Slides

Condensed Matter Physics Lecture 14

Scattering	$\mathrm{P}=$ Primitive (simple) cubic	All $h k l$
Selection Rules	$\mathrm{I}=\mathrm{BCC}$	$h+k+l=$ even
	$\mathrm{F}=\mathrm{FCC}$	h, k, l all even or all odd

$\{h k l\}$	$N=h^{2}+k^{2}+l^{2}$	Multiplicity	P	I	F
100	1	6	$*$		
110	2	12	$*$	$*$	
111	3	8	$*$		$*$
200	4	6	$*$	$*$	$*$
210	5	24	$*$		
211	6	24	$*$	$*$	
---7	-				
220	8	12	$*$	$*$	$*$
221,300	9	$24+6$	$*$		
310	10	24	$*$	$*$	
311	11	24	$*$		$*$
222	12	8	$*$	$*$	$*$
320	13	24	$*$		
321	14	48	$*$	$*$	
---	15	--			
400	16	6	$*$	$*$	$*$

Sequence of N values

P: 1,2,3,4,5,6,8,9,.... (= all integers excluding 7, 15, 23,...)
I : $2,4,6,8,10,12,14 \ldots$ (= even integers excluding $28,60 \ldots$)
F: $\quad 3,4,8,11,12,16,19,20 \ldots$

X-ray $\quad \lambda=1.54$ Angstrom

Indian Journal of pure \& Applied Physics
Vol. 45, October 2006, pp. 851-855

$$
a^{2} / d^{2}=h^{2}+k^{2}+l^{2}
$$

Peak Angle $2 \theta \quad d=\frac{\lambda}{2 \sin \theta} \quad d_{a}^{2} / d^{2}$

a	44.7	$2.03 \AA$	1.00
b	65.2	$1.43 \AA$	2.01
c	82.7	$1.17 \AA$	3.02

$$
N=h^{2}+k^{2}+l^{2} \quad \mathrm{~N}=1,2,3 \quad \text { Simple Cubic }\{\mathrm{hkl}\}=\{100\},\{110\},\{111\}
$$

OR

$$
N=2,4,6 \quad B C C \quad\{h \mathrm{kl}\}=\{110\},\{200\},\{211\}
$$

$a=d \sqrt{h^{2}+k^{2}+l^{2}} \quad=2.03 \AA$ if we choose simple cubic

$$
=2.86 \AA \text { if we choose BCC }
$$

Calculated Atomic Densities: $1 /(2.03 \AA)^{3}$ for simple cubic vs $2 /(2.86 \AA)^{3}$ for BCC

X-ray $\lambda=1.54$ Angstrom

Since form factor is decaying with increased angle (and additional geometric factors don't matter much), c having much more intensity than b is only consistent with BCC

Scattering	$\mathrm{P}=$ Primitive (simple) cubic	All $h k l$
Selection Rules	$\mathrm{I}=\mathrm{BCC}$	$h+k+l=$ even
	$\mathrm{F}=\mathrm{FCC}$	h, k, l all even or all odd

$\{h k l\}$	$N=h^{2}+k^{2}+l^{2}$	Multiplicity	P	I	F
100	1	6	$*$		
110	2	12	$*$	$*$	
111	3	8	$*$		$*$
200	4	6	$*$	$*$	$*$
210	5	24	$*$		
211	6	24	$*$	$*$	
---7	-				
220	8	12	$*$	$*$	$*$
221,300	9	$24+6$	$*$		
310	10	24	$*$	$*$	
311	11	24	$*$		$*$
222	12	8	$*$	$*$	$*$
320	13	24	$*$		
321	14	48	$*$	$*$	
---	15	--			
400	16	6	$*$	$*$	$*$

Sequence of N values

P: 1,2,3,4,5,6,8,9,.... (= all integers excluding 7, 15, 23,...)
I : $2,4,6,8,10,12,14 \ldots$ (= even integers excluding $28,60 \ldots$)
F: $\quad 3,4,8,11,12,16,19,20 \ldots$
$\lambda=$ 1.09 Angstrom TiC neutron powder diffraction

Sidhu et al, J. Applied Physics, 301323 (1959).

$$
a=d \sqrt{h^{2}+k^{2}+l^{2}}
$$

$$
a^{2} / d^{2}=h^{2}+k^{2}+l^{2}
$$

$$
N=h^{2}+k^{2}+l^{2}
$$

$$
\downarrow
$$

\square
Peak Angle 2θ d $\begin{array}{lllll} \\ & \\ 2 \sin \theta & d_{a}^{2} / d^{2} & 3 d^{2} / d_{a}^{2} & N & \{h k l\}\end{array} \quad a$

a	26	$2.42 \AA$	1.00	3.00	3	111	$4.20 \AA$
b	30.1	$2.10 \AA$	1.33	4.00	4	200	$4.20 \AA$
c	42.8	$1.49 \AA$	2.63	7.89	8	220	$4.22 \AA$
d	50.2	$1.28 \AA$	3.56	10.67	11	311	$4.26 \AA$
e	52.8	$1.23 \AA$	3.91	11.72	12	222	$4.25 \AA$
f	62.4	$1.05 \AA$	5.30	15.91	16	400	$4.21 \AA$
g	67.6	$0.98 \AA$	6.12	18.35	19	331	$4.27 \AA$
h	70	$0.95 \AA$	6.50	19.50	20	420	$4.25 \AA$

FCC! : h, k, l all even or all odd : $N=3,4,8,11,12 \ldots$
$\lambda=1.09$ Angstrom
TiC

$h+k+l:$	3	2	4	5	6	4	7	6	8	7,9	8	9
Multiplicity:	8	6	12	24	8	6	24	24	24	$24+6$	24	24

can we figure out what the unit cell looks like?

NaCl structure

Ti @ [0,0,0]
C @ [1/2,1/2,1/2]
$|S|^{2}=\left|b_{T i}+b_{C}(-1)^{h+k+l}\right|^{2}$
$=\left|b_{T i}-b_{C}\right|^{2}$ for $h+k+\mid$ odd
$=\left|b_{T i}+b_{C}\right|^{2}$ for $h+k+\mid$ even

ZnS structure

Ti @ [0,0,0]
C @ [1/4,1/4,1/4]
$|S|^{2}=\left|b_{T i}+b_{C}(i)^{h+k+l}\right|^{2}$
$=b_{T i}{ }^{2}+b_{C}{ }^{2}$ for $h+k+l$ odd
$=\left|b_{T i}+b_{C}\right|^{2}$ for $h+k+\mid=4 m$
$=\left|b_{T i}-b_{C}\right|^{2}$ for $h+k+\mid=4 m+2$

The Rutherford-Appleton Lab in Oxfordshire

Spallation Neutron Source

X-ray scattering on liquids

- like powder but peaks not sharp.

$1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ Brillouin Zone

Of the Square lattice

$1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ Brillouin Zone

Of the Square lattice

$1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ Brillouin Zone

Of the Square lattice

$1^{\text {st }}$ Brillouin Zone of an FCC lattice =same shape as Wigner Seitz cell of a BCC lattice

$1^{\text {st }}$ Brillouin Zone of a BCC lattice =same shape as Wigner Seitz cell of an FCC lattice

Diamond = FCC with a 2 -atom basis C @ $[0,0,0]$ and C @ $[1 / 4,1 / 4,1 / 4]$

Diamond Electronic Band Structure

Diamond Phonon Spectrum

