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No school is complete without homework assignments! You can do these on the beach, or at
night after a patxaran. Or do them when you get home. Either way, I promise you will learn more
if you do them!

Problem 1 Quantum Hall Conductivity vs Conductance

Figure 1: A 2D electron gas of arbitrary shape with contacts 1,2,3,4 attached on its perimeter in
clockwise order

Consider a two dimensional electron gas (2DEG) of arbitrary shape in the plane with four contacts
(1,2,3,4) attached at its perimeter in a clockwise order as shown in Fig. 1. The conductivity tensor
σij relates the electric field to the current via

ji = σijEj (1)

where indices i and j take values x̂ and ŷ (and sum over j is implied). Assume that this is a quantized
hall system with quantized hall conductance s. In other words, assume that

σ =

(
0 s
−s 0

)
(2)

Show that the following two statements are true independent of the shape of the sample.
(a) Suppose current I is run from contact 1 to contact 2, show that the voltage measured between

contact 3 and 4 is zero.
(b) Suppose current I is run from contact 1 to contact 3, show that the voltage measured between

contact 2 and 4 is V = I/s.
Note: The physical measurements proposed here measure the conductance of the sample, the

microscopic quantity σ is the conductivity.
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Problem 2 Two Terminal Conductance

Consider a two-terminal hall bar with one Landau level filled, with one side of the bar at µL, TL and
the other side at µR, TR. We showed in lecture that (with TL = TR = T = 0) the conductance from
right to left is J = G(µR − µL) with G = e2/h. The thermal current can be written as

jq =

∫
dk

2π
(εk − µ)vknF (β(εk − µ))

The thermal conductance of the sample is JQ = K(TR − TL) where µL = µR. Show

K

TG
=
π2k2B
3e2

You may find the following integral useful∫ ∞
−∞

dxx2
d

dx

1

ex + 1
= −π

2

3
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Problem 3 Counting Edge Modes

Consider an integer quantum Hall edge filled up to the chemical potential. The ground state we
write as

. . .111111|0 0 0 0 0 0 0 0 0 0 . . .

where 1 marks a filled orbital and 0 marks an empty orbital. The vertical line marks the chemical
potential of the system (the highest momentum occupied orbital in the ground state). To create an
edge excitatation we must promote a fermion to a higher orbital, i.e, we move some fermion further
right. For example, if we want a state with one additional unit of angular momentum we want to
promote a fermion to the the right by one more s tep. There is only one way to do this without
violating the Pauli exculusion rule,highest angular momentum occupied orbital in the ground state)

y
(∆k = 1) . . .11111 0|1 0 0 0 0 0 0 0 0 0 . . .

Show that the number of ways to create an excitation of ∆k = M steps is equal to the number of
different ways to partition the integer M .

. . . . . . . . .

Problem 4 About the Lowest Landau Level

If you have never before actually solved the problem of an electron in two dimensions in a magnetic
field, it is worth doing. Even if you have done it before, it is worth doing again.

Consider a two dimensional plane with a perpendicular magnetic field ~B. Work in symmetric
gauge ~A = 1

2~r × ~B.
(a)(This is the hard part, see below for hints if you need them.) Show that the single electron

Hamiltonian can be rewritten as

H = ~ωc(a†a +
1

2
) (3)

where ωc = eB/m and

a =
√

2`

(
∂̄ +

1

4`2
z

)
(4)
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with z = x+iy and ∂̄ = ∂/∂z̄ with the overbar meaning complex conjugation. Here ` is the magnetic
length ` =

√
~/eB.

(b) Confirm that
[a, a†] = 1 (5)

and therefore that the energy spectrum is that of the harmonic oscillator

En = ~ωc(n+
1

2
) (6)

(c) Once you obtain Eq. 3, show that any wavefunction

ψ = f(z)e−|z|
2/4`2 (7)

with f any analytic function is an eigenstate with energy E0 = 1
2~ωc. Show that an orthogonal basis

of wavefunctions in the lowest Landau level (i.e., with eigenenergy E0) is given by

ψm = Nmz
me−|z|

2/4`2 (8)

where Nm is a normalization constant. Show that the maximum amplitude of the wavefunction ψm
is a ring of radius |z| = `

√
2m and calculate roughly how the amplitude of the wavefunction decays

as the radius is changed away from this value.
(d) Defining further

b =
√

2`

(
∂ +

1

4`2
z̄

)
(9)

with ∂ = ∂/∂z, Show that the operator b also has canonical commutations

[b, b†] = 1 (10)

but both b and b† commute with a and a†. Conclude that applying b or b† to a wavefunction does
not change the energy of the wavefunction.

(e) show that the ẑ component of angular momentum (angular momentum perpendicular to the
plane) is given by

L = ẑ · (~r × ~p) = ~(b†b − a†a ) (11)

Conclude that applying b or b† to a wavefunction changes its angular momentum, but not its energy.
(f) [Harder] Let us write an arbitrary wavefunction (not necessarily lowest Landau level) as a

polynomial in z and z̄, times the usual gaussian factor. Show that projection of this wavefunction
to the lowest Landau level can be performed by moving all of the z̄ factors all the way to the left
and replacing each z̄ with 2`2∂z.

Hints to part a: First, define the antisymmetric tensor εij , so that the vector potential may be
written as Ai = 1

2Bεijrj . We have variables pi and ri that have canonical commutations (four scalar
variables total). It is useful to work with a new basis of variables. Consider the coordinates

π
(α)
i = pi + α

~
2`2

εijri (12)

=
~
`2
εijξj (13)

defined for α = ±1. Here α = +1 gives the canonical momentum. Show that[
π
(α)
i , π

(β)
j

]
= iαεijδαβ

~2

`2
(14)

The Hamiltonian

H =
1

2m
(pi + eAi)(pi + eAi) (15)
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can then be rewritten as

H =
1

2m
π
(+1)
i π

(+1)
i (16)

with a sum on i = x̂, ŷ implied. Finally use

a = (−π(+1)
y + iπ(+1)

x )
`√
2~

(17)

b = (π(−1)
y + iπ(−1)

x )
`√
2~

(18)

to confirm that a and b are given by Eqs. 4 and 9 respectively. Finally confirm Eq. 3 by rewriting
Eq. 16 using Eqs. 17 and 18.

A typical Place to get confused is the definition of ∂. Note that

∂z = ∂̄z̄ = 1 (19)

∂̄z = ∂z̄ = 0 (20)

Hints to part f: Rewrite the operators a, a†, b, b† such that they operate on polynomials, but not
on the Gaussian factor. Construct z̄ in terms of these operators. Then project.

. . . . . . . . .

Problem 5 Filled Lowest Landau Level

Show that the filled Lowest Landau level of non-interacting electrons (a single slater determinant)
can be written as

Ψ0
m = N

∏
1≤i<j≤N

(zi − zj)1
∏

1≤i≤N

e−|z|
2/4`2 (21)

with N some normalization constant. I.e, this is the Laughlin wavefunction with exponent m = 1.

. . . . . . . . .

Problem 6 Laughlin Plasma Analogy

Consider the Laughlin wavefunction for N electrons at positions zi

Ψ0
m = N

∏
1≤i<j≤N

(zi − zj)m
∏

1≤i≤N

e−|z|
2/4`2 (22)

with N a normalization constant. The probability of finding particles at positions {z1, . . . , zN} is
given by |Ψm(z1, . . . zN )|2.

Consider now N classical particles at temperature β = 1
kbT

in a plane interacting with logarithmic

interactions v(~ri − ~rj) such that

βv(~ri − ~rj) = −2m log(|~ri − ~rj |) (23)

in the presence of a background potential u such that

βu(|~r|) = |~r|2/(2`2) (24)

Note that this log interaction is “Coulombic” in 2d (i.e., ∇2v(~r) ∝ δ(~r)).
(a) Show that the probability that these classical particles will take positions {~r1, . . . , ~rN} is

given by |Ψ0
m(z1, . . . zN )|2 where zj = xj + iyj is the complex representation of position ~ri. Argue

that the mean particle density is constant up to a radius of roughly `
√
Nm. (Hint: Note that u is

a neutralizing background. What configuration of charge would fully screen this background?)

Topological Quantum page 4



(b) Now consider the same Laughlin wavefunction, but now with M quasiholes inserted at posi-
tions w1, . . . , wM .

Ψm = N (w1, . . . , wM )

 ∏
1≤i≤N

∏
1≤α≤M

(zi − wα)

Ψ0
m (25)

whereN is a normalization constant which may now depend on the positions of the quasiholes. Using
the plasma analogy, show that the w−z factor may be obtained by adding additional logarithmically
interacting charges at positions wi,with 1/m of the charge of each of the z particles

(c) Note that in this wavefunction the z’s are physical parameters (and the wavefunction must
be single-valued in z’s), but the w’s are just parameters of the wavefunction – and so the function
N could be arbitrary — and is only fixed by normalization. Argue using the plasma analogy that
in order for the wavefunction to remain normalized (with respect to integration over the z’s) as the
w’s are varied, we must have

|N (w1, . . . , wM )| = K
∏

1≤α<γ≤M

|wα − wγ |1/m
∏

1≤α≤M

e−|wα|
2/(4m`2) (26)

with K a constant so long as the w′s are not too close to each other. (Hint: a plasma will screen a
charge).

. . . . . . . . .
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