
Problems for Solid State Physics
(3rd Year Course BVI)

Hilary Term 2013

Professor Steven H. Simon
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“Everything should be made as simple as possible, but no simpler.”

— Frequently attributed to Albert Einstein

Actual quote:

“It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic
elements as simple and as few as possible without having to surrender the adequate representation
of a single datum of experience”

— Albert Einstein, lecture delivered at Oxford 10 June 1933

‡ Denotes crucial problems that you need to be able to do in your sleep.
* Denotes problems that are slightly harder.
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Problem Set 1

Einstein, Debye, Drude, and Free Electron Models

1.1. Einstein Solid

(a) Classical Einstein Solid (or “Boltzmann” Solid):

Consider a single harmonic oscillator in three dimensions with Hamiltonian

H =
p2

2m
+
k

2
x2

B Calculate the classical partition function

Z =

∫
dp

(2π~)3

∫
dx e−βH(p,x)

Note: in this problem p and x are three dimensional vectors (they should appear bold to
indicate this unless your printer is defective).

B Using the partition function, calculate the heat capacity 3kB.

B Conclude that if you can consider a solid to consist of N atoms all in harmonic wells, then
the heat capacity should be 3NkB = 3R, in agreement with the law of Dulong and Petit.

(b) Quantum Einstein Solid: Now consider the same Hamiltonian quantum mechanically.

B Calculate the quantum partition function

Z =
∑

j

e−βEj

where the sum over j is a sum over all Eigenstates.

B Explain the relationship with Bose statistics.

B Find an expression for the heat capacity.

B Show that the high temperature limit agrees with the law of Dulong of Petit.

B Sketch the heat capacity as a function of temperature.

1.2. Debye Theory:

(a)‡ State the assumptions of the Debye model of heat capacity of a solid.

B Derive the Debye heat capacity as a function of temperature (you will have to leave the
final result in terms of an integral that cannot be done analytically).

B From the final result, obtain the high and low temperature limits of the heat capacity
analytically.

You may find the following integral to be useful∫∞

0 dx x3

ex−1 =
∑∞

n=1

∫∞

0 x3e−nx = 6
∑∞

n=1
1
n4 = π4

15

By integrating by parts this can also be written as
∫∞

0
dx x4ex

(ex−1)2 = 4π4

15

(b) The following table gives the heat capacity C for potassium iodide (KI) as a function of
temperature.
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T (K) 0.1 1.0 5 8 10 15 20

C (J K −1 mol −1) 8.5 × 10−7 8.6× 10−4 1.2× 10−1 5.9× 10−1 1.1 2.8 6.3

B Discuss, with reference to the Debye theory, and make an estimate of the Debye temper-
ature.

1.3. Drude Theory of Transport in Metals

(a) Assume a scattering time τ and use Drude theory to derive an expression for the conduc-
tivity of a metal.

(b) Define the resistivity matrix ρ
˜
as ~E = ρ

˜
~j.

B Use Drude theory to derive an expression for the matrix ρ
˜
for a metal in a magnetic field.

(You might find it convenient to assume ~B parallel to the ẑ axis. The under-tilde notation
means that the quantity ρ

˜
is a matrix.)

B Invert this matrix to obtain an expression for the conductivity matrix σ
˜
.

(c) Define the Hall coefficient.

B Estimate the magnitude of the Hall voltage for a specimen of sodium in the form of a
rod of rectangular cross section 5mm by 5mm carrying a current of 1A in a magnetic field
of 1T. The density of sodium atoms is roughly 1 gram/cm3, and sodium has atomic mass of
roughly 23. You may assume that there is one free electron per sodium atom (Sodium has
valence one).

B What practical difficulties would there be in measuring the Hall voltage and resistivity
of such a specimen (and how might these difficulties be addressed).

(d) What properties of metals does Drude theory not explain well?

(e)* Consider now an applied AC field ~E ∼ eiωt which induces an AC current ~j ∼ eiωt.
Modify the above calculation (in the presence of a magnetic field) to obtain an expression for
the complex AC conductivity matrix σ

˜
(ω). For simplicity in this case you may assume that

the metal is very clean, meaning that τ → ∞, and you may assume that ~E ⊥ ~B. You might

again find it convenient to assume ~B parallel to the ẑ axis. (This problem might look hard,
but if you think about it for a bit, it isn’t really much harder than what you did above!)

B At what frequency is there a divergence in the conductivity?

B What does this divergence mean? (When τ is finite, the divergence is cut off).

B Explain how could one use this divergence (known as the cyclotron resonance) to measure
the mass of the electron. ( In fact, in real metals, the measured mass of the electron is
generally not equal to the well known value me = 9.1095× 10−31 kg. This is a result of band
structure in metals, which we will explain later in the course. )

1.4. Fermi Surface in the Free Electron (Sommerfeld) Theory of Metals

(a)‡ Explain what is meant by the Fermi energy, Fermi temperature and the Fermi surface
of a metal.

(b)‡ Obtain an expression for the Fermi wavevector and the Fermi energy for a gas of electrons
(in 3D).
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B Show that the density of states at the Fermi surface, dN/dEF can be written as 3N/2EF .

(c) Estimate the value of EF for sodium [As above, the density of sodium atoms is roughly
1 gram/cm3, and sodium has atomic mass of roughly 23. You may assume that there is one
free electron per sodium atom (Sodium has valence one)]

(d) Now consider a two dimensional Fermi gas. Obtain an expression for the density of states
at the Fermi surface.

1.5. Velocities in the Free Electron Theory

(a) Assuming that the free electron theory is applicable: show that the speed vF of an electron
at the Fermi surface of a metal is vF = ~

m(3π2n)1/3 where n is the density of electrons.

(b) Show that the mean drift speed vd of an electron in an applied electric field E is vd =
|σE/(ne)|, where σ is the electrical conductivity, and show that σ is given in terms of the
mean free path λ of the electrons by σ = ne2λ/(mvF ).

(c) Assuming that the free electron theory is applicable to copper:

(i) calculate the values of both vd and vF for copper at 300K in an electric field of
1 V m−1 and comment on their relative magnitudes.

(ii) estimate λ for copper at 300K and comment upon its value compared to the
mean spacing between the copper atoms.

Copper is monovalent, meaning there is one free electron per atom. The density of atoms in
copper is n = 8.45× 1028 m−3. The conductivity of copper is σ = 5.9× 107Ω−1m−1 at 300K.

1.6. Physical Properties of the Free Electron Gas

In both (a) and (b) you may always assume that the temperature is much less than the Fermi
temperature.

(a)‡ Give a simple but approximate derivation of the Fermi gas prediction for heat capacity
of the conduction electron in metals

(b)‡ Give a simple (not approximate) derivation of the Fermi gas prediction for magnetic
susceptibility of the conduction electron in metals. Here susceptibility is χ = dM/dH =
µ0dM/dB at small H and is meant to consider the magnetization of the electron spins only.

(c) How are the results of (a) and (b) different from that of a classical gas of electrons?

B What other properties of metals may be different from the classical prediction?

(d) The experimental heat capacity of potassium metal at low temperatures has the form:

C = (γ T + αT 3)

where γ = 2.08mJmol−1 K−2 and α = 2.6mJmol−1 K−4.

B Explain the origin of each of the two terms in this expression.

B Make an estimate of the Fermi energy for potassium metal.
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Problem Set 2

Chemical Bonding, Thermal Expansion, Normal Modes, Phonons in 1d

2.1. Chemical Bonding

(a) Qualitatively describe five different types of chemical bonds and why they occur.

B Describe which combinations of what types of atoms are expected to form which types
of bonds (make reference to location on the periodic table).

B Describe some of the qualitative properties of materials that have these types of bonds.

(Yes, you can just copy the table out of the notes, but the point of this exercise is to learn
the information in the table!)

(b) Describe qualitatively the phenomenon of Van der Waals forces. Explain why the force
is attractive and proportional to 1/R7 where R is the distance between two atoms.

(c) The ionization energy of a sodium (Na) atom is 5.14 eV. The electron affinity of a chlorine
(Cl) atom is 3.62 eV. The bond length of a sodium-chloride molecule (i.e., one Na atom and
one Cl atom) is .236 nm. Assuming the cohesive energy is purely Coulomb energy, calculate
the total energy released when a Na atom and a Cl atom come together to form an NaCl
molecule. The actual experimental value is 4.26 eV. Qualitatively account for the sign of
your error.

2.2. Covalent Bonding in Detail*

(a) Linear Combination of Atomic Orbitals (LCAO) In class we considered two atoms
each with a single atomic orbital. We called the orbital |1〉 around nucleus 1 and |2〉 around
nucleus 2. More generally we may consider any set of wavefunctions |n〉 for n = 1, . . . , N .
For simplicity, let us assume this basis is orthonormal 〈n|m〉 = δn,m

Let us write a trial wavefunction for our ground state as

|Ψ〉 =
∑

n

φn|n〉

This is known as a linear combination of atomic orbitals (LCAO). We would like to find the
lowest energy wavefunction we can construct in this form, that is the best approximation to
the actual ground state wavefunction. (The more states we use in our basis, generally, the
more accurate our results will be).

We claim that the the ground state is given by the solution of the effective Schroedinger
equation

Hφ = E φ (1)

where φ is the vector of N coefficients φn, and H is the N by N matrix

Hn,m = 〈n|H |m〉

with H the Hamiltonian of the full system we are considering.

To prove this, let us construct the energy

E =
〈ψ|H |ψ〉
〈ψ|ψ〉
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B Show that minimizing this energy with respect to each φn gives the same eigenvalue
equation, Eq. 1. (Caution: φn is generally complex! If you are not comfortable with complex
differentiation, write everything in terms of real and imaginary parts of each φn). Similarly,
the second eigenvalue of the effective Schroedinger equation will be an approximation to the
first excited state of the system.

This technique is know as the molecular orbital approach, or the LCAO (linear combination of
atomic orbitals) approach. It is used heavily in numerical simulation of molecules. However,
more generally, one cannot assume that the basis set of orbitals is orthonormal. (See problem
6.5 from the book for handling the LCAO without this assumption.)

(b) Two-orbital covalent bond Let us return to the case where there are only two orbitals
in our basis. This pertains to a case where we have two identical nuclei and a single electron
which will be shared between them to form a covalent bond. We write the full Hamiltonian
as

H =
p2

2m
+ V (r−R1) + V (r−R2) = K + V1 + V2

where V is the Coulomb interaction between the electron and the nucleus, R1 is the position
of the first nucleus and R2 is the position of the second nucleus. Let ε be the energy of the
atomic orbital around one nucleus in the absence of the other. In other words

(K + V1)|1〉 = ε|1〉
(K + V2)|2〉 = ε|2〉

Define also the cross-energy element

Vcross = 〈1|V2|1〉 = 〈2|V1|2〉

and the hopping matrix element

t = −〈1|V2|2〉 = −〈1|V1|2〉

These are not typos!

B Why can we write Vcross and t equivalently using either one of the expressions given on
the right hand side?

B Show that the eigenvalues of our Schroedinger equation Eq. 1 are given by

E = ε+ Vcross ± |t|

B Argue (perhaps using Gauss’s law) that Vcross should roughly cancel the repulsion be-
tween nuclei, so that, in the lower eigenstate the total energy is indeed lower when the atoms
are closer together.

B This approximation must fail when the atoms get sufficiently close. Why?
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2.3. Potentials Between Atoms

As a model of thermal expansion, we study the distance between two nearest neighbor atoms
in an anharmonic potential that looks roughly like this

6

-
6kBT

V (x)

x
x0

where x is the distance between the two neighboring atoms. This potential can be expanded
around its minimum as

V (x) =
κ

2
(x − x0)

2 − κ3
3!

(x − x0)
3 + . . . (2)

where the minimum is at position x0 and κ3 > 0. For small energies, we can truncate the
series at the cubic term. (Note we are defining the energy at the bottom of the well to be
zero here).

A very accurate approximate form for inter-atomic potentials (particularly for inert atoms
such as helium or argon) is given by the so-called Lennard-Jones potential

V (x) = 4ε

[(σ
x

)12

−
(σ
x

)6
]
+ ε (3)

where ε and σ are constants that depend on the particular atoms we are considering.

B What is the meaning of the exponent 6 in the second term of this expression (i.e., why is
the exponent necessarily chosen to be 6).

B By expanding Eq. 3 around its minimum, and comparing to Eq. 2, calculate the values
of the coefficients x0, κ, and κ3 for the Lennard-Jones potential in terms of the constants ε
and σ. We will need these results in exercise 2.5. below.

2.4. Classical Model of Thermal Expansion

In classical statistical mechanics, we write the expectation of x as

〈x〉β =

∫
dxx e−βV (x)

∫
dx e−βV (x)

Although one cannot generally do such integrals for arbitrary potential V (x) as in Eq. 2, one
can expand the exponentials as

e−βV (x) = e−
βκ
2

(x−x0)
2

[
1 +

βκ3
6

(x− x0)
3 + . . .

]
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and let limits of integration go to ±∞
B Why is this expansion of the exponent and the extension of the limits of integration
allowed?

B Use this expansion to derive 〈x〉β to lowest order in κ3, and hence show that the coefficient
of thermal expansion is

α =
1

L

dL

dT
≈ 1

x0

d〈x〉β
dT

=
1

x0

kB κ3
2κ2

with kB Boltzmann’s constant.

B In what temperature range is the above expansion valid?

B While this model of thermal expansion in a solid is valid if there are only two atoms, why
is it invalid for the case of a many-atom chain? (Although actually it is not so bad as an
approximation!)

2.5. Properties of Solid Argon

For argon, the Lennard-Jones constants ε and σ from Eq. 3 are given by ε = 10meV and
σ = .34nm. You will need to use some of the results from exercise 2.3. above.

(a) Sound

Given that the atomic weight of argon is 39.9, estimate the sound wave velocity in solid
argon. The actual value of the longitudinal velocity is about 1600 m/sec.

(b) Thermal Expansion

Using the results of exercise 2.4. Estimate the thermal expansion coefficient α of Argon.
Note: You can do this part even if you couldn’t completely figure out exercise 2.4.!

The actual thermal expansion coefficient of Argon is approximately α = 2×10−3/K at about
80K. However at lower temperature α drops quickly. See exercise 8.4 from the book to see a
more quantum treatment which explains this feature.

2.6. Classical Normal Modes to Quantum Eigenstates

In lecture we stated, without proof that a classical normal mode becomes a quantum eigen-
state. Here we prove this fact for a simple diatomic molecule in a potential well.

Consider two particles, each of mass m in one dimension, connected by a spring (K), at the
bottom of a potential well (with spring constant k). We write the potential energy as

U =
k

2
(x21 + x22) +

K

2
(x1 − x2)

2

B Write the classical equations of motion.

B Transform into relative xrel = (x1−x2) and center of mass xcm = (x1+x2)/2 coordinates.

(a) Show that in these transformed coordinates, the system decouples, thus showing that the
two normal modes have frequencies

ωcm =
√
k/m

ωrel =
√
(k + 2K)/m

Note that since there are two initial degrees of freedom, there are two normal modes.

Now consider the quantum mechanical version of the same problem. The Hamiltonian is

H =
p21
2m

+
p22
2m

+ U(x1, x2)



5

B Again transform into relative and center of mass coordinates.

Define the corresponding momenta are given by prel = (p1 − p2)/2 and pcm = (p1 + p2).

(b) Show that [pα, xγ ] = −i~δα,γ where α and γ take the values cm or rel.

(c) In terms of these new coordinates show that the Hamiltonian decouples into two inde-
pendent harmonic oscillators with the same eigenfrequencies ωcm and ωrel. Conclude that
the spectrum of this system is

Enrel,ncm
= ~ωrel(nrel +

1

2
) + ~ωcm(ncm +

1

2
)

where ncm and nrel are nonnegative integers.

(d) At temperature T what is the expectation of the energy of this system?

In problem 9.7 of the book, the principle that normal modes become quantum eigenstates is
proven in more generality.

2.7. Normal Modes of a One Dimensional Monatomic Chain

(a)‡ Explain what is meant by “normal mode” and by “phonon”.

B Explain briefly why phonons obey Bose statistics.

(b)‡ Derive the dispersion relation for the longitudinal oscillations of a one dimensional mass-
and-spring crystal with N identical atoms of mass m, lattice spacing a, and spring constant
κ. (Motion of the masses is restricted to be in one dimension).

(c)‡ Show that the mode with wavevector k has the same pattern of mass displacements as
the the mode with wavevector k+ 2π/a. Hence show that the dispersion relation is periodic
in reciprocal space (k-space).

B How many different normal modes are there.

(d)‡ Derive the phase and group velocities and sketch them as a function of k.

B What is the sound velocity?

B Show that the the sound velocity is also given by vs =
√
β−1/ρ where ρ is the chain

density and β is the compressibility.

(e) Find the expression for g(ω), the density of states of modes per angular frequency.

B Sketch g(ω).

(f) Write an expression for the heat capacity of this one dimensional chain. You will inevitably
have an integral that you cannot do analytically.

(g) Show that at high temperature the law of Dulong-Petit (for one dimension) is recovered.
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2.8. Normal modes of a One Dimensional Diatomic Chain

a

m1 m2

κ κ

(a) What is the difference between an acoustic mode and an optical mode.

B Describe how particles move in each case.

(b) Derive the dispersion relation for the longitudinal oscillations of a one dimensional di-
atomic mass-and-spring crystal where the unit cell is of length a and each unit cell contains
one atom of mass m1 and one atom of mass m2 connected together by springs with spring
constant κ (all springs are the same, and motion of particles is in one dimension only).

(c) Determine the frequencies of the acoustic and optical modes at k = 0 as well as at the
Brillouin zone boundary.

B Determine the sound velocity and show that the group velocity is zero at the zone bound-
ary.

B Show that the the sound velocity is also given by vs =
√
β−1/ρ where ρ is the chain

density and β is the compressibility.

(d) Sketch the dispersion in both reduced and extended zone scheme.

B If there are N unit cells, how many different normal modes are there?

B How many branches of excitations are there? (I.e., in reduced zone scheme, how many
modes are there there at each k).

(e) What happens when m1 = m2 ?

2.9. One more problem

Problem 4.1. really belongs to this problem set, but this set is too long already, and some
tutors felt it was too hard to discuss this material so early in the course, so I pushed this one
to the beginning of problem set 4. If you have extra time, give it a shot.
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Problem Set 3

Crystal Structure, Reciprocal Lattice, and Scattering

3.1. Crystal Structure

x

y

1
4

3
4

3
4

1
4

1
2

1
2

1
2

1
2a

a

Zn=

S =

The diagram above shows a plan view of a structure of cubic ZnS (zinc blende) looking down
the z axis. The numbers attached to some atoms represent the heights of the atoms above
the z = 0 plane expressed as a fraction of the cube edge a. Unlabeled atoms are at z = 0
and z = a.

(a) What is the Bravais lattice type

(b) Describe the basis

(c) Given that a = 0.541 nm, calculate the nearest-neighbor Zn-Zn, Zn-S, and S-S distances.

(d) Copy the drawing above, and show the [210] direction and the set of (210) planes.

(e) Calculate the spacing between adjacent (210) planes.

3.2. Directions and Spacings of Crystal Planes

B Explain briefly what is meant by the terms “Crystal Planes” and “Miller Indices.”

B Show that the general direction [hkl] in a cubic crystal is normal to the planes with Miller
indices (hkl).

B Is the same true in general for an orthorhombic crystal?

B Show that the spacing d of the (hkl) set of planes in a cubic crystal with lattice parameter
a is

d =
a√

h2 + k2 + l2

B What is the generalization of this formula for an orthorhombic crystal?
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3.3. ‡Reciprocal Lattice

(a) Define the term Reciprocal Lattice.

(b) Show that if a lattice in 3d has primitive lattice vectors a1, a2 and a3 then primitive
lattice vectors for the reciprocal lattice can be taken as

b1 = 2π
a2 × a3

a1 · (a2 × a3)
(1)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
(2)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
(3)

What is the proper formula in 2d?

(c) Define tetragonal and orthorhombic lattices. For an orthorhombic lattice, show that |bj| =
2π/|aj|. Hence, show that the length of the reciprocal lattice vector G = hb1 + kb2 + lb3 is
equal to 2π/d, where d is the spacing of the (hkl) planes (see question 3.2.)

3.4. Reciprocal Lattice and X-ray Scattering

A two-dimensional rectangular crystal has a unit cell with sides a1 = 0.468 nm and a2 = 0.342
nm. A collimated beam of monochromatic X-rays with wavelength 0.166 nm is used to
examine the crystal.

(a) Draw to scale a diagram of the reciprocal lattice.

B Label the reciprocal lattice points for indices in the range 0 ≤ h ≤ 3 and 0 ≤ k ≤ 3.

(b) Calculate the magnitude of the wavevectors k and k′ of the incident and reflected X-
ray beams, and hence construct on your drawing the “scattering triangle” corresponding to
the Laue condition ∆k = G for diffraction from the (210) planes. (the scattering triangle
includes k, k′ and ∆k).

(c) Draw the first and second Brillouin zones using the Wigner-Seitz construction.

3.5. ‡ X-ray scattering II

BaTiO3 has a primitive cubic lattice and a basis with atoms having fractional coordinates

Ba [0,0,0]
Ti [ 12 ,

1
2 ,

1
2 ]

O [ 12 ,
1
2 , 0], [ 12 , 0,

1
2 ], [0, 12 ,

1
2 ]

B Sketch the unit cell.

B Show that the X-ray structure factor for the (00l) Bragg reflections is given by

Shkl = fBa + (−1)lfTi +
[
1 + 2(−1)l

]
fO (4)

where fBa is the atomic form factor for Ba, etc.

B Calculate the ratio I002/I001, where Ihkl is the intensity of the X-ray diffraction from the
(hkl) planes. You may assume that the atomic form factor is proportional to atomic number
(Z), and neglect its dependence on the scattering vector. [ ZBa = 56, ZTi = 22, ZO = 8 ]
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3.6. ‡ X-ray scattering and Systematic Absences

(a) Explain what is meant by “Lattice Constant” for a cubic crystal structure.

(b) Explain why X-ray diffraction may be observed in first order from the (110) planes of a
crystal with a body-centred cubic lattice, but not from the (110) planes of a crystal with a
face-centred cubic lattice.

B Derive the general selection rules for which planes are observed in bcc and fcc lattices.

(c) Show that these selection rules hold independent of what atoms are in the primitive unit
cell, so long as the lattice is bcc or fcc respectively.

(d) A collimated beam of monochromatic X-rays of wavelength 0.162 nm is incident upon
a powdered sample of the cubic metal palladium. Peaks in the scattered X-ray pattern are
observed at angles of 42.3◦, 49.2◦, 72.2◦, 87.4◦ and 92.3◦ from the direction of the incident
beam.

B Identify the lattice type

B Calculate the lattice constant.

B If you assume there is only a single atom in the basis, how well does this lattice constant
agree with the known data that the density of palladium is 12023 kg m−3? [Atomic mass of
palladium = 106.4].

(e) How could you improve the precision with which the lattice constant is determined.

3.7. ‡ Neutron Scattering

(a) X-ray diffraction from sodium hydride (NaH) established that the Na atoms are arranged
on a face-centred cubic lattice.

B Why is it difficult to locate the positions of the H atoms using X-rays?

The H atoms were thought to be displaced from the Na atoms either by [ 14 ,
1
4 ,

1
4 ] or by [ 12 ,

1
2 ,

1
2 ],

to form the ZnS (zincblende) structure or NaCl (sodium chloride) structure, respectively. To
distinguish these models a neutron powder diffraction measurement was performed. The
intensity of the Bragg peak indexed as (111) was found to be much larger than the intensity
of the peak indexed as (200).

B Write down expressions for the structure factors Shkl for neutron diffraction assuming
NaH has

(i) the sodium chloride (NaCl) structure

(ii) the zinc blende (ZnS) structure.

B Hence, deduce which of the two structure models is correct for NaH. [Nuclear scattering
length of Na = 0.363× 105nm; nuclear scattering length of H = −0.374× 105 nm]

(b) How does one produce monochromatic neutrons for use in neutron diffraction experi-
ments?

B What are the main differences between neutrons and X-rays?

B Explain why (inelastic) neutron scattering is wells suited for observing phonons, but
x-rays are not.
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Problem Set 4

Tight Binding Chain, Band Structure, and Semiconductor Physics

4.1. One Dimensional Tight Binding Model

This problem really belongs in problem set 2 due to its similarities with problems 2.7. and
2.8.. I recommend that you back up and review those problems before attempting this one.
They are extremely similar to this.

(a)Monatomic Solid: Consider a one-dimensional tight binding model of electrons hopping
between atoms. Let the distance between atoms be called a, and here let us label the atomic
orbital on atom n as |n〉 for n = 1 . . .N (and you may assume periodic boundary conditions,
and you may assume 〈n|m〉 = δnm). Suppose there is an on-site energy ε and a hopping
matrix element −t. In other words, suppose 〈n|H |m〉 = ε for n = m and 〈n|H |m〉 = −t for
n = m± 1.

B Derive and sketch the dispersion curve for electrons. (Hint: Use the effective Schroedinger
equations of problem 2.2.a. The resulting equation should look very similar to that of problem
2.7. above.)

B How many different eigenstates are there in this system?

B What is the effective mass of the electron near the bottom of this band?

B What is the density of states?

B If each atom is monovalent (it donates a single electron) what is the density of states at
the fermi surface?

B What then is the Pauli paramagentic (spin) susceptibility of the system? (See problem
1.6.).

B What is the spin susceptibility if each atom is divalent?

(b) Diatomic Solid: Now consider a model of a diatomic solid as such

−A−B −A−B −A−B−

Suppose that the onsite energy of type A is different from the onsite energy of type B. I.e,
〈n|H |n〉 is εA for n being on a site of type A and is εB for n being on a site of type B. (All
hopping matrix elements −t are still identical to each other).

B Calculate the new dispersion relation. (This is extremely similar to problem 2.8. above.
If you are stuck, try studying that problem again.)

B Sketch this dispersion relation in both the reduced and extended zone schemes.

B What happens in the “atomic” limit when t becomes very small.

B What is the effective mass of an electron near the bottom of the lower band?

B If each atom (of either type) is monovalent, is the system a metal or an insulator?

B What happens if εA = εB ?

4.2. Number of States in the Brillouin Zone

A specimen in the form of a cube of side L has a primitive cubic lattice whose mutually
orthogonal primitive lattice vectors have length a. Show that the number of different allowed
~k-states within the first Brillouin zone equals the number of primitive unit cells forming the
specimen (do not consider spin). One may assume periodic boundary conditions, although
it is worth thinking about whether this still holds for hard-wall boundary conditions as well.
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4.3. ‡Nearly Free Electron Model

Consider an electron in a weak periodic potential in one dimension V (x) = V (x+ a). Write
the periodic potential as

V (x) =
∑

G

eiGxVG

where the sum is over the reciprocal lattice G = 2πn/a, and V ∗
G = V−G assures that the

potential V (x) is real.

(a) Explain why for k near to a Brillouin zone boundary (such as k near π/a) the electron
wavefunction should be taken to be

ψ = Aeikx +Bei(k+G)x (1)

where G is a reciprocal lattice vector such that |k| is close to |k +G|.
(b) For an electron of mass m with k exactly at a zone boundary, use the above form of the
wavefunction to show that the eigenenergies at this wavevector are

E =
~
2k2

2m
+ V0 ± |VG|

where G is chosen so |k| = |k +G|.
B Give a qualitative explanation of why these two states are separated in energy by 2|VG|.
B Give a sketch (don’t do a full calculation) of the energy as a function of k in both the
extended and the reduced zone schemes.

(c) *Now consider k close to, but not exactly at, the zone boundary. Give an expression for
the energy E(k) correct to order (δk)2 where δk is the wavevector difference of k to the zone
boundary wavevector.

B Calculate the effective mass of an electron at this wavevector.

(d) Consider a two dimensional square lattice with one divalent atom per unit cell. If the
periodic potential is very very weak, you can consider the electrons to be free and to form a
circular Fermi sea. Using the intuition from above (as well as the result of 4.2. above) sketch
the Fermi surface for weak, medium, and strong periodic potentials.

B Roughly how strong should the periodic potential be for the system to be no longer a
metal.

4.4. Band Theory

(a) Give a brief description of the formation of electron bands in crystals including reference
to the atomic structure of the constituent atoms.

(b) Explain the following:

(i) sodium, which has 2 atoms in a bcc (conventional cubic) unit cell, is a metal;

(ii) calcium, which has 4 atoms in a fcc (conventional cubic) unit cell, is a metal;

(iii) diamond, which has 8 atoms in a fcc (conventional cubic) unit cell with a basis, is
an electrical insulator, whereas silicon and germanium, which have similar structures, are
semiconductors.

B Why is diamond transparent?
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(c) A two-dimensional material has a square lattice with lattice constant a =0.3 nm. The
dispersion relations for electron energies in the conduction and valence bands are given by

εc(k) = 6− 2(cos kxa+ cos kya)

εv(k) = −2 + (cos kxa+ cos kya)

where energies are given here in units of eV. Sketch εc and εv for the direction kx = ky.

B Indicate the value and position of the minimum band gap.

B Show that close to the conduction and valence band edges, contours of constant energy
are circles in k-space and..

B .. determine the effective masses of both the electrons and the holes.

B Sketch the density of states as a function of energy for the whole of both the conduction
and the valence band.

(d) Using tight-binding theory, explain where the above dispersion relations come from.

4.5. Law of Mass Action and Doping of Semiconductors

(a) Assume that the band gap energy Eg is much greater than the temperature kbT . Show
that in a pure semiconductor at a fixed T , the product of the number of electrons (n) and
the number of holes (p) depends only on the density of states in the conduction band and
the density of states in the valence band (through their effective masses), and on the band
gap energy.

B Derive expressions for n for p and for the product np. You may need to use the integral∫∞

0 dxx1/2e−x =
√
π/2.

(b) The band gaps of Silicon and Germanium are 1.1 eV and 0.75 eV respectively. You
may assume the effective masses for Silicon and Germanium are isotropic, roughly the same,
and are roughly .5 of the bare electron mass for both electrons and holes. (Actually the
effective masses are not quite the same, and furthermore the effective masses are both rather
anisotropic.. but we are just making a rough estimates here).

B Estimate the conduction electron concentration for intrinsic (undoped) Silicon at room
temperature.

B Make a rough estimate of the maximum concentration of ionized impurities that will still
allow for this “intrinsic” behavior.

B Estimate the conduction electron concentration for Germanium at room temperature.

(c) The graph in Figure 1 shows the relationship between charge-carrier concentration for a
certain n-doped semiconductor.

B Estimate the bandgap for the semiconductor and the concentration of donor ions.

B Describe in detail an experimental method by which this data could have been measured
and suggest possible sources of experimental error.

4.6. More about Semiconductors

(a) In semiconductor physics what is meant by a hole and why is it useful?

(b) An electron near the top of the valence band in a semiconductor has energy

E = −10−37|~k|2

where E is in Joules and k is in m−1. An electron is removed from a state ~k = 2× 108m−1x̂
where x̂ is the unit vector in the x-direction. For a hole, calculate (and give the sign of!)
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FIG. 1: Figure for Problem 4.5.

(i) the effective mass

(ii) the energy

(iii) the momentum

(iv) the velocity.

(v) If there is a density p = 105m−3 of such holes all having almost exactly this same
momentum, calculate the current density and its sign.

(c)Show that the chemical potential in an intrinsic semiconductor lies in the middle of the
gap at low temperature.

B Explain how the chemical potential varies with temperature if the semiconductor is doped
with (i) donors (ii) acceptors.

(d) A direct gap semiconductor is doped to produce a density of 1023 electrons/m3. Calculate
the hole density at room temperature given that the gap is 1.0 eV, and the effective mass
of carries in the conduction and valence band are 0.25 and 0.4 electron masses respectively.
Hint: use the result of problem 4.5..a.
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Problem Set 5

Magnetism and Mean Field Theory

5.1. ‡ General Magnetism

(a) Explain qualitatively why some atoms are paramagnetic and others are diamagnetic with
reference to the electronic structure of these materials.

(b) Define the terms Ferromagnetism, Antiferromagnetism, Ferrimagnetism, and Itinerant
Ferromagnetism.

B Write down an example of a Hamiltonian which would have each one of these as its ground
state.

(c) Use Hund’s rules and the Aufbau principle to determine L, S, and J for the following
isolated atoms:

(i) Sulfer (S) atomic number = 16

(ii) Vanadium (V), atomic number = 23

(iii) Zirconium (Zr), atomic number = 40

(iv) Xenon (Xe), atomic number = 54

(v) Dysprosium (Dy), atomic number =66

5.2. ‡ Para and Diamagnetism

Manganese (Mn, atomic number=25) forms an atomic vapor at 2000K with vapor pressure
105 Pa. You can consider this vapor to be an ideal gas.

(a) Determine L, S, and J for an isolated manganese atom. Determine the paramagnetic
contribution to the (Curie) susceptibility of this gas at 2000K.

(b) In addition to the Curie susceptibility, the manganese atom will also have some diamag-
netic susceptibility due to its filled core orbitals. Determine the Larmor diamagnetism of the
gas at 2000K. You may assume the atomic radius of an Mn atom is one angstrom.

Make sure you know the derivations of all the formulas you use!

5.3. ‡ Weiss Mean Field Theory of the Ferromagnet Consider the spin-1/2, ferromagnetic
Heisenberg Hamiltonian on the cubic lattice

H = −J
2

∑

<i,j>

Si · Sj + gµBB
∑

i

Si (1)

Here, J > 0, with the sum indicated with < i, j > means summing over i and j being
neighboring sites of the cubic lattice, and B is the externally applied magnetic field, which
we will assume is in the ẑ direction for simplicity. The factor of 1/2 out front is included so
that each pair of spins is counted only once. Each site i is assumed to have a spin Si of spin
S = 1/2. Here µB is the conventional Bohr magneton defined to be positive. The fact that
the final term has a + sign out front is from the fact that the electron charge is negative,
therefore the magnetic moment opposes the spin direction. If one were to assume that these
were nuclear spins the sign would be reversed (and the magnitude would be much smaller
due to the larger nuclear mass).

(a) Focus your attention on one particular spin Si, and write down an effective Hamiltonian
for this spin, treating all other variables Sj with j 6= i as expectations 〈Sj〉 rather than
operators.
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(b) Calculate 〈Si〉 in terms of the temperature and the fixed variables 〈Sj〉 to obtain a mean-
field self-consistency equation.

B Write the magnetization M = |M| in terms of 〈S〉 and the density of spins.

(c) At high temperature, find the susceptibility χ = dM/dH = µ0dM/dB in this approxi-
mation.

(d) Find the critical temperature in this approximation.

B Write the susceptibility in terms of this critical temperature.

(e) Show graphically that in zero external field (B = 0), below the critical temperature, there
are solutions of the self consistency equation with M 6= 0.

(f) Repeat parts (a)-(d) but now assuming there is an S = 1 spin on each site (meaning that
Sz takes the values −1, 0,+1).

5.4. Bragg-Williams Approximation

This problem provides a different approach to obtaining the Weiss mean-field equations. For
simplicity we will again assume spin 1/2 variables on each site.

Assume there are N lattice sites in the system. Let the average spin value be 〈Si〉 = s.
Thus the probability the probability of a spin being an up spin is P↑ = 1/2 + s whereas the
probability of any spin being a down spin is P↓ = 1/2− s. The total number of up spins or
down spins is then NP↑ and NP↓ respectively where there are N total lattice sites in the
system.

(a) Consider first a case where sites do not interact with each other. In the micro-canonical
ensemble, we can count the number of configurations (microstates) which have the given
number of spin ups and spin downs (determined by s). Using S = kb lnΩ calculate the
entropy of the system in the large N limit.

(b) Assuming all sites have independent probabilities P↑ and P↓ of pointing up and down re-
spectively, calculate the probability that two neighboring sites will point in the same direction
and the probability that two neighboring sites will point in opposite directions.

B Use this result to calculate an approximation to the expectation of the Hamiltonian.
Note: This is not an exact result, as in reality, sites that are next to each other will have a
tendency to have the same spin because that will lower their energies, but we have ignored
this effect here.

(c) Putting together the results of (a) and (b) above, derive the approximation to the free
energy

F = E − TS = NkbT

[
(
1

2
+ s) log(

1

2
+ s) + (

1

2
− s) log(

1

2
− s)

]
+ gµBBzNs− JNZs2/2

where Z is the number of neighbors each spin has, and we have assumed the external field
to be in the ẑ direction. (Again we assume the spin is electron spin so that the the energy

of a spin interacting with the external field is +gµb
~B · ~S.)

(d) Extremize this expression with respect to the variable s to obtain the same mean field
equations as above.

B Below the critical temperature note that there are three solutions of the mean field
equations.

B By examining the second derivative of F with respect to s, show that the s = 0 solution
is actually a maximum of the free energy rather than a minimum.

B Sketch F (s) both above and below the critical temperature for B = 0. At nonzero B?
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5.5. Mean Field Theory for the Antiferromagnet

For this exercise we use the Molecular Field (Weiss Mean Field) approximation for the spin-
1/2Antiferromagnetic model on a 3 dimensional cubic lattice. The full Hamiltonian is exactly
that of Eq. 1 above, except that now we have J < 0, so neighboring spins want to point in
opposite directions. (Compared to a Ferromagnet where J > 0 and neighboring spins want
to point in the same direction). For simplicity let us assume that the external field points in
the ẑ direction.

At mean field level, the ordered ground state of this Hamiltonian will have alternating spins
pointing up and down respectively. Let us call the sublattices of alternating sites, sublattice
A and sublattice B respectively (i.e, A sites have lattice coordinates (i, j, k) with i + j + k
odd whereas B sites have lattice coordinates with i+ j + k even).

In Mean field theory the interaction between neighboring spins is replaced by an interaction
with an average spin. Let sA = 〈Sz〉A be the average value of the spins on sub-lattice A, and
sB = 〈Sz〉B be the average value of the spins on sub-lattice B. (We assume that these are
also oriented in the ±ẑ direction).

(a) Write the mean field Hamiltonian for a single site on sublattice A and the mean field
Hamiltonian for a single site on sublattice B.

(b) Derive the mean-field self consistency equations

sA =
1

2
tanh(β[JZsB − gµBB]/2)

sB =
1

2
tanh(β[JZsA − gµBB]/2)

with β = 1/(kbT ). Recall that J < 0.

(c) Let B = 0. Reduce the two self-consistency equations to a single self consistency equation.
(Hint: Use symmetry to simplify! Try plotting sA versus sB).

(d) Assume sA,B are small near the critical point and expand the self consistency equations.
Derive the critical temperature Tc below which the system is antiferromagnetic (i.e., sA,B

become nonzero).

(e) How does one detect antiferromagnetism experimentally?

(f) In this mean-field approximation, the magnetic susceptibility can be written as

χ = −(N/2)gµ0µB lim
B→0

∂(sA + sB)

∂B

(why the factor of 1/2 out front?).

B Derive this susceptibility for T > Tc and write it in terms of Tc.

B Compare your result with the analogous result for a ferromagnet. (Problem 5.3.). In fact,
it was this type of measurement that first suggested the existence of antiferromagnets!

(g)* For T < Tc show that

χ =
(N/4)µ0(gµb)

2(1− (2s)2)

kbT + kbTc(1− (2s)2)

with s the staggered moment (ie, s(T ) = |sA(T )| = |sB(T )|).
B Compare this low T result with that of part f.

B Give a sketch of the susceptibility at all T .
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5.6. Ground States

Consider the spin-1 Heisenberg Hamiltonian from Problem 5.3.. Let us take B to be in the
−ẑ direction, and assume a cubic lattice.

It will be useful to remember that

Si · Sj =
1

2
(S+

i S
−
j + S−

i S
+
j ) + Sz

i S
z
j

(a) For J > 0, i.e., for the case of a ferromagnet, intuition tells us that the ground state of
this Hamiltonian should simply have all spins aligned. Consider such a state. Show that this
is an eigenstate of the Hamiltonian Eq. 1 and find its energy.

(b) For J < 0, the case of an antiferromagnet, one might expect that, at least for B = 0 the
state where spins on alternating sites point in opposite directions might be an eigenstate.
Unfortunately, this is not precisely true. Consider such a state of the system.

B Show that the state in question is not an eigenstate of the Hamiltonian.

Although the intuition of alternating spins on alternating sites is not perfect, it becomes
reasonable for systems with large spins S. For smaller spins (like spin 1/2) one needs to
consider these so-called “quantum fluctuations”. (We will not do that here).

5.7. Itinerant Ferromagnetism

(a.i) Review 1: For a three dimensional tight binding model on a cubic lattice, calculate the
effective mass in terms of the hopping matrix element t between nearest neighbors and the
lattice constant a.

(a.ii) Review 2: Assuming the density n of electrons in this tight binding band is very low,
one can view the electrons as being free electrons with this effective mass m∗. For a system
of spin polarized electrons show that the total energy per unit volume (at zero temperature)
is given by

E/V = nEmin + Cn5/3

where Emin is the energy of the bottom of the band.

B Calculate the constant C.

(b) Let the density of spin-up electrons be n↑ and the density of spin-down electrons be n↓

we can write these as

n↑ = (n/2)(1 + α) (2)

n↓ = (n/2)(1− α) (3)

where the total net magnetization of the system is given by

M = −µbnα

Using the result of part (a), fixing the total density of electrons in the system n,

B calculate the total energy of the system per unit volume as a function of α.

B Expand your result to fourth order in α.

B Show that α = 0 gives the lowest possible energy.

B Argue that this remains true to all orders in α
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(c) Now consider adding a Hubbard interaction term

Hhubbard = U
∑

i

N i
↑N

i
↓

with U ≥ 0 where N i
σ is the number of electrons of spin σ on site i.

Calculate the expectation value of this interaction term given that the up and down electrons
form fermi seas with densities n↑ and n↓ as given by Eqns. 2 and 3 above.

B Write this energy in terms of α.

(d) Adding together the kinetic energy calculated in part b with the interaction energy
calculated in part c, determine the value of U for which it is favorable for α to become
nonzero.

B For values of U not too much bigger than this value, calculate the magnetization as a
function of U .

B Explain why this calculation is only an approximation.

(e) Consider now a two dimensional tight binding model on a square lattice with a Hubbard
interaction. How does this alter the result of part (d)?

5.8. Antiferromagnetism in the Hubbard Model

Consider a tight binding model with hopping t and a strong Hubbard interaction.

Hhubbard = U
∑

i

N i
↑N

i
↓

(a) If there is one electron per site, if the interaction term U is very strong, explain qualita-
tively why the system must be an insulator.

(b) On a square lattice, with one electron per site, and large U , use second order pertur-
bation theory to determine the energy difference between the ferromagnetic state and the
antiferromagnetic state. Which one is lower energy?



1

Some Revision Problems

6.1. Debye Theory

Use the Debye approximation to determine the specific heat of a two dimensional solid as
a function of temperature. State your assumptions. You will need to leave your answer in
terms of an integral that generally one cannot do. At high T , show the specific heat goes to
a constant and find that constant. At low T , show that Cv = KT n Find n. Find K in terms
of a definite integral. If you are brave you can try to evaluate the integral, but you will need
to leave your result in terms of the Riemann zeta function ζ(s) =

∑∞
n=1 n

−s.

6.2. Debye Theory II

Physicists should be good at making educated guesses: Guess the element with the highest
Debye temperature. The lowest? You might not guess the ones with the absolutely highest
or lowest temperatures, but you should be able to get close.

6.3. Free Electron Theory

(a) Explain what is meant by the Fermi energy, Fermi temperature and the Fermi surface of
a metal.

(b) Show that the kinetic energy of a free electron gas in 3D is (3/5)NEF where EF is the
fermi energy.

(c) Consider a two dimensional electron gas. Derive an expression for the density of states.

(d) *Calculate the specific heat at low temperature of this two dimensional electron gas. The
following integral may be useful:

∫ ∞

−∞

dx
x2ex

(ex + 1)2
=
π2

3

6.4. Vibrations I

(a) Consider a 1 dimensional mass and spring model of a crystal. Write down the dispersion
curve ω(k) for this model (this should be easy by this time). Now write an expression for
the specific heat of this 1 dimensional chain. You will inevitably have an integral that you
cannot do.

(b)* However, you can expand exponentials for high temperature to obtain a high tempera-
ture approximation. It should be obvious that the high temperature limit should give heat
capacity C = kB per atom (the law of Dulong-Petit in one dimension). By expanding to
next nontrivial order, show that

C/N = kB(1−A/T 2 + . . .)

where

A =
~
2k

6m

where m is the atomic mass and k is the spring constant.
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6.5. Vibrations II Consider a 1 dimensional spring and mass model of a crystal. Generalize
this model to include springs not only between neighbors but also between second nearest
neighbors. Let the spring constant between neighbors be called κ1 and the spring constant
between second neighbors be called κ2. Let the mass of each atom be M .

(a) Calculate the dispersion curve ω(k) for this model.

(b) Determine the sound wave velocity, Show the group velocity vanishes at the Brillouin
zone boundary.

6.6. Reciprocal Lattice

Show that the reciprocal lattice of a FCC (face-centered-cubic) lattice is a BCC (body-
centered-cubic) lattice. Correspondingly show that the reciprocal lattice of a BCC lattice is
an FCC lattice. If an FCC lattice has conventional unit cell with lattice constant a, what is
the lattice constant for the conventional unit cell of the reciprocal BCC lattice?

Consider now an orthorhombic face-centered lattice with conventional lattice constants
a1, a2, a3. What it the reciprocal lattice now?

6.7. Scattering

The Bragg angles of a certain reflection from copper is 47.75◦ at 20◦C but is 46.60◦ at 1000◦C.
What is the coefficient of linear expansion of copper? (Note: the Bragg angle θ is half of the
measured diffraction (deflection) angle 2θ).

6.8. More scattering

KCl and KBr are alkali-halides with the same crystal structure as NaCl: fcc cubic with Na at
(0,0,0) and Cl at (1/2,1/2,1/2). KBr shows X-ray diffraction peaks from planes (111) (200)
(220) (311) (222) (400)(331)(420), but KCl shows peaks only at (200)(220)(222)(400)(420).
Why might this be true?

6.9. Semiconductors

Describe experiments to determine the following properties of a semiconductor sample: (i)
sign of the majority carrier, (ii) carrier concentration (assume that one carrier type is domi-
nant), (iii) band gap, (iv) effective mass (v) mobility of the majority carrier.

6.10. More Semiconductors

Outline the absorption properties of a semiconductor and how these are related to the band
gap. Explain the significance of the distinction between a direct and an indirect semiconduc-
tor. What region of the optical spectrum would be being studied for a typical semiconducting
crystal?

6.11. Yet More Semiconductors

Outline a model with which you could estimate the energy of electron states introduced
by donor atoms into an n-type semiconductor. Write down an expression for this energy,
explaining why the energy levels are very close to the conduction band edge.

6.12. Magnetism

Explain briefly the origin of diamagnetism and paramagnetism in atoms.

Consider a crystal of volume V composed of N identical atoms. Each atom has spin 1/2 and
g = 2. Assume neighboring atoms do not interact, derive an expression for the paramagnetic
susceptibility as a function of temperature in the high temperature limit. How would your
answer be different if each atom had spin 1?
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Explain how this system might be used to make a refrigerator. In reality what limits how
well this works?

Discuss what is meant by “quenching” of orbital angular momentum and its consequences
for paramagnetism.

6.13. Mean field theory

(a) β-Brass is an alloy containing equal numbers of of Cu and Zn atoms. Above a temperature
of 730K, the atoms are arranged randomly on a body centered cubic lattice. Below 730K, the
lattice becomes simple cubic with Cu atoms largely on the (0,0,0) position and the Zn atoms
largely at the (1/2,1/2,1/2) position in the unit cell. The energy of the crystal depends on
the occupancy of the sites and is given by

E =
1

2

∑

〈i,j〉

Jσiσj

where σi = +1 if the site is occupied by a Cu atom and σi = −1 if the site is occupied by
a Zn atom and J > 0. Here the sum is restricted to nearest neighbors. Using mean field
approximation show that

〈|σ|〉 = tanh(βzJ〈|σ|〉)

what is z ? (b) Estimate the magnitude of J (c) Explain, in detail, how this ordering could
be observed.


