Exercises on Landau Theory of Phase Transitions (MMathPhys and MPhysC6)

Question 1. Consider a Landau expansion of the free energy of the form

$$F = \frac{a}{2}m^2 + \frac{b}{4}m^4 + \frac{c}{6}m^6$$

with c > 0. Examine the phase diagram in the a-b plane, and show that there is a line of critical transitions a = 0, b > 0 which joins a line of first order transitions $b = -4(ca/3)^{1/2}$ at a point a = b = 0 known as a tricritical point.

Supposing that a varies linearly with temperature and that b is independent of temperature, compare the value of the exponent β at the tricritical point with its value on the critical line.

From Yeomans, Statistical Mechanics of Phase Transitions

Question 2.

(a) Discuss how an order parameter may be used to characterise symmetry breaking at a phase transition.

(b) Argue that the uniaxial ferromagnet-paramagnet transition can be described by by a Landau free energy of the form

$$F = \int d^3 \mathbf{r} \left[\frac{1}{2} |\nabla \phi(\mathbf{r})|^2 - h\phi(\mathbf{r}) + \alpha_2 \phi^2(\mathbf{r}) + \alpha_3 \phi^3(\mathbf{r}) + \alpha_4 \phi^4(\mathbf{r}) \right].$$

What can you say about α_4 ?

(c) What is the nature of the transition for h = 0 if $\alpha_3 \neq 0$? Explain your answer.

(d) Now assume that $\alpha_3 = h = 0$. Argue that close to the critical point

$$\alpha_2 = At$$
, $t = \frac{T - T_c}{T_c}$ and $A > 0$

(e) Derive the equation characterizing the saddle point solution for $\alpha_3 = h = 0$. What are the configurations ϕ with the lowest free energy for h = 0, at $T > T_c$ and at $T < T_c$? Why are these r independent?

(f) Now consider more general solutions to the saddle point equation in the low-temperature phase. With suitable boundary conditions the saddle point solutions for the order parameter are functions of x only, i.e. $\phi = \phi(x)$. Show that in this case

$$E = \frac{1}{2} \left[\frac{d\phi(x)}{dx} \right]^2 - \alpha_2 \phi^2 - \alpha_4 \phi^4$$

is independent of x. Construct a solution $\phi(x)$ such that

$$\lim_{x \to \infty} \phi(x) = \phi_1 , \quad \lim_{x \to -\infty} \phi(x) = \phi_2,$$

where $\phi_{1,2}$ are the solutions found in (d). Hint: determine E for such solutions first.

Question 3. A system with a real, two-component order parameter $(\phi_1(\mathbf{r}), \phi_2(\mathbf{r}))$ has a free energy

$$F = \int d^{d}\mathbf{r} \left[\frac{1}{2} |\nabla \phi_{1}(\mathbf{r})|^{2} + \frac{1}{2} |\nabla \phi_{2}(\mathbf{r})|^{2} - \frac{1}{2} \left(\phi_{1}^{2}(\mathbf{r}) + \phi_{2}^{2}(\mathbf{r}) \right) + \frac{1}{4} \left(\phi_{1}^{2}(\mathbf{r}) + \phi_{2}^{2}(\mathbf{r}) \right)^{2} \right] .$$

Find the order-parameter values Φ_1, Φ_2 that minimise this free energy. Consider small fluctuations around such state, with $(\phi_1(\mathbf{r}), \phi_2(\mathbf{r})) = (\Phi_1 + \varphi_1(\mathbf{r}), \Phi_2 + \varphi_2(\mathbf{r}))$ and expand F to second order in φ .

Assuming that the statistical weight of thermal fluctuations is proportional to $\exp(-F)$, calculate approximately the correlation function

$$\langle arphi_1(\mathbf{r})arphi_1(\mathbf{0})+arphi_2(\mathbf{r})arphi_2(\mathbf{0})
angle$$

by evaluating a Gaussian functional integral. How does your result depend on the dimensionality d of the system?