Slides

Condensed Matter Physics Lecture 9

The Gecko

Example of Van der Waals 1

Just a few examples of condensed matter...

Crystalline Solids

Molecular Crystals

Amorphous Solids

Liquid Crystals
(Partial Order)

Crystal Structure Etc...

I can't draw this on the chalkboard....

Crystals

A lattice is defined as all points that are integer sums of primitive lattice vectors (primitive basis vectors).

The choice of primitive lattice (basis) vectors for a lattice is not unique

They are primitive lattice vectors for THIS lattice 0

-

$$
0
$$

\qquad0
\square

is this a lattice?

- No principle basis vectors exist which will give exactly these points (and only these points) when summed with integer coefficients.
- Sum of the two blue vectors gives a point in the center of a hexagon.
- Environment of R is not the same as that of P :
(Note P is equivalent to Q).

Periodic Structure

Lattice

Repeating object
*

Any periodic structure is a lattice * repeating object

What about
This periodic Structure?

-

What about
This periodic Structure?

-

What about
This periodic Structure?

O
-
$\circ \quad 0 \quad 0 \quad 0$

Periodic Structure

Unit Cell

The unit cell tiles space and reproduces the periodic structure

Primitive unit cell is not unique

This is a good primitive unit cell too!

The one lattice point enclosed is split into 4 pieces, but they add up to 1 point.

This is a good primitive unit cell too!

This is a good primitive unit cell too!

(Triangular Lattice)

Wigner Seitz Construction

Wigner Seitz Construction

Gives a Nice Primitive Unit Cell

Periodic Structure

Unit Cell

Basis is a description of the unit cell With respect to a reference lattice

Basis = | Large Light Gray Atom | Position $=$ | $[a / 2, a / 2]$ |
| :--- | :--- | :--- |
| | | |
| Small Dark Gray Atoms | Position $=$ | $[a / 4, a / 4]$ |
| | | $[a / 4,3 a / 4]$ |
| | $[3 a / 4, a / 4]$ | |
| | | $3 a / 4,3 a / 4]$ |

Reference Lattice is often taken coincident with some atom

\square
Put Reference Lattice on the Red Atoms:
Basis is: Red atom at $[0,0]$
Blue atom at $[1 / 2,0]$

$$
\text { note }[1 / 2,0]=(1 / 2) \vec{a}_{1}
$$

Reference Lattice is often taken coincident with some atom
,
\circ

.

Put Reference Lattice on the Red Atoms:
Basis is: Red atom at $[0,0]$
Blue atom at [1/2,0]
note $[1 / 2,0]=(1 / 2) \vec{a}_{1}$

Simple (Primitive) Cubic Lattice

Simple Cubic Unit Cell

Atoms arranged in Simple Cubic Lattice (very unusual)

Simple Cubic Unit Cell

