of noninteracting electrons —
where the chemical potential jumps between Landau levels! As in that case we presume that the
presence of a cusp in the free energy, in the absence of disorder, will be enough to give us a plateau
when disorder is added back in.

Now while we can easily show that there is a change of behavior at ν = 1/2 in this plot, it
is somewhat more difficult to be convincing that the slope coming from the right is finite — i.e.,
that the gap is actually finite. In order to do that, we would need to think about the elementary
excitations – or resort to numerics.

Fermions at ν = 1/3

The arguments given for bosons at ν = 1/2 can be easily generalized to the case of fermions (i..e,
electrons) at ν = 1/3 (and more generally to any ν = 1/m.) Obviously a δ-function interaction will
no longer do the job, since for fermions Pauli exclusion prevents any two fermions from coming to
the same point already. However, consider an interaction of the form

V = V0

∑
i<j

∇2δ(ri − rj)

Given a wavefunction Ψ(r1, . . . , rN ) the interaction energy will be

E =
∑
i<j

∫
dr1 . . .drN |Ψ|2 ∇2δ(ri − rj)

Writing

Ψ(dr1 . . .drN ) = φ(z1 . . . zN )

N∏
i=1

e−|zi|
2/(4`2) (15.2)

with φ meaing the analytic polynomial part, for fermionic wavefunctions (that must vanish when
ri = rj) the expression for the energy can be integrated by parts14 using ∇2 = 4∂z∂z∗ to give

E =
∑
i<j

∫
dr1 . . .drN |∂ziφ|2 δ(ri − rj)

N∏
i=1

e−|zi|
2/(2`2)

14Generally one would expect derivatives of the gaussian part as well when we integrate by parts. However, because
the polynomial is antisymmetric, the derivitive must act on the polynomial part to prevent the wavefunction from
vanishing when particle coordinates coincide.
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Thus we have a non-negative definite interaction. Further, if the wavefunction vanishes as a
single power when two particles come together, then ∂zφ will be nonzero and we will get a postive
result (Since ∂zi(zi − zj) is nonzero). However, if the wavefunction vanishes as three powersr ∂zφ
will remain zero (since ∂zi(zi − zj)3 goes to zero when zi = zj)

15.
Thus, entirely analously to the above case of ν = 1/2 with the δ-function interaction, the Laughlin

m = 3 (ν = 1/3) wavefunction is the exact ground state (unique highest density zero energy
wavefunction) of the ∇2δ-function interaction. With similar ideas, one can construct interactions
for which any ν = 1/m Laughlin wavefunction is exact.

15.2.2 Real Interactions

Obviously electrons do not interact via a ∇2δ interaction. They interact via a Coulomb interaction16

What is perhaps surprising is that the Laughlin wavefunction is an almost perfect representation of
the actual ground state. This statement comes from numerical tests. For example, for 9 electrons (on
a spherical geometry to remove edge effects) the dimension of the fully symmetry reduced Hilbert
space17 is 84, and yet the Laughlin trial wavefunction has an overlap squared of .988 with the
exact ground state of the Coulomb interaction. This is absurdly accurate! Energy of the Laughlin
wavefunction differs from the energy of the exact Coulomb ground state by less than a part in two
thousand18.

15.3 Quasiparticles

The Laughlin quantum hall ground state is a uniform density fluid (we will actually show this
as a homework problem). Density perturbations are made in discrete units of charge known as
quasiparticles. Positively charged bumps of charge (opposite the charge of the electron) are known
as quasiholes and negatively charged bumps of charge (same charge of the electron) are quasielectrons.

15.3.1 Quasiholes

For the quasiholes, it is fairly easy to guess their wavefunction (and indeed this was done by Laugh-
lin). We start by considering adding a quasihole at postion 0. This leaves the system rotationally
invariant. We guess the solution

Ψqh(0) =

[
N∏
i=1

zi

]
ΨLaughlin

where 0 indicates we have put the quasihole at position 0. Here the degree of the polynomial is
increased by one for every variable. So each filled orbital gets pushed out to the next orbital. This
leaves precisly one empty orbtial open at positon 0, thus leaving a positive charge

e∗ = νe

since filling fraction ν means on average a fraction ν of the orbitals are filled. So leaving the orbital
at the center completely empty is a positive charge of +ν.

Another way to think about the same wavefunction is to imagine adiabatically inserting a quan-
tum of flux φ0 at positon 0. Analogous to the Laughlin argument for integer quantum Hall effect,
This creates an azimuthal EMF. Since the system has quantized hall conductance σxy = νe2/h, the

15Note that by antisymmetry the wavefunction must go as an odd number of powers as two particle positions
approach each other.

16In higher Landau levels, although the interaction is Coulomb, when the single Landau level problem is mapped
down to a single partly filled lowest Landau level, the interaction gets modified – this mainly effects the short range
behavior.

17The full Hilbert space is 45207 dimensional!
18I need to recheck this number.
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total charge created is νe = σxyφ0. Then the full flux quantum can be gauged away leaving only
the quasihole behind.

One can make quasiholes at any location w analogously,

Ψqh(w) =

[
N∏
i=1

(zi − w)

]
ΨLaughlin

although this is no longer an angular momentum eigenstate. We can similarly consider multiple
quashioles the same way

Ψqhs(w1, . . . , wM ) =

[
M∏
α=1

N∏
i=1

(zi − wα)

]
ΨLaughlin

Several interesting comments at this point:

(1) While the z’s are physical electron coordinates, the w parameters are simply parameters of the
wavefunction and can be chosen and fixed to any value we like. The wavefunction Ψ(w1, . . . wM ; z1, . . . zN )
is then the wavefunction of electrons z in the presence of quasiholes at fixed w positions.

(2) Note that the phase of the wavefunction wraps by 2π when any electron moves around the
position of a quasihole.

(3) For the special ultra-short-range wavefunctions for which the Laughlin ground state is an
exact zero energy eigenstate, then this Laughlin quasihole is also an exact zero energy eigenstate
(albeit one with lower density than the ground state since a hole has been inserted). Take for
example the case of ν = 1/2. With a δ-function interaction, the energy is zero because no two
particles come to the same point. Multiplying this wavefunction by any polynomial (as we have
done to insert quasiholes) maintains this property and we still have a zero energy eigenstate. As for
the Laughlin ground state, the quasihole is not exact for the Coulomb interaction, but is extremely
accurate.

(4) At ν = 1/m, if we insert m quasiholes at the same point w, then the wavefunction is just the
same as if we were to have an electron e at the point w (although the electron is not there). Thus we
expect that “fusing” m quasiholes together should precisely make an anti-electron (or a real hole).

15.3.2 Quasielectrons

The quasi-electron is a bump of negative charge (i.e, same charge as the electron). Unlike the case
of quasiholes, there are no exact wavefunctions that we know of for quasi-electrons (not even for
special short range interactions).

Whereas the quasi-hole increases the total degree of the polynomial wavefunction (thereby de-
creasing the density of the system) the quasi-electron should decrease the total degree of the wave-
function. Again, Laughlin made a very good guess of what the wavefunction for the quasi-electron
should be. Considering an quasi-electron at the origin, we can write

Ψqe(0) =

([
N∏
i=1

∂

∂zi

]
φ

)
N∏
i=1

e−|zi|
2/(4`2)

where as in Eq. 15.2 we have written the Laughlin wavefunction as the polynomial part φ times the
gaussian factors. Obviously the derivative correctly reduces the degree of the polynomial by one
in each varaible z, thus reducing the net angular momentum of each paricle by one. Each particle
moves to lower radius by one orbital, thus giving a pile-up of charge of e∗ = −eν at the origin.

In analogy to (but opposite that of) the quasihole, we might have looked for a quasi-electron
where electrons accumulate a phase of −2π when an electron moves around the quasiparticle. One
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might think of the operator z∗, but this operator does not live in the lowest Landau level. However,
the projection of this operator to the lowet Landau level is given by

PLLLz
∗ = 2`2

∂

∂z

(This is a homework assignment!).
As mentioned above, the Laughlin quasi-electron is not exact for any known system. However,

it is a fairly good trial wavefunction numerically for the Coulomb interaction. Note however, that
other forms for the quasi-electron wavefunction have been found to be somewhat more accurate.

One can move the quasielectron to any position in a similar way as for quasiholes giving a
wavefunction of the form

Ψqes(w) =

([
N∏
i=1

(
2`2

∂

∂zi
− w∗

)]
φ

)
N∏
i=1

e−|zi|
2/(4`2)

15.3.3 Fractional Charge and Statistics?

The quasiparticles of the Laughlin state thus have fractional charge. One should not lose sight of
how surprising this is — that particles can emerge that are a fraction of the “elementary” particles
of the system. If we lived at very low energy, we would experience these particles as the fundamental
particles of the system and would not know of the existence of the underlying electron.

Once one accepts fractionalized charge, it is perhaps not surprising to discover that they also have
fractional statistics. Proving this statement is nontrivial, and we will do it in several ways. Note
that since the quasiparticles are charged, moving them around in a magentic field incurs phases. We
would like thus like to compare the phase of moving a particle in a loop versus moving a particle in
a loop when another particle might be inside the loop, see fig. 15.2

Figure 15.2: To find the statistical phase, we compare moving a particle in a loop versus moving it
in the same loop when another particle is inside the loop.

We shall perform this comparison next after we introduce Berry’s phase, which is the effect which
produces the statistical phase we are interested in.

15.4 Digression on Berry’s Phase

The Berry phase19 is one of the most fundamental ideas of modern physics. We recall the adiabatic
theorem. If you start in an eigenstate and change a Hamiltonian sufficiently slowly, and there are no
level crossings, then the system will just track the eigenstate as it slowly changes — i.e., it remains
in the instantaneous eigenstate. However, during this process it takes a bit of thought to figure out
what happens to the phase fo the wavefunction.

To see how this correction arises, let us consider a Hamiltonian H(R) which is a function of
some general parameters which we will summarize as the vector R. In our case these parameters are

19Berry’s work on Berry Phase in 1984 had a number of precursors, most prominentaly the work of Pancharatnam
in 1956.
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going to represent the quasiparticle position — we will insert this information inot the Hamiltonian
by having some trapping potential which induces the quasiparticle at the point R and we can then
move around the trapping potential in order to move the particle. Let us write the instantaneous
(here normalized!) eigenstate as |ψ(R)〉. So we have

H(R)|ψ(R)〉 = E(R)|ψ(R)〉

Now let us write the full, time dependent wavefucntion as

|Ψ(t)〉 = eiγ(t) |ψ(R(t))〉

so we are allowing for an additional phase out front of the instantaneous eigenstate. The time
dependent Schroedinger equation is

i~
∂

∂t
|Ψ(t)〉 = H(R(t))|Ψ(t)〉[

−~γ̇ + i~
∂

∂t

]
|ψ(R(t))〉 = E(R(t))|ψ(R(t))〉

Projecting this equation onto the bra 〈ψ(R)| we obtain

γ̇ = −E(R(t))/~− i
〈
ψ(R(t))

∣∣∣∣ ∂∂t
∣∣∣∣ψ(R(t))

〉
Integrating over some path R(t) from some initial time ti to some final time tf gives

γ(tf )− γ(ti) = −1

~

∫ tf

ti

E(R(t))dt − i
∫ Rf

Ri

dR · 〈ψ(R) |∇R|ψ(R)〉

The first term is the expected dynamical phase — just accumulating a phase with time proportional
to the energy. The second term on the right is the Berry phase contribution — a line integral along
the particular path that R(t) takes. Note that this term depends only on the geometry of the path
and not on how long one takes to move through this path. In this sense is it s a geometric phase.

15.5 Arovas-Schrieffer-Wilczek Calculation of Fractional Statis-
tics

This section follows the approach of Arovas, Schrieffer and Wilczek20.
Let us consider a ν = 1/m wavefunction for a quasihole

Ψ(w) = N (|w|)

[
N∏
i=1

(zi − w)

]
Ψ

(m)
Laughlin

and we will imagine moving around the position w in a circle of constant radius as shown in the
right of Fig. 15.2. Here we have inserted a normalization constant out front, which can be shown
to be a function of radius only. (This is argued by plasma analogy, which is part of the homework).
We will then parameterize21 the position of the particle by the angle θ and w = |w|eiθ.

The Berry phase from moving the particle in a loop will then be

∆γ = −i
∫ 2π

0

dθ 〈Ψ(θ)|∂θ|Ψ(θ)〉

20Wilczek won a Nobel for his work on assymptotic freedom. Schrieffer won a Nobel for his work on BCS theory of
superconductivity. Arovas was a grad student at the time.

21On can choose a more general path for the particle but we will then need the detailed form of N (w). See the
discussion below in section ***
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where we have written |Ψ(θ)〉 to mean |Ψ(|w|eiθ)〉. We then have

∂θ|Ψ(θ)〉 =
∂w

∂θ

(∑
i

−1

zi − w

)
|Ψ(θ)〉

Thus we have

〈Ψ(θ)|∂θ|Ψ(θ)〉 =
∂w

∂θ

∑
i

〈
Ψ(θ)

∣∣∣∣ −1

zi − w

∣∣∣∣Ψ(θ)

〉
Thus from taking w around in a circle we obtain the Berry phase22

∆γ = −i
∮
dθ 〈Ψ(θ)|∂θ|Ψ(θ)〉

= −i
∮
dw
∑
i

〈
Ψ(w)

∣∣∣∣ −1

zi − w

∣∣∣∣Ψ(w)

〉
Now the integral around the loop of 1/(z − w) accumulates 2πi if and only if zi is inside the loop.
Thus we obtain the phase

∆γ = 2π 〈number of electrons in loop〉
= 2π(1/m)Φ/φ0 = γAB

where Φ is the flux enclosed by the loop and φ0 is the flux quantum (and here we have used ν = 1/m).
This is precisely the expected Aharonov-Bohm phase that we should expect for moving a charge
e/m around a flux Φ.

Now we consider putting another quasiparticle in the center of the loop as shown in the left of
Fig. 15.2. Using a normalization factor that is again a function of |w| only, the same calculation
holds, but now the number of electrons enclosed has changed by one quasiparticle charge e/m. Thus
the phase is now

∆γ = γAB + γstatistical

where te additional phase for having gone around another quasihole is given by

γstatistical = 2π/m

or in other words we have fractional statistics! For example, for the Laughlin state at ν = 1/2, we
have semionic statistics.

A more detailed version of this calculation (we will do this below) shows that the path of the
particle does not matter —- the total phase is always the Aharanov-Bohm phase for taking a particle
around flux, added to the statiscal phase of taking it around another quasiparticle.

Comment on the Fusion/Braiding Rules, and Chern-Simons theory

For the ν = 1/m Laughlin state thus have a situation where the elementary quasi-holes have statistics
θ = 2π/m. We can assume that their antiparticles will have the same statistics (both opposite
”charge” and ”flux” in a flux-charge model). We also have that the fusion of m elementary quasi-
electrons or quasi-holes forms an an electron or anti-electron.

In the case where m is even, the underlying ”electron” is a boson, in which case we can think of
this electron as being identical to the vacuum — it has trivial braiding with all particles and it is
essentially condensed into the ground state as some sort of background superfluid. Thus we have a
simple anyon theory with m particle types.

On the other hand, when m is odd, we have the situation (discussed in our ”charge-flux compos-
ite” section) where the fusion of m elementary anyons forms a fermion — and so there are actually
2m particle types — the fermion full-braids trivially with everything, but has fermionic statistics
with itself. This situtation is ”non-modular” — it does not have as many ground states as it has
particle types. There are only m ground states, despite 2m particle types.

22The way this is written it is obviously a bit nonsense. Please fix it
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15.6 Gauge Choice and Monodromy

The Lauglin wavefunction with M quasiholes takes the form

Ψ(w1, . . . , wM ; z1, . . . , zN ) = N (w1, . . . , wN )

[
M∏
α=1

N∏
i=1

(zi − wα)

]
Ψ

(m)
Laughlin(z1, . . . , zN ) (15.3)

where N is a normalizing factor which can be thought of a an effective wavefunction for the quasi-
holes.

By using a plasma analogy (this is a homework assignment) we find that the normalization must
be of the form

|N (w1, . . . , wM )| = C
∏
α<β

|wα − wβ |1/m
M∏
α=1

e−|wα|
2/(4`∗2)

where C is some constant and

`∗ =

√
~
e∗B

is the effective magnetic length for particle of charge e∗ = e/m. This choice of normalization assures
that

〈Ψ(w1, . . . , wM )|Ψ(w1, . . . , wM )〉

is independent of the position of the quasiholes.
Now, we can choose the phase of the factor N arbitrarily – this is essentially a gauge choice. In

the above Arovas, Schrieffer, Wilczek calculation above, we chose the phase to be real. However,
this is just a convention. An intersting different convention is to choose

N (w1, . . . , wN ) = C
∏
α<β

(wα − wβ)1/m
M∏
α=1

e−|wα|
2/(4`∗2) (15.4)

which is known as holomorphic or ”fractional statistics” gauge – here the fractional statistics of the
quasiparticles are put explicitly into the wavefunction! Note here that this function is not single
valued in the w-coordinates. In this gauge, we see that the wavefunction has branch cuts and
can be thought of as having Riemann sheets. This may look problematic, but it is not. While a
wavefunction must be single-valued in the physical electron coordinates, the w’s are just parameters
of the wavefunction, and we are allowed to choose wavefunctions the phase conventions in any way
we like – even in non-single-valued ways as we have done here.

What we would want to confirm is that the physical phase accumulated in moving one quasihole
around another is independent of our gauge choice. To this end we note that the total phase
accumulated can be decomposed into two pieces, the so-called monodromy and the Berry phase.
The monodromy is the phase explicitly accumulated by the wavefunction when one coordinate is
moved around another.

Total Phase = Monodromy + Berry Phase

In the above Arovas-Schrieffer-Wilczek calculation, we chose the phase of the normalization to
be everywhere real. So there is no monodromy — no, explicit phase as we move one particle around
another. However, in fractional statistics gauge we see a phase of 2π/m for each particle which
travels counterclockwise around another. In both gauges the total phase should be the same, so
in the holomorphic gauge, the statistical part of the phase should be absent. Let us see how this
happens

15.6.1 Fractional Statistics Calculation: Redux

Let us consider the case of two quasi-holes and repeat the argument of Arovas-Schrieffer-Wilczek
but in holomorphic gauge. Putting one quasihole at postition w and another at position w′ the
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wavefunction is

Ψ(w) = C(w − w′)1/me−(|w|2+|w′|2)/(4`∗2)
∏
i

(zi − w)(zi − w′)
∏
i<j

(zi − zj)
∏
i

e−|zi|
2/(4`2)

with C chosen so Ψ is normalized independent of the quasihole coordinates23. Let us parameterize
the path of a quasiparticle as w(τ). We can write the Berry phase as

∆γ = −i
∮
dτ〈Ψ(τ)|∂τ |Ψ(τ)〉

We write
∂

∂τ
=
∂w

∂τ

∂

∂w
+
∂w∗

∂τ

∂

∂w∗
(15.5)

Now, because we are using holomorphic gauge of the wavefunction the ∂/∂w∗ only hits the gaussian
factor, so we have

〈Ψ(w)|∂w∗|Ψ(w)〉 = − w

4`∗2
〈Ψ(w)|Ψ(w)〉 = − w

4`∗2

To evaluate the derivative ∂/∂w we integrate by parts so that it acts on the bra rather than the ket.
Now since the bra is completely antiholomorphic in w except the gaussian, the derivative acts only
on the gaussian again to give

〈Ψ(w)|∂w|Ψ(w)〉 = ∂w [〈Ψ(w)|Ψ(w)〉]− [∂w〈Ψ(w)|] |Ψ(w)〉

=
w∗

4`∗2
〈Ψ(w)|Ψ(w)〉 =

w∗

4`∗2

Note that the derivative on 〈Ψ|Ψ〉 here is zero because the wavefunction is assumed normalized to
unity for every value of w.

We then have the Berry phase given by

∆γ = −i
∮
dτ〈Ψ(τ)|∂τ |Ψ(τ)〉 = −i 1

4`∗2

∮
(dww∗ − dw∗w)

where we have used Eq. 15.5. We now use the complex version of Stokes theorem24 to obtain

∆γ =
Area

`∗2
= 2π(1/m)Φ/φ0

which is the Aharanov-Bohm phase corresponding to the flux enclosed in the path – without giving
the fractional statistical phase which has now been moved to the monodromy!

The key point here, which we emphasize, is that if we work with normalized holomorphic wave-
functions (i.e., holomorphic gauge), then the fractional statitics are fully explicit in the monodromy
of the wavefunction — we can read the statistics off from the wavefunction without doing any work!

15.7 Appendix: Building an Effective (Chern-Simons) Field
Theory

We can consider writing an effective field theory for this ν = 1/m quantum Hall system. First let
us think about how it responds to an externally applied electromagnetic field. It should have its

23Strictly speaking the wavefunction is normalized in this form only if w and w′ are not too close together —
keeping them a few magnetic lengths apart is sufficient. This all comes from the plasma analogy calculation.

24The complex version of Stokes is as follows. Using w = x+ iy∫
∂A

(Fdw −Gdw∗) = −2i

∫
A

(∂w∗F + ∂wG)dxdy
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density locked to the magnetic field, so we should have a change of electron density (In this section
we set ~ = e = 1 for simplicity)

δn = j0 =
1

2πm
δB

Similarly we should expect a quantized Hall conductance, here with j being the current of electrons

ji = − 1

2πm
εijEj

Both of these can be summarized as the response to a perturbing vector potential

jµ =
−1

2πm
εµνλ∂νδAλ (15.6)

We must, of course have charge conservation as well. This is easy to enforce by writing the current
in the form

jµ =
1

2π
εµνλ∂νaλ (15.7)

which then automatically satisfies
∂µj

µ = 0

In this language, the effective Lagrangian that produces Eq. 15.6 as an equation of motion is then

L =
−m
4π

εµνλaµ∂νaλ +
1

2π
εµνλAµ∂νaλ + jµq aµ

where jq is the quasiparticle current. Note that without the Aµ term, this is the same Chern-Simons
theory we used for describing fractional statistics particles (now the quasiparticles).

To see the coupling to the external vector potential, note that the general (noether) current
associcated with the local gauge symmetry will be

jµ =
∂L
∂Aµ

which matches the expression from Eq. 15.7. By differentiating the Lagrangian with respect to aµ
we generate the equations of motion Eq. 15.6.

More here

15.8 Appendix: Quantum Hall Hierarchy

Good reference is https://arxiv.org/abs/1601.01697
Shortly after the discovery of the Laughlin ν = 1/3 state additional fractional quantum Hall

plateaus were discovered at filling fractions such as ν = 2/3, 2/5, 3/7 and so forth. By now over 60
different plateaus have been observed in experiment!

The Laughlin theory only describes filling fractions ν = 1/m but it contains in it the right ideas
to build possible theories for many of these fractions.

There are several approaches to building a hierarchy of quantum Hall states, however perhaps
the most intuition comes from the original approaches by Haldane and Halperin in 1983.

The general idea is to begin with a Laughlin wavefunction for N electrons with coordinates zi
for ν = 1/m then change the magnetic field to add a large number M of quasiparticles (say in the
form of 15.3, in the case of quasiholes) at coordinates wα. Thus our wavefunction we write as

Ψ(w1, . . . wM ; z1, . . . zN )

as written in Eq. 15.3. We then write a pseudowavefunction to describe some dynamics of the
quasiholes which we write as

φ(w1, . . . , wM )
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An electron wavefunction is generated by integrating out the quasihole coordinates. Thus we have

Ψ̃(z1, . . . zN ) =

∫
dw1, . . .dwM φ∗(w1, . . . , wM ) Ψ(w1, . . . wM ; z1, . . . zN )

The general idea of this scheme is that the pseudo-wavefunction can itself be of the form of a Laughlin
wavefunction. In the original Laughlin argument we wrote down wavefunctions for both boson and
fermion particles. Here, the particles w are anyons, so we need to write a slightly different form of
a wavefunction. We expect

φ(w1, . . . , wM ) =
∏
α<β

(wα − wβ)
1
m+p

with p an even integer. The fractional power accounts for the fact that the anyon wavefunction
must be multi-valued as one particle moves around another. The factor p is to include a “Laughlin”
factor repelling these anyons from each other without further changing the statistics.

The condensation of these quasi-particles into a Laughlin state generates a wavefunction for the
filling fraction

ν =
1

m± 1/p

with the ± corresponding to whether we are condensing quasiparticles or quasiholes. One can
continue the argument starting with these new fractions and generating further daughter states and
so forth. At the next level for example, we have

ν =
1

m± 1
p± 1

q

By repeating the procedure, any odd denominator fraction ν = p/q can be obtained.
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Chapter 16

Quantum Hall Edges

The bulk of a quantum Hall system is gapped, but on a finite system there are always low energy
modes on the edges. (This is always true for any chiral topological system. Although achiral systems
can have fully gapped edges). Even though the bulk is incompressible, the shape of the edge can be
deformed as suggested in Fig. 16.1.

Figure 16.1: A deformation of the edge is a low energy edge excitation which moves along the edge
due to E ×B drift.

Now let us think about the dynamics of a bump on the edge. On the edge of the system we
always have an electric field (this is the potential that holds the electrons in the system — otherwise
they would just leak out!). Since we have E×B, we expect a drift velocity for all the electrons on
the edge. Thus we expect edge dynamics to be basically just movement of charge along the edge.

16.1 Landau Gauge Edge Picture for Integer Quantum Hall

(Can this section be moved to a chapter appendix?)

Recall in Landau gauge (See section 14.5) the wavefunctions are plane waves in the y direction,
but are harmonic oscillator states in the x direction. We now impose an additional confining potential
in the x direction near the edges of the system as shown in Fig. 16.2.
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Figure 16.2: Low energy edge excitations

The addition of the confining potential V (x) simply adds this potential to the 1-d schroedinger
equation 14.2. If the confining potential is fairly smooth, it simply increases the energy of the
eigenstates when the position x = −ky`2 gets near the edge of the system as shown in Fig. 16.2.

In the case of the integer quantum Hall effect, all of the eigenstates of some particular Landau
level (the lowest Landau level in the figure) are filled within the bulk. At some point near the edge,
the Landau level crosses through the chemical potential and this defines the position of the edge.
Since the eigenstates are labeled by the quantum number ky it is possible to create a low energy
excitation by moving an electron from a filled state near the edge just below the chemical potential to
an emtpy state near the edge just above the chemical potential. The excitation will have momentum
~∆ky. 1 We thus have a 1-d system of fermions filled up to a chemical potential and they flow only
in one direction along each edge — i.e., they are chiral fermions.

16.2 Parabolic Confinement

For studying fractional quantum Hall edge states, it is perhaps most useful to consider a parabolic
confinement potential. Considering the simple particle Hamiltonian, and adding this confining po-
tential to the kinetic energy we have

Hconfined = H0 + γr2

where H0 is the single particle Hamiltonian in the asence of the confinement.
Since the confinement is rotationally symmetric, we can still classify all eigenstates by their

angular momemtum quantum numbers. Using symmetric gauge we can still write the single particle

1The change in energy will be

∆E =
∂V

∂x
∆x =

∂V

∂x
`2∆ky

Thus the edge velocity is given by

v =
1

~
∂E

∂k
=

1

~
∂V

∂x
`2

If the chemical potential along the one edge is raised by ∆µ, a range of k-states

∆k =
∆µ

`2 ∂V
∂x

will be filled. Since the spacing between adjacent k states is 2π/Ly this corresponds to an increase in electrons per
unit length along the edge of

∆n1d =
2π∆µ

`2 ∂V
∂x

These then carry a net 1d electron current density

j = −ev∆n1d = −e(
1

~
∂V

∂x
`2)

2π∆µ

`2 ∂V
∂x

= −(e/h)∆µ

which is precisely the expected quantized Hall current flowing along the edge. (∆µ = −e∆V ).
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eigenstates as2

ϕm ∼ zme−|z|
2/`2

where m is the eigenvalue of the angular momentum3 operator L̂. Since the radius of these states is
r ≈ `

√
2m it is not surprising that the confinement energy γr2 of each eigenstate is proportional to

m. We thus have

Hconfined = H0 + αL̂

for some constant α.
For integer filling, the edge excitations are very much like the edge excitations we discussed above

in Landau gauge. A round quantum Hall droplet fills m states up to a chemical potential along the
edge. One can add a small amount of angular momentum to the edge by exciting a filled state from
an m just below the chemical potential to an empty state just above the chemical potential.

16.3 Edges of The Laughlin State

We now consider adding an interaction term so as to produce a fractional quantum Hall state. It is
convenient to think about the limit where the cyclotron energy is huge (so we are restricted to the
lowest Landau level), the interaction energy is large, so we have a very well formed quantum Hall
state, and finally, the edge confinement is weak.

In particular if we choose to consider the special ultra-short range interaction potentials (such as
δ function for bosons at ν = 1/2) we still have the ground state given exactly by the Laughlin state

Ψ
(m)
Laughlin =

∏
i<j

(zi − zj)m
N∏
i=1

e−|zi|
2/(4`2)

such that it has zero interaction energy. The angular momentum of the Laughlin ground state is
just the total degree of the polynomial

Lground = m
N(N − 1)

2

with confinement energy

Eground = αm
N(N − 1)

2

While the Laughlin state has zero interaction energy it is also the case that any polynomial times
the Laughlin state also has zero interaction energy since multipying by a polynomial does not ruin
the fact that the wavefunction vanishes as m or more powers as two particles approach each other.
Thus we can consider all possible wavefunctions of the form

Ψ = (Any Symmetric Polynomial) Ψ
(m)
Laughlin

where we insist that the polynomial is symmetric such that the symmetry of the wavefunction
remains the same (i.e, antisymmetric for fermions and symmetric for bosons).

If the degree of the symmetric polynomial is ∆L, then we have

L = Lground + ∆L

E = Eground + α∆L

We can organize the possible excitations by their value of ∆L. We thus only need to ennumerate
all possible symmetric polynomials that we can write in N variables of some given degree ∆L.

2Note tha t the parabolic confinement modifies the magnetic length.
3We drop the ~ from the angular momentum operator so its eigenvalues are just numbers.
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We thus need some facts from the theory of symmetric polynomials. The symmetric polynomials
on the N variables z1, . . . , zN form a so-called “ring” (this means you can add and multiply them).
A set of generators for this ring is given by the functions

pm =

N∑
i=1

zmi

This means that any symmetric function on N variables can be written as sums of products of these
functions4. Thus it is extremely easy to count symmetric functions. Of degree 1, we have only p1.
At degree 2, we have p2

1 and also p2. Thus the vector space of symmetric polynomials (with real
coefficients) is two dimensional. We can build a corresponding table as shown in Table 16.1.

L− Lground dimension basis functions Energy
1 1 p1 α
2 2 p2, p1p1 2α
3 3 p3, p2p1, p1p1p1 3α
4 5 p4, p3p1, p2p1p1, p1p1p1p1 4α
5 7 p5, p4p1, p3p2, p3p1p1, p2p2p1, p2p1p1p1, p1p1p1p1p1 5α

Table 16.1: Table of Symmetric Polynomials

Thus the number of edge excitations at a given angular momentum follows a pattern, 1, 2, 3, 5, 7, . . .
with energy increasing linearly with the added angular momentum. Note that this result holds also
for the ν = 1 Laughlin state (i.e., for the integer quantum Hall effect), and matches the counting for
excitations of a chiral fermion (try this exercise!5 )

16.3.1 Edge Mode Field Theory: Chiral Boson

An equivalent description of the edge modes is given by the Hamiltonian

H =
∑
m>0

(αm)b†mbm

where the b†m are boson creation operators satisfying the usual commutations

[bm, b
†
n] = δnm

and we think of these boson creation operators b†m as creating an elemetary excitation of angular
momentum m on the ground state which we will call |0〉 for now. We can build a table describing
all of the states in fock space of this Hamiltonian, ordered by their angular momentum as shown
in Table 16.2. We see the fock space is precisely equivalent to the above table of polynomials. In
fact the analogy is extremely precise. In the thermodynamic limit, up to a known normalization
constant, application of b†m is precisely equivalent to multiplication of the wavefunction by pm.

4In fact because the interaction Hamiltonian that we are studying is purely real when written in the ϕm basis, we
can take the coefficients in the polynomials to be entirely real too.

5To get you started, consider filled states in a line filled up to the chemical potential. We can think of these as
dots in a row. For example, let the ground state be

. . . • • • • • • ◦ ◦ ◦ ◦ . . .

where • means a filled single particle eigenstate and ◦ means empty. Now if we add one unit of (angular) momentum,
we have the unique state

. . . • • • • • ◦ • ◦ ◦ ◦ . . .
adding two units can be done in two ways

. . . • • • • • ◦ ◦ • ◦ ◦ . . .
and

. . . • • • • ◦ • • ◦ ◦ ◦ . . .
thus starting the series 1, 2, 3, 5, 7 . . ..
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L− Lground dimension basis fock states Energy

1 1 b†1|0〉 α

2 2 b†2|0〉, b†1b
†
1|0〉 2α

3 3 b†3|0〉, b†2b
†
1|0〉, b†1b

†
1b
†
1|0〉 3α

4 5 b†4|0〉, b†3b
†
1|0〉, b†2b

†
1b
†
1|0〉, b†1b

†
1b
†
1b
†
1|0〉 4α

Table 16.2: Fock Space for Chiral Bosons

These operators describe a chiral boson – chiral because they only have positive angular momen-
tum m > 0 not negative angular momentum.6

16.4 Appendix: Edges and Chern-Simons theory

The existence of the edge theory could have been predicted from the effective Chern-Simons La-
grangian of the bulk. As mentioned previously, the Abelian Chern-Simons action is gauge invariant
on a closed manifold. However, for a manifold with boundary, the action is not gauge invariant.
This is what is known as an anomaly. The solution to this problem is that the action becomes gauge
invariant only once it is added to an action for the low energy edge theory! We will not go through
the detailed argument for this here.

6An achiral bose field on a circle requires both positive and negative angular momentum modes).
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Chapter 17

Conformal Field Theory Approach
to Fractional Quantum Hall Effect

In the last chapter we saw that we have an edge theory which is a chiral boson — a 1+1 dimensional
dynamical theory. We can think of this theory as being a 2 dimensional cut out of a 3 dimensional
space-time manifold. Now in a well-behaved topological theory, it should not matter too much
how we cut our 3-dimensional space-time manifold. Thus we expect that the same chiral bose
theory should somehow also be able to describe our 2+0 dimensional wavefunction. Since all chiral
topological theories have gapless edges, this approach can be quite general.

1+1 dimensional gapless theories can all be described by conformal field theories (CFTs) possibly
perturbed by irrelevant operators. And conformal field theories in 1+1 dimension are particularly
powerful in that they are exactly solvable models, which can be used to describe either the dynamics
of 1+1 dimensional systems or classical statistical mechanical models in 2 dimensions.

While we cannot provide a complete introduction to CFT here (see Ginsparg’s lectures, Fendley’s
notes, or for a much more complete discussion, see the Big Yellow Book), it turns out that we need
very little of the machinery to proceed. Furthermore, a large fraction of this machinery will look
extremely familiar from our prior study of TQFTs. Indeed, there is an extremely intimite connection
between CFTs and TQFTs — and much of what we know about TQFTs has grown out of the study
of CFTs.

We wil begin by seeing how this works for the chiral boson, which is perhaps the simplest of all
1+1d CFTs. Below we will show how the scheme works in more detail in the context of quantum
Hall physics, this approach, first described by Moore and Read, has been extremely influential in
the development of TQFTs and their relationship to the quantum Hall effect.

17.1 The Chiral Boson and The Laughlin State

The simplest CFT is the bose theory in 1d. We can write a bose field as a function of x and τ = it
as

Φ(z, z∗)

where z = x + iτ and z∗ = x − iτ which correspond to left and right-moving coordinates. The
interesting thing about the field is that it can be decomposed cleanly into holomorophic (left moving)
and antiholomorphic (right moving) pieces.

Φ(z, z∗) = φ(z) + φ̄(z∗)

If we are interested in a chiral theory we focus only on the holomorphic piece φ(z). As free bose
fields, we can use Wick’s theorem on the fields φ and all we need to know is the single two point
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correlator1

〈φ(z)φ(z′)〉 = − log(z − z′)

Note that we thik of this correlation function as a correlation in a 1+1d theory.
From this chiral φ operator we construct the so-called vertex operators

Vα(z) =: eiαφ(z) :

where : : means normal ordering2 A straightforward exercise (assigned as homework!) using Wick’s
theorem then shows that

〈Vα1
(z1)Vα2

(z2) . . . VαN (zN )〉 = e−
∑
i<j αiαj〈φ(zi)φ(zj)〉 =

∏
i<j

(zi − zj)αiαj

so long as ∑
i

αi = 0 (17.1)

(otherwise the correlator vanishes).

17.1.1 Writing the Laughlin Wavefunction

We then define an “electron operator” to be

ψe(z) = V√m(z)

This then enables us to write the holomorphic part of the Laughlin wavefunction as

Ψ
(m)
Laughlin = 〈ψe(z1)ψe(z2) . . . ψe(zN )Q̂〉 =

∏
i<j

(zi − zj)m

Note that the index m has to be chosen as an integer such that the wavefunction is single valued
in the electron coordinates. Note that here although the correlator means a 1+1d theory, we are
constructing a wavefunction for a 2d system at fixed time.

Here, the operator Q̂ can be chosen in two different ways. One possibility is to choose Q̂ =
V−N

√
m(∞), i.e., a neutralizing charge at infinity such that Eq. 17.1 is satisfied and the correla-

tor does not vanish. This approach is often used if one is only concerned with keeping track of
the holomorphic part of the wavefunction (which we often do). A more physical (but somewhat
more complicated) approach is to smear this charge uniformly over the system. In this case, the
neutralizing charge, almost magically, reproduces precisely the gaussian factors that we want!3.

1This comes from the achiral result

〈Φ(z, z∗)Φ(z′, z′∗)〉 = − log(|z − z′|2)

To see where this comes from, it is easiest to think about a 2d classical model where the action is

S = (8π)−1

∫
dxdy|∇Φ|2

With a partition function

Z =

∫
DΦ e−S[Φ]

It is then quite easy to calculate the correlator 〈ΦkΦk′ 〉 = δk+k′ |k|−2. Fourier transforming this then gives the result.
2The usual understanding of normal ordering is that when we decompose a field into creation and annihilation

operators, we can normal order by moving all the annihilation operators to the right. Another way to understand it
is that when we expand the exponent eiαφ(z) = 1 + iαφ(z) + (iα)2φ(z)φ(z) + . . .. There will be many terms where
φ(z) occurs to some high power and that looks like a divergence because the correlator of two φ fields at the same
position looks log divergent. Normal ordering is the same as throwing out these divergences.

3To see how this works, we divide the background charge into very small pieces (call them β) to obtain a correlator
of the form

em
∑
i<j log(zi−zj)−ε

√
m

∑
i,β log(zi−zβ)
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17.1.2 Quasiholes

Let us now look for quasihole operators. We can define another vertex operator

ψqh(w) = Vβ(w)

and now insert this into the correlator as well to obtain

Ψqh(w) = 〈ψqh(w)ψe(z1)ψe(z2) . . . ψe(zN )Q̂〉 (17.2)

=

[∏
i

(zi − w)β
√
m

]
Ψ

(m)
Laughlin

Since we must insist that the wavefunction is single valued in the z coordinates, thus we must choose

β = p/
√
m

for some positive integer p, where the minimally charged quasiparticle is then obviously p = 1.
(Negative p is not allowed as it would create poles in the wavefunction).

Further, using this value of the the charge β, along with the smeared out background charge, we
correctly obtain the normalizing gaussian factor for the quasiparticle

e−|w|
2/(4m`2)

This is the correct gaussian factor, with an exponent 1/m times as big because the charge V1/
√
m is

1/m times as big as that of the electron charge V√m.
If we are now to add multiple quasiholes, we obtain the wavefunction

Ψ(w1, . . . , wM ) = 〈ψqh(w1) . . . ψqh(wM )ψe(z1) . . . ψe(zN )Q〉 (17.3)

= C
∏
α<β

(wα − wβ)1/m
M∏
α=1

e−|wα|
2/(4`∗2)

[
M∏
α=1

N∏
i=1

(zi − wα)

]
Ψ

(m)
Laughlin

which is properly normalized

〈Ψ(w1, . . . wM )|Ψ(w1, . . . wM )〉 = Constant

and is in holomorphic gauge. As discussed previously in chapter *** with a normalized holomorphic
wavefunction we can simply read off the fractional statistics as the explicit monodromy.

Note that we can consider fusion of several quasiparticles

V1/
√
m × V1/

√
m → V2/

√
m

Fusion of m of these elementary quasiholes produces precisely one electron operator V√m. Since
the electrons are “condensed” into the ground state, we view them as being essentially the identiy
operator (at least in the case of m even, which means we are considering a Laughlin state of bosons).
Thus there are m species of particle in this theory. In the case of m odd, we run into the situation
mentioned in chapter *** where the electron is a fermion, so really there are 2m species of particles
in the theory.

the term with ε2 we throw away as we will take the limit of small ε. Now here we realize that we are going to have
a problem with branch cuts around these small charges – which we can do if we work in a funny gauge. Changing
gauge to get rid of the branch cuts we then get only the real part of the second term. The second term is then of the
form ∑

i,β

log(|zi − zβ |)→
∫
d2r log(|z − r|)

where we have taken the limit of increasing number of smaller and smaller charges. We define this integral to be
f(z). It is then easy to check that f(z) ∼ |z|2 which is most easily done by taking ∇2f(z) and noting that log is the

coulomb potential in 2d so Gauss’s law just gives the total charge enclosed. Thus we obtain e−|z|
2

as desired. A more
careful calculation gives the constant correctly as well.
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The idea is that by using conformal field theory vertex operators we automatically obtain nor-
malized holomorphic wavefunctions and we can determine the statistics of quasiparticles straight-
forwarldy. This is a key feature of the Moore-Read approach. While there is no general proof that
this will always be true, it appears to hold up in many key cases.

We hope now to generalize this construction by using more complicated conformal field theories.
This then to generate more complicated fractional quantum Hall wavefunctions corresponding to
more complcated TQFTs.

17.2 What We Need to Know About Conformal Field The-
ory

I can’t possibly explain CFT in a few pages. (See the big yellow book. Ginsparg’s lectures are nice
for introduction. So are Fendley’s notes).

But given what we already know about TQFTs many of the rules are going to seem very natural.
Indeed, much of the math of TQFTs arose via CFTs.

CFTs are quantum theories in 1+1 dimension4. They are generically highly interacting theories,
and most often it is impossible to write an explicit Lagrangian for the theory, but due to the special
properties of being in 1+1 and having conformal invariance (guaranteed by being gapless in 1+1 d)
these models are exactly solvable.

A particular CFT is defined by certain information known as conformal data, which basically
mimics the defining features of a TQFT:

(1) There will be a finite set5 of so-called primary fields, which we might call φi(z) (or we
may use other notation). These are analogous to the particle types in a TQFT. Every CFT has an
identity field often called I (which isn’t really a function of position). Correlators of these fields

〈φj1(z1) . . . φjN (zN )〉

are always holomorphic functions of the z arguments, although there may be branch cuts.

(2) Each primary field has a scaling dimension6 or conformal weight or conformal spin,
which we call hi. The scaling dimension of I is hI = 0. We have see these quantities before when we
discussed twists in world lines. Often we will only be interested in h modulo 1, since the twist factor
is e2πih. Each primary field has descendant fields which are like derivatives of the primary and they
have scaling dimensions hi plus an integer (we will typically not need these, but for example, ∂zφi
has scaling dimension hi + 1).

(3) Fusion relations exist for these fields, which are associative and commutative

φi × φj =
∑
k

Nk
ijφk

where fusion with the identity is trivial

I × φj = φj

4We will restrict our attention to unitary CFTs so that these are well behaved 1+1 d theories. Although certain 2
dimensional stat mech models can be related to non-unitary CFTs, these do not correspond to well behaved TQFTs.

5A nonrational CFT may have an infinite number of particle types, but these are badly behaved and do not appear
to correpsond to TQFTs.

6In CFT we have the powerful relation that if we make a coordinate transform w(z) then any correlator of primary
fields transforms as

〈φi1 (w1) . . . φiN (wN )〉 =

(
∂w1

∂z1

)−hi1 (∂wN
∂zN

)−hiN
〈φi1 (z1) . . . φiN (zN )〉

However, we will not need this relationship anywhere for our discussion!
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As with TQFTs, each particle type has a unique antiparticle. We will give a clearer meaning to
these fusion relations in a moment when we discuss operator product expansion.

(4) The expectation of any correlator in the theory is zero unless all the fields inside the correlator
fuse to the identity. For example, if we have a Z3 theory where it requires three ψ particles fuse
to the identity, then we would have 〈ψ(z)ψ(w)〉 = 0. We saw this law previously in the neutrality
condition for the chiral boson. The expectation of the identity I is unity.

The fundamental theorem we need, which is beyond the simple analogy with TQFT is the idea
of an operator product expansion. The idea is that if you take two field operators in a conformal
field theory and you put them close together, the product of the two fields can be expanded as sum
of resulting fields

lim
w→z

φi(w)φj(z) =
∑
k

Ckij(w − z)hk−hi−hjφk(z) + . . .

Here the Ckij are coefficients which crucially are zero when Nk
ij is zero. In other words, when two

fields are taken close together, the result looks like a sum of all the possible fusion products of these
field. On the right hand side note that by looking at the scaling dimensions of the fields, we obtain
explicit factors of (w − z). The . . . terms are terms that are smaller (less singular) than the terms
shown and are made of descendant fields and higher powers of (w − z). Crucially, no new types of
branch cuts are introduced except those that differ by integers powers from (and are less singlar
than) those we write explicitly.

The convenient thing about the operator product expansion (or “OPE”) is that it can be used
inside expectation values of a correlator. So for example

lim
w→z
〈ψa(w)ψb(z) ψc(y1)ψd(y2) . . . ψn(ym)〉 =∑
k

Ckab(w − z)hk−ha−hb〈ψk(z) ψc(y1)ψd(y2) . . . ψn(ym)〉

17.2.1 Example: Chiral Boson

The free boson vertex Vα has scaling dimension

hα =
α2

2

. The fusion rules are
VαVβ = Vα+β

corresponding to the simple addition of “charges”. The resulting operator product expansion is then

Vα(w)Vβ(z) ∼ (w − z)αβVα+β(z)

where we have used the notation ∼ to mean in the limit where w goes to z, and where the exponent
is here given as

hα+β − hα − hβ =
(α+ β)2

2
− α2

2
− β2

2
= αβ

17.2.2 Example: Ising CFT

The Ising CFT is actually the CFT corresponding to a 1+1 d fermion, so it is particularly simple.
The theory has three fields, I, σ, ψ with scaling dimensions

hI = 0

hσ = 1/16

hψ = 1/2
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The fact that hψ = 1/2 is an indication that it is a fermion. The nontrivial fusion rules

ψ × ψ = I

ψ × σ = σ

σ × σ = I + ψ

As in the case of TQFTs, it is the multiple terms on the right hand side that make a theory
nonabelian.

We can write the operator product expansion

ψ(w)ψ(z) ∼ (w − z)hI−hψ−hψI + . . .

∼ I

w − z
+ . . .

The antisymmetry on the right hand side is precisely the behavior one should expect from fermions.
It is crucial to note that within the . . . all terms are similarly antisymmetric (and are less singular).
Similarly, we have

ψ(w)σ(z) ∼ (w − z)hσ−hσ−hψ σ(z) + . . .

∼ (w − z)−1/2 σ(z) + . . .

where again the . . . indicates terms which have the same branch cut structure but are less singular
. In other words, wrapping w around z should incur a minus sign for all terms on the right.

Finally we have the most interesing OPE7

σ(w)σ(z) ∼ CIσσ(w − z)−1/8I + Cψσσ(w − z)3/8ψ(z) + . . .

where all terms in the . . . must have branch cuts that match one of the two leading terms.
Let us consider calculating a correlator,

lim
w→z
〈σ(w)σ(z)〉

Since from rule (4) above, the two fields must fuse to the identity, we must choose the identity fusion
channel only from the OPE. We then obtain

lim
w→z
〈σ(w)σ(z)〉 ∼ (w − z)−1/8 (17.4)

On the other hand, calculating
lim
w→z
〈σ(w)σ(z)ψ(y)〉

in order to fuse to the identity, we must choose the ψ fusion of the two σ fields such that this ψ can
fuse with ψ(y) to give the identity. We thus have

lim
w→z
〈σ(w)σ(z)ψ(y)〉 ∼ (w − z)3/8 (17.5)

Similarly one can see that fusion of two sigmas in the presence of any even number of ψ fields
will be similar to Eq. 17.4, whereas in the presence of any odd number of ψ fields it will be like
Eq. 17.5.

Note that the Ising CFT is actually a free fermion theory, which means that we can use Wick’s
(fermionic) theorem for correlators of the ψ fermi fields with the added information that8

〈ψ(z)ψ(w)〉 =
1

z − w
which is exactly true, not only in the OPE sense. However, we cannot use Wick’s theorem on
correlators of the σ fields which are sometimes known as “twist” fields — we can think of these as
altering the boundary conditions

7Remember these exponents of 1/8 and 3/8 from the ising anyon homework problems?
8Insert footnote or appendix that derives this. See Yellow Book for now!
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17.3 Quantum Hall Wavefunction Based on Ising CFT: The
Moore-Read State

Let us try to build a quantum Hall wavefunction based on the Ising CFT. We must first choose
a field which will represent our electron. One might guess that we should use the fermion field.
However, when two ψ fields come together the correlator (and hence our wavefunction) diverges, so
this cannot be acceptable. Instead, let us construct an electron field which is a combination of the
ising ψ field and a chiral bose vertex Vα

ψe(z) = ψ(z)Vα(z)

These two fields are from completely different 1+1d theories simply multiplied together.
We then look at the operator product expansion to see what happens when two electrons approach

each other

ψe(z)ψe(w) ∼ I

z − w
(z − w)α

2

V2α

So in order for this to not be singular, we must have α2 be a positive integer. If we choose

α2 = m

with m odd we have an overall bosonic operator (ψe(z)ψe(w) = ψe(w)ψe(z)) whereas if we choose
m even we have an overall fermionic operator. However, we cannot choose m = 0 since that leaves
a singularity. Thus we have the electron operator of the form

Ve(z) = ψ(z)V√m(z)

Using this propsoed electron operator we build the multi-particle wavefunction

Ψ = 〈ψe(z1)ψe(z2) . . . ψe(zN )Q〉

where Q is the background charge for the bose field. Since the Ising and bose fields are completely
seperate theories we can take the expectation for the bose field to give

Ψ = 〈ψ(z1)ψ(z2) . . . ψ(zN )〉
∏
i<j

(zi − zj)m
N∏
i=1

e−|zi|
2/(4`2)

where the correlator is now in the Ising theory alone.
Now the Ising correlator is just a correlator must be zero unless there are an even number of ψ

fields (since we need them to fuse to the identity). If the number of fermi fields is indeed even, then
we can use the fact that ψ is a free fermi field and we can invoke Wick’s theorem to obtain

〈ψ(z1)ψ(z2) . . . ψ(zN )〉 = A
[

1

z1 − z2

1

z3 − z4
. . .

1

zN−1 − zN

]
≡ Pf

(
1

zi − zj

)
(17.6)

Here A means antisymmetrize over all reordering of the z’s. Here we have written the usual notation
for this antisymmetrized sum Pf which stands for “Pfaffian”9. Thus we obtain the trial wavefunction
based on the Ising CFT

Ψ = Pf

(
1

zi − zj

)∏
i<j

(zi − zj)m
N∏
i=1

e−|zi|
2/(4`2)

which is known as the Moore-Read wavefunction. For m odd this is a wavefunction for bososn
and for m even it is a wavefunction for fermions. To figure out the filling fraction, we note that
the Pfaffian prefactor only removes a single power in each variable. Thus the filling fraction is
determined entirely by the power m, and is given (like Laughlin) by ν = 1/m.

9Several interesting facts about the Pfaffian: A BCS wavefunction for a spinless superconductor can be written as
Pf[g(ri − rj)] where g is the wavefunction for a pair of particles. Any antisymmetric matrix Mij has a Pfaffian

Pf[M ] = A[M12M34...]

. A useful fact is that (Pf[M ])2 = detM .
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17.3.1 Some Exact Statements About the Moore-Read Wavefunction

For simplicity, let us consider the m = 1 case ν = 1 for bosons, which is the easiest to think about
analytically. The wavefunction does not vanish when two particles come to the same point, since
the zero of the (z1 − z2) can be canceled by the pole of the Pfaffian. However, it is easy to see that
the wavefunction must vanish (quadratically) when three particles come to the same point (three
factors from (z − z)1 but then one factor in the denominator of the Pfaffian).

Note that, even were we to not have an explicit expression for the Moore-Read wavefunction we
would still be able to use the operator product expansion to demonstrate that the wavefunction (for
m = 1) must vanish quadratically when three particles come to the same point10

Analogous to the case of the Laughlin wavefunction, it turns out that the Moore-Read wave-
function (for m = 1) is the exact (highest density) zero energy ground state of a three-body delta
function interacton

V = V0

∑
i<j<k

δ(ri − rj)δ(ri − rk)

Similarly one can construct a potential for fermions such that the ν = 1/2 Moore-Read state
(m = 2) is the highest density zero energy state. This is quite analogous to what we did for the
Laughlin state:

V = V0

∑
i<j<k

[∇2δ(ri − rj)]δ(ri − rk)

Non-Exact Statements

Although the Coulomb interaction looks nothing like the three body interaction for which the Moore-
Read Pfaffian is exact, it turns out that ν = 1/2 Moore-Read Pfaffian m = 2 is an extremely good
trial state11 for electrons at ν = 5/2 interacting with the usual Coulomb interaction. This is very
suggestive that the ν = 5/2 is topologically equivalent to the Moore-Read Pfaffian wavefunction
(i.e., they are in the same phase of matter)12 Further, the most natural interaction for bosons, the
simple two-body delta function interaction has a ground state at ν = 1 which is extremely close to
the Moore-Read m = 2 Pfaffian.

17.4 Quasiholes of the Moore-Read state

We now try to construct quasiholes for the Moore-Read Pfaffian wavefunction. As we did in Eq. 17.2,
we want to write

Ψqh(w) = 〈ψqh(w)ψe(z1)ψe(z2) . . . ψe(zN )Q̂〉

but we need to figure out what the proper quasihole operator ψqh is.

10To see this, note that taking the first two particles to the same point gives

lim
z2→z1

ψe(z1)ψe(z2) ∼ IV2(z1)

Then fusing the third particle

lim
z3→z1

ψe(z3)V2(z1) ∼ (z3 − z1)2ψV3(z1)

11Here we have used a mapping between Landau levels, that any partially filled higher Landau level can be mapped
to a partially filled lowest Landau level at the price of modifying the inter-electron interaction. This mapping is exact
to the extent that there is no Landau level mixing. I.e., that the spacing between Landau levels is very large.

12There is one slight glitch here. It turns out that with a half-filled Landau level, the wavefunction and its charge-
conjugate (replace electrons by holes in the Landau level) are inequivalent! It is possible that the ν = 5/2 state is
actually in the phase of matter defined by the conjugate of the Moore-Read state. The breaking of the particle-hole
symmetry is very weak and involves Landau-level mixing. This debate, which one of the two possibilities is realized
in experiment, has not yet been fully resolved.
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Laughlin Quasihole

One obvious thing to try would be to write a simple vertex operator

ψLqh(w) = Vβ(w)

Looking at the OPE we have

ψLqh(w)ψe(z) ∼ (w − z)β
√
mψ(z)

In order to have the correlator be single valued in z (i.e., no branch cuts) we must choose β = p/
√
m

for some integer p (the smallest quasihole of this type corresponding to p = 1 then). This generates
the wavefunction

ΨL
qh(w) = 〈ψLqh(w)ψe(z1)ψe(z2) . . . ψe(zN )Q̂〉 (17.7)

=

[
N∏
i=1

(zi − w)

]
Ψ

(m)
Moore−Read

which is just a regular Laughlin quasihole factor. By the same arguments, the charge of this quasihole
is e∗ = eν.

Minimal quasihole

However, the Laughlin quasihole is not the minimal quasihole that can be made. Let us try using
an operator from the Ising theory as part of the quasihole operator. Suppose

ψqh(w) = σ(w)Vβ(w)

We then have the operator product expansion

ψqh(w)ψe(z) ∼ [σ(w)ψ(z)]
[
Vβ(w)V√m(z)

]
∼ (w − z)−1/2(w − z)β

√
m

Thus in order for the wavefunction not to have any branch cuts for the physical electron z coordinates,
we must choose β = (p + 1/2)/

√
m for p ≥ 0, with the minimal quasihole corresponding to p = 0.

Thus we have the minimal quasihole operator of the form

ψqh(w) = σ(w)V 1
2
√
m

(w)

Note that when we consider correlators, by the general rule (4) from section 17.2, the operators must
fuse to the identity in order to give a nonzero result. Thus, we must always have an even number of
σ fields13. We thus consider the wavefunction of the form

Ψqh(w,w′) = 〈ψqh(w)ψqh(w′)ψe(z1)ψe(z2) . . . ψe(zN )Q̂〉 (17.8)

= (w − w′) 1
4m e−(|w|2+|w′|2)/4`∗2

N∏
i=1

(w − zi)1/2(w′ − zi)1/2 (17.9)

× 〈σ(w)σ(w′)ψ(z1)ψ(z2) . . . ψ(z3)〉
∏
i<j

(zi − zj)m
N∏
i=1

e−|zi|
2/(4`2)

Several comments are in order here. First of all, from the first line of Eq. 17.9 it looks like there
are branch cuts with respect to the z coordinates. However, these fractional powers are precisely
canceled by branch cuts in the correlator on the second line. Secondly the charge of the quasihole
is determined entirely by the power of the (z − w) factor, since it tells us how much the electrons
are pushed away from the hole. (The correlator does not give an extensive number of zeros (as in

13Like the Sith, they come in pairs.
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Eq. 17.6). If the exponent of (z − w) were one, this would be a regular Laughlin quasihole with
charge eν, thus here we have a quasihole charge of

e∗ = eν/2.

I.e., the Laughlin quasihole has fractionalized into two pieces! This charge is reflected in the effective
magnetic length `∗ =

√
~/e∗B.

Note that this wavefunction is still an exact zero energy state of the special interaction discussed
above for which the Moore-Read wavefunction is the exact highest density zero energy state (the
wavefunction here is higher degree and thus less dense, as we would expect given that we have added
quasiholes). We can demonstrate the current wavefunction is still zero energy by bringing together
three electrons to the same point and examining how the wavefunction vanishes. Since this can
be fully determined by the operator product expansion, it does not matter if we add quasiholes to
the wavefucntion, the vanishing property of the wavefunction remains the same, and thus this is an
exact zero energy state of the special interaction.

A Crucial Assumption

The wavefunction here is single valued in all electron coorrdinates (as it should be) and is holomorphic
in all coordinates (all z’s and w’s) except for the gaussian exponential factors. In this holomorphic
gauge, as discussed above, we can read off the fractional statistics of the quasiparticles given the
assumption that the wavefunction is properly normalized. This is a crucial assumption and it is not
a simple result of CFT, but always requires an assumption about some sort of plasma being in a
screening phase — and often the mapping to a plasma is highly nontrivial14. Nonetheless, from
extensive numerical work, it appears that physics is kind to us and that these wavefunctions do
indeed come out to be properly normalized!

Fusion and Braiding of Two Quasiholes in Identity Channel (even number of electrons)

Let us assume that the number of electrons is even. In this case the two σ’s of the quasiholes fuse
to the identity as in Eq. 17.4. As the two quasiholes approach each other we then have15

ψqh(w)ψqh(w′) ∼ (w − w′) 1
4m−

1
8

where the 1
4m is written expliclty in the first line of Eq. 17.9 and the − 1

8 is from the operator product
expansion Eq. 17.4. Invoking now the crucial assumption that the wavefunctions are normalized,
since they are obviously holomorphic, we simply read off the statistical phase (the monodromy) we
get for wrapping one quasihole around another!

One might object that the operator product expansion only tells us the behavior of the correlator
as w and w′ come close to each other. However, we are guaranteed that there are no other branch
cuts in the system — the only branch cut in the wavefunction for w is when it approaches w′. Thus,
no matter how far w is from w′, when w circles w′ it must always accumulate the same monodromy!
In the notation we defined in earlier chapters we have

[R“I”
qh−qh]2 = e2πi( 1

4m−
1
8 )

Recall that if a× b→ c we should have [Rcab]
2 = e2πi(hc−ha−hb). Here, the total scaling dimension of

the quasihole is hqh = 1/16 + 1/(8m) with the second piece from the bose vertex operator V1/2
√
m.

The fusion product “I” = V1/
√
m has quantum dimension h“I” = 1/2m.

14See work by Bonderson et al
15Strictly speaking on the right hand side we should also write the identity operator I for the Ising theory and

V1/
√
m for the boson sector.
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Fusion and Braiding of Two Quasiholes in ψ Channel (odd number of electrons)

Let us now assume that the number of electrons is odd. In this case the two σ’s of the quasiholes
fuse to ψ as in Eq. 17.5. As the two quasiholes approach each other we then have16

ψqh(w)ψqh(w′) ∼ (w − w′) 1
4m+ 3

8

where the 1
4m is written expliclty in the first line of Eq. 17.9 and the 3

8 is from the operator product
expansion Eq. 17.5. Again we just read off the monodromy from this OPE. Thus, one obtains a
different phase depending on the fusion channel of the two quasiholes. In the notation we defined
in earlier chapters we have

[R“ψ”
qh−qh]2 = e2πi( 1

4m+ 3
8 )

17.5 Multiple Fusion Channels and Conformal Blocks

We will next address the issue of what happens when we have more than two quasiholes. It is clear
what will happen here, we will obtain a correlator (like that in Eq. 17.9) but now it will have more
σ fields. We will thus have to figure out how to make sense of correlators with many (nonabelian)
σ fields. As an example to show how this works, let us get rid of the ψ fields for a moment and
consider a correlator

G(w1, w2, w3, w4) = 〈σ(w1)σ(w2)σ(w3)σ(w4)〉 (17.10)

Let us imagine that we will bring w1 close to w2 and w3 close to w4. Now in order for the
correlator to give a nonzero value, the four fields have to fuse to unity (rule (4) from section 17.2).
There are two different ways in which this can happen

σ(w1)σ(w2)→ I

σ(w3)σ(w4)→ I

OR we could have

σ(w1)σ(w2)→ ψ

σ(w3)σ(w4)→ ψ

and the two ψ fields could then fuse to the identity.
So which one is right? In fact both happen at the same time! To understand this we should

think back to what we know about a 2d systems with nonabelian quasiparticles in them — they are
described by a vector space. In order to know which particular wavefunction we have in a vector
space we need some sort of initial condition or space-time history. Nowhere in the correlator have
we specified any space-time history, so we should be getting a vector space rather than a single
wavefunction. The multiple wavefunctions in the vector space arise from choosing different roots of
the branch cuts of the holomorphic functions. To see a detailed example of this let us write out the
explict form of the correlator in Eq. 17.10. We note that the calculation that leads to this requires
some substantial knowledge of conformal field theory and will not be presented here. However many
of these sorts of results have simply been tabulated in books and can be looked up when necessary.
For simplicity we take the four coordinates of the z variables to be at convenient points so that the
correlator looks as simple as possible17.

lim
w→∞

〈σ(0)σ(z)σ(1)σ(w)〉 = a+G+(z) + a−G−(z) (17.11)

where

G± = (wz(1− z))−1/8

√
1±
√

1− z (17.12)

16Strictly speaking on the right hand side we should also write the identity operator ψ for the Ising theory and
V1/
√
m for the boson sector.

17In fact due to conformal invariance, knowing the correlator for any fixed three points and one point z free, we
can determine the correlator for any other four points, but this is beyond the scope of the current discussion!
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are known as conformal blocks and here a+ and a− are arbitrary complex coefficients (usually
with some normalization condition implied). I.e, the correlator itself represents not a function,
but a vector space (with basis vectors being conformal blocks) with arbitrary coefficients yet to be
determined by the history of the system!

Let us analyze some limits to see which fusion channels we have here. Taking the limit of z → 0
we find that

lim
z→0

G+ ∼ z−1/8 (σ(0)σ(z)→ I) (17.13)

lim
z→0

G− ∼ z3/8 (σ(0)σ(z)→ ψ) (17.14)

Thus (comparing to Eqs. 17.4 and 17.5) we see that G+ has σ(0) and σ(z) fusing to I whereas G−
has them fusing to ψ. Since the four σ’s must fuse to the identity, this tells us also the fusion channel
for σ(1) and σ(w).

The most general wavefunction is some linear combination (a+ and a−) of the two possible
fusion channels. This is what we expect, the state of a system can be any superposition within this
degenerate space.

Now consider what happens as we adiabatically take the coordinate z in a circle around the
coordinate 1. Looking at Eq. 17.12 we see that we accumulate a phase of e−2πi/8 from the factor of
(1− z)−1/8 outside the square-root. In addition, however, the

√
1− z inside the square root comes

back to minus itself when z wraps around 1, thus turning G+ to G− and vice versa! The effect of
monodromy (taking z around 1) is then(

a+

a−

)
−→ e−2πi/8

(
0 1
1 0

)(
a+

a−

)
(This result should be somewhat familiar from the homework exercise on Ising anyons!)

We thus see that in this language, the multiple fusion channels are just different choices of which
Riemann sheet we are considering, and the fact that braiding (monodromy) changes the fusion
channel is simply the fact that moving coordinates around on a Riemann surface, you can move
from one Riemann sheet to another!

So long as we can assume that the conformal blocks are orthonormal (see comment above on
“crucial assumption”.. this is now adding a further assumption18) then we can continue to read off
the result of physically braiding the particles around each other by simply looking at the branch
cuts in the wavefunction.

F-matrix

We have seen how to describe the fusion of σ(0) and σ(z). What if now we instead take z close to 1
such that we can perform an operator product expansion of σ(z)σ(1). Taking this limit of Eq 17.12
it naively looks like both

lim
z→1

G+ ∼ (1− z)−1/8

lim
z→1

G− ∼ (1− z)−1/8

But examining this a bit more closely we realize we can construct the linear combinations

G̃+ =
1√
2

(G+ +G−)

G̃− =
1√
2

(G+ −G−)

18As with the discussion above, this assumption appears to be true, but “proofs” of it always boil down to some
statement about some exotic plasma being in a screening phase, which is hard to prove.
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where here we have inserted the prefactor of 1/
√

2 such that the new basis G̃± is orthonormal given
that the old basis G± was. With this new basis we now have the limits

lim
z→1

G̃+ ∼ (1− z)−1/8

lim
z→1

G̃− ∼ (1− z)−1/8

[√
1 +
√

1− z −
√

1−
√

1− z
]

∼ (1− z)−1/8(1− z)1/2 ∼ (1− z)3/8

Thus we see that in this twiddle basis (G̃±) we have in this limit that G̃+ is the fusion of σ(z) and
σ(1) to identity and G̃− is the fusion to ψ.

The transformation between the two bases G± and G̃± is precisely the F -matrix transformation.(
G̃+

G̃−

)
=

1√
2

(
1 1
1 −1

)(
G+

G−

)
which should look familiar to anyone who did the homework! (We also got the same result from
writing the ising theory in terms of cabled Kauffman strings). Diagrammatically this transform is
shown in Fig. 17.1

Figure 17.1: The F -matrix transforms between the two fusion channels depicted here.

17.6 More Comments on Moore-Read State with Many Quasi-
holes

Although we have presented this discussion about multiple fusion channels and braiding in terms of
σ operators, the situation is extremely similar once we use quasihole operators (σ(z)Vβ(z)) and we
put them in a wavefunction as in Eq. 17.9 but possibly with more quasihole operators. As we might
expect just from looking at the fusion rules, the number of fusion channels (the number of Riemann
sheets!) is 2M/2−1 where M is the number of quasiholes, and the -1 arises because the overall fusion
channel must be the identity. Further, the F -matrices and braiding properties all follow very much
in a similar manner. The only slightly problematic piece is that we must continue to assume that
the conformal blocks form an orthonormal basis — which is hard to prove, but appears to be true.

17.7 Generalizing to Other CFTs

The principles we used for buidling a quantum Hall state from the Ising CFT can be generalized to
build quantum Hall states from other CFTs as well. The general principles are as follows:

(1) Construct an electron field which gives a ground state which is single valued in the electron
coordinates. This is done bystarting with an abelian field from the CFT (one that does not have
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multiple fusion channels) and combining it with a chiral bose vertex operator. The filling fraction
is determined entirely by the charge on the vertex operator.

(2) Identify all of the possible quasiholes by looking at all the fields in the CFT and fusing them
with a chiral bose vertex operator and enforcing the condition that the electron coordinates must not
have branch cuts. The charge of the quasihole is determined by the charge on the vertex operator
(and the charge on the electron vertex operator).

(3) Some of the braiding properties can be determined immediately from the operator product
expansion while others require more detailed information about the form of the CFT.

17.7.1 Z3 Parafermions (briefly)

As an example, let us consider the Z3 Parafermion CFT. Its primary fields and fusion rules are given
by

h

ψ1 2/3
ψ2 2/3
σ1 1/15
σ2 1/15
ε 2/5

× ψ1 ψ2 σ1 σ2 ε

ψ1 ψ2

ψ2 I ψ1

σ1 ε σ2 σ2 + ψ1

σ2 σ1 ε I + ε σ1 + ψ2

ε σ2 σ1 σ1 + ψ2 σ2 + ψ1 I + ε

These fusion rules might look very complicated, but in fact they can be thought of as an abelian
Z3 theory (with fields I, ψ1, ψ2 = ψ̄1) fused with a Fibonacci theory (with fields I and τ). We then
have

σ1 = ψ2τ (17.15)

σ2 = ψ1τ (17.16)

ε = τ (17.17)

and using the Fibonacci fusions τ × τ = I + τ and the Z3 fusions ψi × ψj = ψ(i+j) mod 3 with ψ0

being the identity, we recover the full fusion table19.
Let us propose an electron field

ψe(z) = ψ1(z)V√
m+ 2

3

(z)

where m is a nonnegative integer (even for bosons, odd for fermions). It is easy to check from the
OPE that

ψe(z)ψe(w) ∼ (z − w)mψ2(z)V
2
√
m+ 2

3

(z)

The resulting wavefunction is then

Ψ = 〈ψe(z1)ψe(z2) . . . ψe(zN )Q〉

which is known as the Read-Rezayi Z3 parafermion wavefunction.
The filling fraction of the wavefunction is determined by the vertex operator and is given by

ν =
1

m+ 2
3

For the m = 0 case this is ν = 3/2 bosons, while for the m = 1 case this is ν = 3/5 fermions.
For the case of m = 0 it is easy to check that the wavefunction does not vanish when two particles

come to the same point, nor does it vanish when three particles come to the same point, but it does
vanish when four particles come to the same point. Thus the wavefunction is an exact (densest)
zero energy ground state of a four particle delta function.

19Note that the scaling dimensions h also work out modulo 1. The τ field has hτ = 2/5 If you add this to h = 2/3
for the ψ field you get h = 2/5 + 2/3 = 1 + 1/15
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HALL EFFECT

While there are 4-particle interactions for these systems for which wavefunctions are the ex-
act ground state, it turns out that there are physically relevant cases where the Read-Rezayi Z3

parafermion wavefunction is an extremely good trial wavefunction. For bosons interacting with a
simple two body δ-function potential potential at filling fraction ν = 3/2,the Z3 parafermion wave-
function is extremely good. For electrons interacting with simple coulomb interaction (in realistic
quantum well samples), it turns out that the wavefunction is extremely good for ν = 2 + 2/5, which
we need to particle-hole conjugate in the partly filled Landau level to get a ν = 3/5 wavefunction.

To construct a quasihole we can try building a quasihole from any of the primary field operators.
It turns out the one with the lowest charge is constructed from σ1

ψqh(z) = σ1(z)Vβ(z)

Using the OPE we have
σ1(w)ψ1(z) ∼ (z − w)−1/3ε(z)

We thus choose
β =

p

3
√
m+ 2

3

with the smallest charge quasihole then being p = 1. With this choice, for a quasihole at position w
we generate a factor of ∏

i

(z − w)1/3

meaning the charge of the quasihole is
e∗ = eν/3
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