Topic Subtopic	Year =	04	05	06	07	08	09	10	11	12
	# of Times	5								
Something About Phonons	9	1		1 1	1 1	1 1	1 1	1 1	1	1
Define Phonon	1	1	-							
Phonon Density of States	1						-	1		
In 2d	1						-	1		
In 1d / diatomic	1				-	1				
How would you measure phonons (light/neutrons)	2		-	L	-	1				
Why is there a degeneracy of modes at	2		-	L				1	L	
Debye Specific Heat	4		-	1 1	1		-	1		1
Derivation in 3d	2			-	1					1
Derivation In 2d	2		-	L				1		
Derivation In 1d	1			-	1					
How many/ what kind of (acoustic/optical/transverse/longitudinal) phonon	ı 5				-	1 1	1 1	1 1	L	1
Describe Motion of acoustic/optical modes	4	1			-	1 1	1 1	1		
Some Sort of Harmonic Chain	6		-	1 1	1 1	1 1	1	1	1	
Diatomic with Two Masses	2				-	1 1	1			
Monatomic	2			-	1				1	
Alternating Sprint Constants	2		-	1				1	L	
monatomic limit of diatomic	2		-	1		-	1			
Sketch Dispersions / monotomic diatomic	2	1	-						1	
	0									
Something about the Free Electron Gas	6		-	1	-	1 1	1 1	1 1	L	1
Derive Specific Heat of Fermi Gas	2		-	1	-	1				
Define Fermi Energy / Fermi Surface	2					-	1	1	L	
Density of States of Free Electron Gas	3		-	1		-	1	1	L	
Definition of	1					-	1			
Derivation In 3d	1							1	L	
Derivation In 2d	2		-	1		0.5	5	0.5	;	
Derivation In 1d	0.5						0.5	5		
Estimate a Fermi Energy / Relationship of N to Ef	4		-	1	-	1	-	1		1

Topic Subtopic	Year =	04	05	06	07	08	09) 1	.0	11	12
	# of Times										
Something About Diffraction / Crystal Structure	9	1	. :	1	1	1	1	1	1	1	1
Derive Structure Factor / Scattering Amplitude	5	1		1			1		1	1	
Calculate Interplanar distances	2			1							1
Diffraction	5	1	-				1	1	1	1	
Derive Systematic Absences	2								1	1	
When two atoms scatter same; H not scattering	2				1					1	
Analyze a Powder Diffraction Pattern	4	1	-			1		1			1
Predict Diffraction Data	2				1		1				
Write Down Structure Factor for X	3						1	1		1	
Identify a unit cell doubling	2	1		1							
Plan View	2						1		1		
primitive vs conventional unit cell	4				1		1	1	1		
Identify Lattice/Basis	3				1		1				1
Calculate Reciprocal Lattice	2	1		1							
Wigner Seitz / Brillouin Zone Construction	3	1	-						1		1
Contrast neutron/xray	1							1			
Describe equipment for neutron/xray	2	1		1							

Topic Subtopic	Year =	04	05	06	07	08	09	1 1	LO	11	12
	# of Times	S									
Something about Band Structure/Semiconductor Physics	9	1	L	1	1	1	1	1	1	1	1
Nearly Free Electron Model (NFEM)	6				1		1	1	1	1	1
Derive Gaps of NFEM at zone boundary	3						1		1	1	
Draw Dispersion	2							1	1		
Describe Effective Mass	3						1		1		1
Monovalent / Divalent - Metal/Insulator	3						1	1	1		
Gaps open when doubling unit cell	1							1			
Draw a fermi surface in 2d/3d for weak/strong potential	2						1			1	
Tight Binding Band	1				1						
Describe Density of States	1				1						
Describe opening of gap	1				1						
Define Effective Mass	3	1	L				1	1			
Define Chemical Potential / Doping	1						1				
Define Mobility	3	1	L				1	1			
Define Conductivity	1							1			
Define Hole	1			1							
Signs of velocity, energy, current,	1			1							
Law of Mass Action / formula for n(T,mu)	5			1		1	1		1		1
Derivation	4					1	1		1		1
Use to calculate some density/mu when doped	4			1		1			1		1
Temperature dependence of semiconductors	2	1	L				1				
Estimate band gap / doping from data	1						1				
How this would be measured	2	1	L				1				
How chemical potential changes with doping	1			1							
Density of States (1d, 2d, 3d)	2				0.	50.	5 0	.5	0.5		
Optical Properties of Semiconductors	1							1			
Direct / Indirect Gap	1							1			
States bound to donors	1							1			
Drude Theory	1							1			

Topic Subtopic	Year =	04	05	06	07	08	09	10	11	12
	# of Times	S								
Derive Hall Coefficient	1						1			
Derive Conductivity/Mobility	2		1				1	-		
Extract mobility/density from experimental data	1						1			

Topic Subtopic	Year =	04	05	06	07	08	09	10	11	12
	# of Times	1								
Something about magnetism	7	1	1	. 1		1	1	1	1	
Define Para/Diamagnetism	3			1	-		1	1	L	
Estimate Larmor Diamagnetism	1			1	-					
Curie Law Derivation for Spin 1/2	3			1	-		1	1	L	
Derive Pauli Paramagnetism	1						1			
Adiabatic Demagnetization	1							1	L	
What is exchange J	2	1			-	1				
Molecular (mean) field	5	1	1	. 1		1			1	
Relationship of J to Tc	3		1	. 1		1				
What causes domains	1	1								
Domain Relation to Hysteresis	2	1			-	1				
Derive Size of Bloch Wall	1	1								