Slides
 Condensed Matter Physics Revision Lecture 1

HOMEWORKS:

Go to my website
 for commentary

Much of this problem set is standard exam material.

Problem Set 1

Einstein, Debye, Drude, and Free Electron Models

1.1. Einstein Solid

(a) Classical Einstein Solid (or "Boltzmann" Solid):

Consider a single harmonic oscillator in three dimensions with Hamiltonian

$$
H=\frac{\mathbf{p}^{2}}{2 m}+\frac{k}{2} \mathbf{x}^{2}
$$

The classical calculation has never been on an exam (although it is examinable)
\triangleright Calculate the classical partition function

$$
Z=\int \frac{\mathrm{dp}}{(2 \pi \hbar)^{3}} \int \mathrm{~d} \mathbf{x} e^{-\beta H(\mathbf{p}, \mathbf{x})}
$$

Note: in this problem \mathbf{p} and \mathbf{x} are three dimensional vectors (they should appear bold to indicate this unless your printer is defective).
\triangleright Using the partition function, calculate the heat capacity $3 k_{B}$.
\triangleright Conclude that if you can consider a solid to consist of N atoms all in harmonic wells, then the heat capacity should be $3 N k_{B}=3 R$, in agreement with the law of Dulong and Petit.
(b) Quantum Einstein Solid: Now consider the same Hamiltonian quantum mechanically.
\triangleright Calculate the quantum partition function

$$
Z=\sum_{j} e^{-\beta E_{j}}
$$

The quantum Einstein model could be on an exam
where the sum over j is a sum over all Eigenstates.
\triangleright Explain the relationship with Bose statistics.
\triangleright Find an expression for the heat capacity.
\triangleright Show that the high temperature limit agrees with the law of Dulong of Petit.
\triangleright Sketch the heat capacity as a function of temperature.

1.2. Debye Theory:

Debye theory is very frequently examined!
(a) \ddagger State the assumptions of the Debye model of heat capacity of a solid.
\triangleright Derive the Debye heat capacity as a function of temperature (you will have to leave the final result in terms of an integral that cannot be done analytically).
\triangleright From the final result, obtain the high and low temperature limits of the heat capacity analytically.

You may find the following integral to be useful
$\int_{0}^{\infty} d x \frac{x^{3}}{e^{x}-1}=\sum_{n=1}^{\infty} \int_{0}^{\infty} x^{3} e^{-n x}=6 \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{15}$
By integrating by parts this can also be written as $\int_{0}^{\infty} d x \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}}=\frac{4 \pi^{4}}{15}$
(b) The following table gives the heat capacity C for potassium iodide (KI) as a function of temperature.

$T(\mathrm{~K})$	0.1	1.0	5	8	10	15	20
$C\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$	8.5×10^{-7}	8.6×10^{-4}	1.2×10^{-1}	5.9×10^{-1}	1.1	2.8	6.3

\triangleright Discuss, with reference to the Debye theory, and make an estimate of the Debye temperature.

1.3. Drude Theory of Transport in Metals

Drude theory does show up on exams -- particularly in the context of semiconductors

AC Drude theory is likely to be too hard for an exam
(a) Assume a scattering time τ and use Drude theory to derive an expression for the conductivity of a metal.
(b) Define the resistivity matrix $\underset{\sim}{\rho}$ as $\vec{E}=\rho \vec{j}$.
\triangleright Use Drude theory to derive an expression for the matrix ρ for a metal in a magnetic field.
(You might find it convenient to assume \vec{B} parallel to the \hat{z} axis. The under-tilde notation means that the quantity ρ is a matrix.)
\triangleright Invert this matrix to obtain an expression for the conductivity matrix σ.
(c) Define the Hall coefficient.
\triangleright Estimate the magnitude of the Hall voltage for a specimen of sodium in the form of a rod of rectangular cross section 5 mm by 5 mm carrying a current of 1 A in a magnetic field of 1T. The density of sodium atoms is roughly $1 \mathrm{gram} / \mathrm{cm}^{3}$, and sodium has atomic mass of roughly 23 . You may assume that there is one free electron per sodium atom (Sodium has valence one).
\triangleright What practical difficulties would there be in measuring the Hall voltage and resistivity of such a specimen (and how might these difficulties be addressed).
(d) What properties of metals does Drude theory not explain well?
(e)* Consider now an applied AC field $\vec{E} \sim e^{i \omega t}$ which induces an AC current $\vec{j} \sim e^{i \omega t}$. Modify the above calculation (in the presence of a magnetic field) to obtain an expression for the complex AC conductivity matrix $\alpha(\omega)$. For simplicity in this case you may assume that the metal is very clean, meaning that $\tau \rightarrow \infty$, and you may assume that $\vec{E} \perp \vec{B}$. You might again find it convenient to assume \vec{B} parallel to the \hat{z} axis. (This problem might look hard, but if you think about it for a bit, it isn't really much harder than what you did above!)
\triangleright At what frequency is there a divergence in the conductivity?
\triangleright What does this divergence mean? (When τ is finite, the divergence is cut off).
\triangleright Explain how could one use this divergence (known as the cyclotron resonance) to measure the mass of the electron. (In fact, in real metals, the measured mass of the electron is generally not equal to the well known value $m_{e}=9.1095 \times 10^{-31} \mathrm{~kg}$. This is a result of band structure in metals, which we will explain later in the course.)

Sample Exams with Solutions:

One on my website
One in back of book
Solutions to 2011 exam on web - with all the past papers

PAST PAPERS (1996- present)

Go to my website
for commentary

Which Past Paper Questions are on the Syllabus Now?

Condesed Matter Papers 2011,2012. All on Syllabus

B Paper 2010
Q1. On Syllabus. End of part d is tricky and was not really covered, but could be deduced by a perceptive student.

Q 2,3,4,5. On Syllabus.
Q6. Mostly not on syllabus. The students should be able to deduce the density of states of a 2d electron gas.

Q7,8 Not on syllabus

ETC !!!!
SEE MY WEBSITE!

B Paper 2009.
Q1. On syllabus. This question is solved in great detail in my lecture notes (note also there is an error in the height of data point e of the plot. Discussed in the book)

Q2,3. On syllabus.

STATISTICAL ANALYSIS OF PAST PAPERS (2004-2012)

Go to my website for commentary

Something About Phonons

Define Phonon
Phonon Density of States
In 2d
In 1d / diatomic 1
How would you measure phonons (light/neutrons) 2
Why is there a degeneracy of modes at... 2
Debye Specific Heat
Derivation in 3d 2
Derivation In 2d 2
Derivation In 1d 1
How many/ what kind of (acoustic/optical/transverse/longitudinal) phonon
Describe Motion of acoustic/optical modes 5 4
Some Sort of Harmonic Chain
Diatomic with Two MassesMonatomic
Alternating Sprint Constants 2
monatomic limit of diatomic 2
Sketch Dispersions / monotomic diatomic 2
Something about the Free Electron GasDerive Specific Heat of Fermi Gas
Define Fermi Energy / Fermi Surface
Density of States of Free Electron GasDefinition of
Derivation In 3dDerivation $\ln 2 d$
Derivation In 1d 0.5
Estimate a Fermi Energy / Relationship of N to Ef
 1 1422

9	1
9	1

| Topic Subtopic | $Y e a r=$ | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Something About Diffraction / Crystal Structure	9	1	1	1	1	1	1	1	1
Derive Structure Factor / Scattering Amplitude	5	1	1			1		1	
Calculate Interplanar distances	2		1						1
Diffraction	5	1				1	1	1	
Derive Systematic Absences	2							1	
When two atoms scatter same; H not scattering	2			1					
Analyze a Powder Diffraction Pattern	4	1			1		1		1
Predict Diffraction Data	2			1		1			
Write Down Structure Factor for X	3					1	1		
Identify a unit cell doubling	2	1	1						
Plan View	2					1		1	
primitive vs conventional unit cell	4			1		1	1	1	
Identify Lattice/Basis	3			1		1			1
Calculate Reciprocal Lattice	2	1	1						
Wigner Seitz / Brillouin Zone Construction	3	1						1	1
Contrast neutron/xray	1						1		
Describe equipment for neutron/xray	2	1	1						

Something about Band Structure/Semiconductor Physics
Nearly Free Electron Model (NFEM)9
Derive Gaps of NFEM at zone boundary 3
Draw Dispersion 2
Describe Effective Mass 3
Monovalent / Divalent - Metal/Insulator 3
Gaps open when doubling unit cell 1
Draw a fermi surface in 2d/3d for weak/strong potential 2Tight Binding Band1
Describe Density of States 1
Describe opening of gap 1
Define Effective Mass 3Define Chemical Potential / DopingDefine Mobility3
Define Conductivity1
Define Hole1
Signs of velocity, energy, current, ...
Law of Mass Action / formula for $\mathrm{n}(\mathrm{T}, \mathrm{mu})$
Derivation
Use to calculate some density/mu when doped
Temperature dependence of semiconductors
Estimate band gap / doping from data
How this would be measured
How chemical potential changes with doping1
Density of States (1d, 2d, 3d)
Optical Properties of Semiconductors

p
1

1
1

\square

1

 111

 \(\begin{array}{lll}1 & 1 & 1 \\ & 1 & 1\end{array}\)

 11

 1

 11

 1

 1

 \(\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\)

 \(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\)
 1

 1
 1

$1 \quad 1$

 1

 \(\begin{array}{rrr}0.5 & 0.5 & 0.5 \\ & & 1\end{array}\)

 1

 1
 1
1
1
1
1
$1 \quad 1 \quad 1$
1

1
1
1

1

1
$\begin{array}{ll}1 & \\ 1 & 1\end{array}$
1

1
1
Direct / Indirect Gap
States bound to donors
Drude Theory 1
Derive Hall Coefficient
1
$\begin{array}{ll}\text { Derive Hall Coefficient } & 1 \\ \text { Derive Conductivity/Mobility } & 2\end{array}$
21
Extract mobility/density from experimental data

Temperature dependence of semiconductors

Direct / Indirect Gap
States bound to donors
Drude Theory
Derive Hall Coefficient
Extract mobility/density from experimental data

Topic Subtopic	Year $=$	04		5	0		07			09		1
	\# of Times											
Something about magnetism	7		1	1	1	1		1	1		1	1
Define Para/Diamagnetism	3					1			1		1	
Estimate Larmor Diamagnetism	1					1						
Curie Law Derivation for Spin 1/2	3					1			1		1	
Derive Pauli Paramagnetism	1								1			
Adiabatic Demagnetization	1										1	
What is exchange J	2		1					1				
Molecular (mean) field	5		1	1	1	1		1				1
Relationship of J to Tc	3			1	1	1		1				
What causes domains	1		1									
Domain Relation to Hysteresis	2		1					1				
Derive Size of Bloch Wall	1		1									

VI: Condensed-matter physics

The syllabus

Free electron model of metals, Fermi energy and Fermi surface. Drude theory, conductivity and Hall effect (one carrier only).

Lattice vibrations: law of Dulong and Petit; phonons; dispersion relation with two atomic types: acoustic and optical branches; Einstein and Debye models of heat capacity.

Structure and types of condensed matter. Bonding of atoms: ionic, covalent, van der Waals, metallic [Non examinable: hydrogen]. Elasticity and thermal expansion.

Crystals. Bravais lattices, lattice planes, Miller indices and unit cells (conventional and primitive). Reciprocal lattice: Bragg and Laue formulation of diffraction; Brillouin zone; neutron and x -ray scattering.

Efectrons in periodic potentials; tight binding model; band strue ture; Fermi surface; semiconductors and insulators. Semiconductors: Doping; law of mass action; direct and indirect band gap; concepts of holes and effective mass; mobility and Hall effect in semiconductor [Non examinable: p-n junction, MOSFET].

Magnetism: Para- dia-, ferro-, antiferro-, and ferrimagnetism; application of Hund's rules to determination of magnetic ground states of isolated ions; Local Moment vs Itinerant magnetism. Mean field theory. Domains, domain motion, hysteresis.

Syllabus Changes:

The Long and Short of it...

(giving correct length answers)

New Time Limit $=2$ hours!
3. Explain what is meant by the following terms in relation to the electronic bandstructure: Fermi energy, chemical potential, Fermi surface and effective mass.

Explain how a weak periodic potential in a (one-dimensional) crystal can lead to the formation of a band gap. Sketch and describe qualitatively how the band gap and effective masses close to the Brillouin zone boundaries change as the magnitude of the periodic potential is increased.

A fictitious metal crystallises into a simple cubic lattice with lattice constant a and one atom per lattice point. The potential in the crystal is weakly modulated with the periodicity of the lattice. Sketch the first Brillouin zone for this crystal. The metal is monovalent (that is, it has only one valence electron per unit cell). Describe the shape and dimensions of the Fermi surface if the modulation is extremely weak. What if it is somewhat weak (compared to the Fermi energy), but not extremely weak? A second metal has an identical unit cell, but is divalent (two valence electrons per unit cell). Give a qualitative description and sketch of the Fermi surface for this divalent metal. Discuss what happens in both the monovalent and divalent cases as the periodic potential becomes extremely strong.

From Collection (2008 Exam)

5. Explain briefly the origin of the electronic band gap in a typical electrical insulator.

The periodic potential $V(x)$ experienced by an electron in a one-dimensional crystal may be given in the form

$$
V(x)=V_{0}+V_{G} \mathrm{e}^{-\mathrm{i} G x}+V_{-G} \mathrm{e}^{+\mathrm{i} G x},
$$

where G is the reciprocal lattice vector, and $\left|V_{G}\right|=\left|V_{-G}\right|$. Explain why a suitable wavefunction for an electron in such a potential may be written to a first approximation as

$$
\psi(x)=A \mathrm{e}^{\mathrm{i} k x}+B \mathrm{e}^{\mathrm{i}(k-G) x} .
$$

By substituting $\psi(x)$ into the Schrödinger equation and comparing coefficients in $\mathrm{e}^{\mathrm{i} k x}$ and $\mathrm{e}^{\mathrm{i}(k-G) x}$, show that the energy of an electron of mass m and wavevector k at the zone boundary is given by

$$
E=V_{0}+\frac{\hbar^{2} k^{2}}{2 m} \pm\left|V_{G}\right| .
$$

Discuss the significance of each of the three terms on the right-hand side of this equation in terms of band theory.

Using this result explain why diamond is a good electrical insulator, whereas silicon and germanium, which have the same structure type as diamond, are semiconductors. (In the diamond structure there are two tetravalent atoms in the basis.)

Some Random Comments

Phase velocities in the 1D chain
 Posted by Another Shrugging Physicist on February 1, 2013, 6:01 pm

In lectures we derived the dispersion relation for the 1D monatomic chain as \omega~ $|\sin (k a / 2)|$. That could be defined as having a Brillouin zone as either between - $\mathrm{lpi} / \mathrm{a}$ and $\backslash \mathrm{pi} /$ a or 0 and $2 \backslash \mathrm{pi} / \mathrm{a}$, and it is exactly equivalent in either, as it should be.

But what about the phase velocity \omega / k? If we use the first definition of the Brillouin zone we'll have a large (negative) value of the velocity just below zero, as it's roughly a sinc function, but if we use the second definition in the equivalent place (just below $2 \backslash$ pi / a) we'll have a tiny phase velocity. The first one seems more realistic, but shouldn't these be reproducing exactly the same physics?

Crystal Momentum

Posted by Steve Simon on January 31, 2013, 2:52 pm
A good question was asked today after lecture:
Q: If k is a wavevector, we usually think of $2 \mathrm{pi} / \mathrm{k}$ as being the wavelength. What does it then mean that k is the same as $k+2$ pi/a as we found for the vibrational waves and the tight binding chain?

$$
\operatorname{Red}=\cos ([k+2 \pi / a] x)
$$

Wave is physical only at $x=$ na so k and $k+2 \pi / a$ are the same

6.6. Reciprocal Lattice

Show that the reciprocal lattice of a FCC (face-centered-cubic) lattice is a BCC (body-centered-cubic) lattice. Correspondingly show that the reciprocal lattice of a BCC lattice is an FCC lattice. If an FCC lattice has conventional unit cell with lattice constant a, what is the lattice constant for the conventional unit cell of the reciprocal BCC lattice?

BCC

Primitive lattice vectors
$a_{1}=[1,0,0]$ a
$a_{2}=[0,1,0]$ a
$a_{3}=[1 / 2,1 / 2,1 / 2] a$

FCC

Primitive lattice vectors

$$
\begin{aligned}
& a_{1}=[1 / 2,1 / 2,0] a \\
& a_{2}=[0,1 / 2,1 / 2] a \\
& a_{3}=[1 / 2,0,1 / 2] a
\end{aligned}
$$

Tomorrow (Tentative):

Some stuff about Magnetism
Question 7 from 2011 exam (Band gaps etc)
First question from the collection (2008 exam)

Other suggestions?
(tell me now!)

