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Some Revision Problems

6.1. Debye Theory

Use the Debye approximation to determine the specific heat of a two dimensional solid as
a function of temperature. State your assumptions. You will need to leave your answer in
terms of an integral that generally one cannot do. At high T , show the specific heat goes to
a constant and find that constant. At low T , show that Cv = KT n Find n. Find K in terms
of a definite integral. If you are brave you can try to evaluate the integral, but you will need
to leave your result in terms of the Riemann zeta function ζ(s) =

∑∞
n=1

n−s.

6.2. Debye Theory II

Physicists should be good at making educated guesses: Guess the element with the highest
Debye temperature. The lowest? You might not guess the ones with the absolutely highest
or lowest temperatures, but you should be able to get close.

6.3. Free Electron Theory

(a) Explain what is meant by the Fermi energy, Fermi temperature and the Fermi surface of
a metal.

(b) Show that the kinetic energy of a free electron gas in 3D is (3/5)NEF where EF is the
fermi energy.

(c) Consider a two dimensional electron gas. Derive an expression for the density of states.

(d) *Calculate the specific heat at low temperature of this two dimensional electron gas. The
following integral may be useful:

∫ ∞

−∞

dx
x2ex

(ex + 1)2
=

π2
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6.4. Vibrations I

(a) Consider a 1 dimensional mass and spring model of a crystal. Write down the dispersion
curve ω(k) for this model (this should be easy by this time). Now write an expression for
the specific heat of this 1 dimensional chain. You will inevitably have an integral that you
cannot do.

(b)* However, you can expand exponentials for high temperature to obtain a high tempera-
ture approximation. It should be obvious that the high temperature limit should give heat
capacity C = kB per atom (the law of Dulong-Petit in one dimension). By expanding to
next nontrivial order, show that

C/N = kB(1−A/T 2 + . . .)

where

A =
~
2k

6m

where m is the atomic mass and k is the spring constant.
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6.5. Vibrations II Consider a 1 dimensional spring and mass model of a crystal. Generalize
this model to include springs not only between neighbors but also between second nearest
neighbors. Let the spring constant between neighbors be called κ1 and the spring constant
between second neighbors be called κ2. Let the mass of each atom be M .

(a) Calculate the dispersion curve ω(k) for this model.

(b) Determine the sound wave velocity, Show the group velocity vanishes at the Brillouin
zone boundary.

6.6. Reciprocal Lattice

Show that the reciprocal lattice of a FCC (face-centered-cubic) lattice is a BCC (body-
centered-cubic) lattice. Correspondingly show that the reciprocal lattice of a BCC lattice is
an FCC lattice. If an FCC lattice has conventional unit cell with lattice constant a, what is
the lattice constant for the conventional unit cell of the reciprocal BCC lattice?

Consider now an orthorhombic face-centered lattice with conventional lattice constants
a1, a2, a3. What it the reciprocal lattice now?

6.7. Scattering

The Bragg angles of a certain reflection from copper is 47.75◦ at 20◦C but is 46.60◦ at 1000◦C.
What is the coefficient of linear expansion of copper? (Note: the Bragg angle θ is half of the
measured diffraction (deflection) angle 2θ).

6.8. More scattering

KCl and KBr are alkali-halides with the same crystal structure as NaCl: fcc cubic with Na at
(0,0,0) and Cl at (1/2,1/2,1/2). KBr shows X-ray diffraction peaks from planes (111) (200)
(220) (311) (222) (400)(331)(420), but KCl shows peaks only at (200)(220)(222)(400)(420).
Why might this be true?

6.9. Semiconductors

Describe experiments to determine the following properties of a semiconductor sample: (i)
sign of the majority carrier, (ii) carrier concentration (assume that one carrier type is domi-
nant), (iii) band gap, (iv) effective mass (v) mobility of the majority carrier.

6.10. More Semiconductors

Outline the absorption properties of a semiconductor and how these are related to the band
gap. Explain the significance of the distinction between a direct and an indirect semiconduc-
tor. What region of the optical spectrum would be being studied for a typical semiconducting
crystal?

6.11. Yet More Semiconductors

Outline a model with which you could estimate the energy of electron states introduced
by donor atoms into an n-type semiconductor. Write down an expression for this energy,
explaining why the energy levels are very close to the conduction band edge.

6.12. Magnetism

Explain briefly the origin of diamagnetism and paramagnetism in atoms.

Consider a crystal of volume V composed of N identical atoms. Each atom has spin 1/2 and
g = 2. Assume neighboring atoms do not interact, derive an expression for the paramagnetic
susceptibility as a function of temperature in the high temperature limit. How would your
answer be different if each atom had spin 1?
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Explain how this system might be used to make a refrigerator. In reality what limits how
well this works?

Discuss what is meant by “quenching” of orbital angular momentum and its consequences
for paramagnetism.

6.13. Mean field theory

(a) β-Brass is an alloy containing equal numbers of of Cu and Zn atoms. Above a temperature
of 730K, the atoms are arranged randomly on a body centered cubic lattice. Below 730K, the
lattice becomes simple cubic with Cu atoms largely on the (0,0,0) position and the Zn atoms
largely at the (1/2,1/2,1/2) position in the unit cell. The energy of the crystal depends on
the occupancy of the sites and is given by

E =
1

2

∑
〈i,j〉

Jσiσj

where σi = +1 if the site is occupied by a Cu atom and σi = −1 if the site is occupied by
a Zn atom and J > 0. Here the sum is restricted to nearest neighbors. Using mean field
approximation show that

〈σ〉 = tanh(βzJ〈σ〉)

what is z ? (b) Estimate the magnitude of J (c) Explain, in detail, how this ordering could
be observed.


