Slides Condensed Matter Physics Lecture 9

The Gecko

Example of Van der Waals

Crystalline Solids

Molecular Crystals

Amorphous Solids

Liquids

Liquid Crystals (Partial Order)

Crystal Structure Etc...

I can't draw this on the chalkboard....

Crystals

A lattice is defined as all points that are integer sums of primitive lattice vectors (primitive basis vectors).

The choice of primitive lattice (basis) vectors for a lattice is not unique

is this a lattice?

- No principle basis vectors exist which will give exactly these points (and only these points) when summed with integer coefficients.
- Sum of the two blue vectors gives a point in the center of a hexagon.
- Environment of R is not the same as that of P: (Note P is equivalent to Q).

Periodic Structure

Lattice

Any periodic structure is a lattice * repeating object

What about This periodic Structure?

• • •

• • • •

What about This periodic Structure?

• • •

• • • •

What about This periodic Structure?

Periodic Structure

Unit Cell

The unit cell tiles space and reproduces the periodic structure

Primitive unit cell is not unique

This is a good primitive unit cell too!

The one lattice point enclosed is split into 4 pieces, but they add up to 1 point.

This is a good primitive unit cell too!

This is a good primitive unit cell too!

(Triangular Lattice)

Wigner Seitz Construction

Wigner Seitz Construction

Gives a Nice Primitive Unit Cell

Periodic Structure

Unit Cell

Basis is a description of the unit cell With respect to a reference lattice

Reference Lattice is often taken coincident with some atom

Put Reference Lattice on the Red Atoms:

Basis is: Red atom at [0,0]
Blue atom at [1/2,0]

note [1/2,0] =
$$(1/2)\vec{a}_1$$

Reference Lattice is often taken coincident with some atom

Put Reference Lattice on the Red Atoms:

Basis is: Red atom at [0,0]
Blue atom at [1/2,0]

note [1/2,0] =
$$(1/2)\vec{a}_1$$

Simple (Primitive) Cubic Lattice

Simple Cubic Unit Cell

Atoms arranged in Simple Cubic Lattice (very unusual)

Simple Cubic Unit Cell

