## Slides

Condensed Matter Physics Lecture 16

Silicon = FCC with a 2 -atom basis Si @ [0,0,0] and Si @ [1⁄4, $1 / 4,1 / 4]$


Si has valence $=4$

Na
bcc $a=7.98 a u$
1st band
electron Fermi surface
Fermi surface
file name: na1-1f.gif

$2 d$ analogue

Fermi Surface of Sodium (BCC)

Monovalent $=$ Half-Filled Brillouin Zone


Fermi Surface of Lithium (BCC)

Monovalent = Half-Filled Brillouin Zone


2d analogue

## Fermi Surface of Copper (FCC)

Monovalent = Half-Filled Brillouin Zone


No periodic Potential
Divalent= Enough electrons To fill $1^{\text {st }}$ zone

with strong periodic potential $-1^{\text {st }} \mathrm{BZ}$ exactly filled (insulator)

with weak periodic potential

weak potential Lowest Band (in $1^{\text {st }} \mathrm{BZ}$ )

$2^{\text {nd }}$ band
(in $1^{\text {st }} \mathrm{BZ}$ )


Calcium FCC
$1^{\text {st }}$ band
(Divalent)
$2^{\text {nd }}$ band



Cinnabar (HgS)
Gap $=2.0 \mathrm{eV}$


Realgar $\left(\mathrm{As}_{4} \mathrm{~S}_{4}\right)$
Gap $=2.4 \mathrm{eV}$


Sulfur
Gap $=2.6 \mathrm{eV}$

## 




Hope Diamond (Blue)
Roughly 1 Boron impurity per $10^{7}$ carbon.
Estimated current value = 250 Million \$

Tiffany Diamond (Yellow)
Roughly 1 Nitrogen impurity per $10^{6}$ carbon.
Estimated value 12 Million\$ (1983)


## Synthetic Diamonds $=$

"Cheap" and any impurities you want. (this example is clear meaning no impurities)



Freshly cut sodium

