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Abstract. This manuscript is a summary of a set of lectures given at the
Geilo School 2013 Soft Matter Confinement: from Biology to Physics.
It aims to provide an introduction to the hydrodynamics that under-
lies the way in which microorganisms, such as bacteria and algae, and
fabricated microswimmers, swim. We focus on two features peculiar
to bacterial swimming: the Scallop theorem and the dipolar nature of
the far flow field. We discuss the consequences of these to the velocity
field of a swimmer suspension and to the motion of passive tracers as
a bacterium swims past.

1 Introduction

Swimming at low Reynolds number [1–3], the regime appropriate to microscopic swim-
mers examples of which are shown in Fig. 1, is a classical problem, addressed by
many well-known mathematicians through the 20th century [4–8]. There has been
something of a microswimmer renaissance lately, which one might speculate is driven
by advances in tracking and microfluidic technologies allowing more quantitative ex-
periments, together with increasing cross-disciplinary initiatives across the physical
and biological sciences.
A theoretical understanding of how microswimmers move, and stir the fluid that

surrounds them, is helpful in many respects. It is interesting to ask about the links be-
tween evolution and swimming strategies: for example are there particular swimming
strokes which help a bacterium to move in a viscoelastic environment such as the
gut [9]? There are many attempts both to fabricate swimming micro-robots, which
could be used for targeted drug delivery, and to harness bacteria themselves to trans-
port payloads or drive nanomachines [2,10,11]. Moreover microswimmers are one of
the most accessible examples of active systems [12], entities that produce their own
energy and hence operate out of thermodynamic equilibrium, and hence swimmer
suspensions provide a testing ground for non-equilibrium statistical physics.
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This manuscript is a summary of a set of lectures given at the Geilo School 2013
Soft Matter Confinement: from Biology to Physics. It aims to provide an introduc-
tion to the hydrodynamics that underlies the way in which microorganisms, such as
bacteria and algae, and fabricated microswimmers, swim. For such tiny entities the
governing equations are the Stokes equations, the zero Reynolds number limit of the
Navier-Stokes equations. This implies the well-known Scallop Theorem, that swim-
ming strokes must be non-invariant under time reversal to allow a net motion, ideas
introduced in Sect. 2. Then, in Sect. 3, we define two model microswimmers and show
how to calculate their swimming speeds.
A concept that we stress in this review is that biological swimmers move au-

tonomously, free from any net external force or torque. As a result the leading order
term in the multipole (far field) expansion of the Stokes equations vanishes and mi-
croswimmers generically have dipolar far flow fields. Section 4 is a discussion of the
multipole expansion, and its application to microswimming, and we introduce the
stresslet and rotlet. Then, in Sect. 5, we describe physical examples where the dipolar
nature of the bacterial flow field has significant consequences, velocity statistics in a
dilute bacterial suspension and tracer diffusion in a swimmer suspension. A discus-
sion of open questions in Sect. 6 closes the paper. As this is a tutorial review we have
aimed to cite references which can be used as entries to the literature.

2 Zero Reynolds number and the Scallop theorem

The Navier-Stokes equations for an incompressible fluid [14] describe the evolution of
the velocity v(r, t) of a fluid of density ρ and dynamic viscosity μ driven by a pressure
gradient ∇p and a body force (force per unit volume) f :

ρ

{
∂v

∂t
+ (v · ∇)v

}
= −∇p+ μ∇2v + f , ∇ · v = 0. (1)

Dimensionless variables, denoted by a tilde, can be defined by choosing a length scale
L0 and a velocity scale V0

ṽ =
v

V0
, x̃ =

x

L0
, ∇̃ = L0∇, t̃ =

V0

L0
t,

∂

∂t̃
=
L0

V0

∂

∂t
· (2)

In terms of the dimensionless variables the Navier-Stokes equation becomes

{
∂ṽ

∂t̃
+ (ṽ · ∇̃)ṽ

}
= − L0
V 20 ρ
∇p+ μ

L0V0ρ
∇̃2ṽ + L0

V 20 ρ
f . (3)

The terms on the left hand side of this equation are the inertial terms. They describe
the flow of momentum through the fluid, and are a direct consequence of momen-
tum conservation. The second term on the right-hand side is the viscous term. This
describes the dissipation that relaxes any velocity gradients. The balance of inertial
and viscous contributions to a fluid’s flow is described by the dimensionless Reynolds
number, which follows immediately from the coefficient of the viscous term in Eq. (3)

Re =
inertial response

viscous response
∼ ρL0V0

μ
· (4)

For microswimmers typical sizes and velocities are 10−5m and 10−5ms−1 giving Re ∼
10−4 for swimming in water. Hence the zero Reynolds number limit is normally used to
describe microswimming. This appears to work well: indeed Lauga [15] has pointed
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out that Re = 0 is not a singular limit so small values should not qualitatively
affect swimmer behaviour. However, the unsteady (time-derivative) term in Eq. (1)
or multiple swimmer configurations, when the appropriate length scale is the distance
between swimmers rather than the swimmer size, could lead to inertial corrections.
At zero Reynolds number the Navier-Stokes equations reduce to the Stokes equa-

tions

∇p = μ∇2v + f , ∇ · v = 0. (5)

The presence of a swimmer in the fluid is embodied in f : as the swimmer moves it
exerts forces on the fluid setting up a flow field.
A fundamental consequence of the Stokes limit is the Scallop Theorem [16,17].

This states that a swimmer must have a swimming stroke that is not invariant under
time reversal if it is to move. This is a consequence of the lack of time dependence
in the Stokes Eq. (5). There is nothing in the equations themselves that can lead to
an asymmetry in time. Therefore the source of the flow, the swimming stroke, must
break time-reversal symmetry for there to be a preferred direction of motion. A zero
Reynolds number swimmer with a stroke that looks the same forward and backwards
in time may oscillate and create a flow field, but the net displacement over a stroke
will average to zero.
A glance at the microorganisms in Fig. 1 shows how they have evolved to beat the

Scallop Theorem. The wave moving down the flagella of Escherichia coli or sperm
defines a direction in time. Paramecium is covered by cilia, similar to those that
clear mucus from the lungs, that have distinct power and recovery strokes. Euglena
metaboly produces a suitable swimming stroke by altering its body shape.
For a point force acting at the origin the Stokes Eq. (5) can be solved exactly. The

resulting velocity field, termed the Stokeslet, and the corresponding pressure field, at
a relative position r from the swimmer are

v =
f

8πμ
·
(
I

r
+
rr

r3

)
≡ G · f , p = p0 +

f · r
4πr3

. (6)

In (6) I is the unit tensor, and p0 is a reference, constant pressure. G is the Green’s
function of the Stokes equations, often called the Oseen tensor (and often defined hav-
ing removed the factor 1

8πμ ). There are several ways of obtaining the Stokeslet, none of

them very simple. A clear and helpful list of the possible approaches is given by Maciej
Lisicki at http://www.fuw.edu.pl/~mklis/publications/Hydro/oseen.pdf.
To give a physical interpretation of the Stokeslet we write down the velocity field

created by a colloid of radius a moving through a fluid with velocity u with non-slip
boundary conditions. This is an exact expression for a spherical particle, lengthy to
derive [14], but easily checked by substituting in Eq. (5),

vsphere =
u

r

(
3a

4
+
a3

4r2

)
+
(u · r)r
r2

(
3a

4r
− 3a

3

4r3

)
· (7)

In the limit of a point colloid a� r (or equivalently sufficiently far from a colloid of
finite radius) this expression reduces to the Stokeslet if

f = 6πμau (8)

the familiar expression for Stokes drag, the force needed to pull a colloid through a
fluid with velocity u. The velocity field produced by a colloid is shown in Fig. 2a.
Note that it decays with distance as r−1. We shall highlight a different dependence
for bacteria.
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Fig. 1. Low Reynolds number swimmers: (a) a sperm cell [13], the wave moving along the
flagellum defines a direction in time and allows motion at zero Reynolds number; (b) E. coli,
an example of a pusher, the far flow circulates outwards from the head and tail and inwards
to the sides; (c) Chlamydomonas, the “breast-stroke” of the flagella leads to a contractile
(puller) far flow which circulates from the sides to the front and rear; (d) Euglena metaboly,
shape changes of the body result in propulsion; (e) Paramecium, the surface is covered by
beating cilia, these synchronise, and metachronal waves in the beating pattern move across
the surface of the organism; (f) a fabricated microswimmer, driven by a rotating magnetic
field [11].

3 Model swimmers

Minimal models, designed to circumvent the restrictions of the Scallop Theorem, are
a useful tool to help understand the hydrodynamics of microswimming [18–20]. Here
we introduce two, of many, model swimmers. The first, nicknamed “Vic’s swimmer”,
is an example of the genre of models made up of a collection of small, linked spheres
whose relative motion defines the swimming stroke. These are useful because the flow
field set up by a forced sphere is known in the Stokes limit and, because the Stokes
equations are linear, the swimmer velocity field can be obtained by summing the
contributions from each individual sphere. The second system, squirmers, included
by way of contrast, has proved particularly appropriate for numerical work [21].

3.1 Vic’s swimmer

Vic’s swimmer was defined by Lt.Col. Victor B. Putz (U.S. Air Force) during his
time as a graduate student at Oxford [22,23]. It builds on earlier work by Avron
et al. [19] and bears a passing resemblance to E. metaboly, pictured in Fig. 1. Vic’s
swimmer consists of two small spheres, joined by a thin, rigid rod, see Fig. 3. The
radii of sphere i = 1, 2 change with time as ai(t) = a+ λ sin(ωt+ ϕi) and the length
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)b()a(

Fig. 2. Far flow fields produced by (a) a Stokeslet (colloid) (b) a stresslet (microswimmer).
Note the very different symmetries.
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Fig. 3. (a) The swimming stroke of Vic’s swimmer. (b) Geometry used in the calculation
of the dipole flow field.

of the rod oscillates as L(t) = l+ ξ sin(ωt+α). Here our aim is to use the model as a
simple example of how to calculate the swimming speed of linked-sphere swimmers.
We shall also, in Sect. 4, give an expression for the far flow field of Vic’s swimmer.
To drive the motion a force fi(t) must act on each sphere. These are internal forces

– no net force acts on the swimmer which is internally driven – and hence
f1 = −f2 ≡ f . Assuming the spheres move along the z-axis, and that their radii are
always small compared to their separation, we may write expressions for the velocity
of each sphere

ż1 =
f1

6πμa1
+
f2

4πμL
= +

f

6πμa1
− f

4πμL
, (9)

ż2 =
f2

6πμa2
+
f1

4πμL
= − f

6πμa2
+

f

4πμL
· (10)

The first term in each expression is the Stokes drag on the sphere Eq. (8); the second
is the contribution to the velocity field from the other sphere, assumed to act as a
Stokeslet, given by Eq. (6). The constraint that the rod is rigid serves to close the
equations

L(t) = z2 − z1, L̇(t) = ż2 − ż1 (11)

which can be solved for ż1, ż2 and f .
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The velocity of the midpoint of the swimmer is

dz̄

dt
:=
ż1 + ż2
2

=
(ż1 − ż2)
12πμ

(
1

a1
− 1
a2

){
1

6πμ

(
1

a1
+
1

a2

)
− 2

4πμL

}−1
· (12)

For a1 ≈ a2 � L, and substituting in the time dependence of these variables:
dz̄

dt
≈ λωξ cos(ωt+ α)

4a
{sin(ωt+ ϕ2)− sin(ωt+ ϕ1)}. (13)

This leads to a time-averaged swimmer velocity

uswimmer =
λωξ

4a
sinΔϕ cosΔα (14)

where

Δϕ =
(ϕ1 − ϕ2)
2

, Δα =
(ϕ1 + ϕ2)

2
− α. (15)

The average swimmer velocity is zero for Δϕ = 0, π. This is because, if the drag of
the spheres changes in phase, the stroke is time reversible and there is no movement
because of the Scallop Theorem. uswimmer is also zero for Δα = π/2, 3π/2. These
zeros are not based on a symmetry principle, and they will disappear at higher order.
Note also that, in the interests of simplicity, we have ignored any flow induced by the
swimmer as the sphere radii change.

3.2 Squirmers

Squirmers [20,24] represent a different class of model swimmers, useful because they
admit an exact solution and also because they are spherical which helps to disen-
tangle steric and hydrodynamic effects. Motion arises by imposing suitable velocity
boundary conditions on a spherical surface of radius a. Defining a spherical polar co-
ordinate system with the squirmer velocity along z we assume a zero radial velocity
at the surface, and write the tangential surface velocity as a power series in the first
derivatives of the Legendre polynomials

vθ(a, θ) =
∞∑
n=1

Bn
2

n(n+ 1)
sin θP ′n(cos θ) (16)

where the Bn can depend on time. It is easy to check that the solution to the Stokes
equation which obeys these boundary conditions is

vr(r, θ) = −2
3
B1 cos θ +

2B1
3

a3

r3
P1 +

∞∑
n=2

(
an+2

rn+2
− a

n

rn

)
BnPn,

vθ(r, θ) =
2

3
B1 sin θ +

B1

3

a3

r3
sin θP ′1+

∞∑
n=2

(
1

(n+ 1)

an+2

rn+2
− (n− 2)
n(n+ 1)

an

rn

)
sin θBnP

′
n

(17)

in the rest frame of the squirmer, which is moving with velocity 23B1 along the z-axis.
For the simplest non-trivial example, Bn = 0, n > 2, and recalling that P1 =

cos θ and P2 = (3 cos
2 θ − 1)/2 the velocity field reduces to

vr(r, θ) = −2
3
B1 cos θ +

2B1
3

a3

r3
cos θ − a

2

r2
B2

2
(3 cos2 θ − 1) +O

(
a4

r4

)
,

vθ(r, θ) =
2

3
B1 sin θ +

B1

3

a3

r3
sin θ +O

(
a4

r4

)
· (18)
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Recent work has considered interactions between squirmers [21], and experiments
on self-propelled colloids have been interpreted in terms of a squirmer model [25].
There have also been several recent numerical studies of the hydrodynamics of many
squirmers [26]. Clustering has been observed as the squirmer concentration increases,
but details of this appear to depend sensitively on steric interactions and the parame-
ters of the model, and there is no clear understanding of the multi-squirmer dynamics
as yet.

4 Far flow field

We next calculate the far flow field produced by a swimmer. Just as in the case of the
electrostatic potential which solves the Laplace equation, the Stokes equation has a
multipole expansion, where the velocity field can be written as a power series in r−1,
where r is the distance from the swimmer. We have shown in Sect. 2 that the flow
field due to a driven colloid ∼ r−1 at large r. We shall now argue that, generically,
the far field velocity of a swimmer is dipolar, decaying as r−2.
This is because biological microswimmers produce their own driving. There is no

net external force or torque, assuming the organism is neutrally bouyant. All internal
forces and torques, that result in the motion must balance giving a cancellation of the
leading r−1 term in the multipole expansion. The analogous situation in electrostatics
is the electric dipole, closely spaced, balanced, positive and negative charges that
produce a dipolar electric field. We illustrate this for a pair of balanced forces, and
then give a more general development of the multipole expansion.

4.1 Balanced forces and the dipolar field

Consider a pair of equal and opposite point forces, f , acting co-linearly in a Stokes
fluid. (This is the situation shown for Vic’s swimmer in Fig. 3, sufficiently far from
the swimmer that the finite sphere radius can be neglected.) The velocity field due
to the two Stokeslets is

v(r) =
f

8πμ
·
(
I

r1
+
r1r1
r31

)
− f

8πμ
·
(
I

r2
+
r2r2
r32

)
(19)

where ri is the distance from the i
th Stokeslet to the point of observation r. Using

the polar co-ordinate system shown in Fig. 3b, with the forces acting along z, and
the Stokeslets separated by a distance �� r expanding this expression gives

v =
f

8πμ

�

r2
(3 cos2 θ − 1)r̂. (20)

Note the signature r−2 dipolar decay. The angular dependence of the flow field is
shown in Fig. 2b. Contrasting it to the colloidal field in Fig. 2a there is reflection
symmetry about the plane perpendicular to the swimmer. This will be relevant when
we consider the movement of tracers in a swimmer suspension in Sect. 5 below. The
figure is drawn for f > 0 where the fluid is pushed away from the ends of the swimmer
along the direction of motion. This is termed an extensile swimmer or pusher. For
f < 0 the direction of the velocity field is reversed giving a contractile swimmer or
puller. E. coli and Chlamydomonas reinhardtii are examples of pushers and pullers,
respectively.
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4.2 Multipole expansion

We now obtain a general expression for the dipolar, and higher order, contributions
to a Stokesian flow field showing in particular that the dipole moment is, in general,
a second rank, traceless tensor and the quadrupole moment a third rank tensor. We
then indicate how the results reduce to the simpler expression (20) [27,28].
We extend Eq. (6) to a force distribution f(ξ)

vi(r) =

∫
Gij(r− ξ)fj(ξ) dξ (21)

where

Gij(r− ξ) = 1

8πμ

(
δij

| r− ξ | +
(r− ξ)i(r− ξ)j
| r− ξ |3

)
· (22)

Taylor expanding about the origin

vi(r) =

∫ {
Gij(r)− ∂Gij

∂ξk
(r)ξk +

1

2

∂2Gij

∂ξk∂ξl
(r)ξkξl . . .

}
fj(ξ) dξ

= Gij(r)

∫
fj(ξ) dξ − ∂Gij

∂ξk
(r)

∫
ξkfj(ξ) dξ

+
1

2

∂2Gij

∂ξk∂ξl
(r)

∫
ξkξlfj(ξ) dξ + . . .

≡ Gij(r)Fj + ∂Gij
∂ξk
(r)Djk +

1

2

∂2Gij

∂ξk∂ξl
(r)Qjkl + . . . (23)

The monopole contribution to the flow field, Gij(r)Fj , absent for force-free swimmers,
is just the Stokeslet, Eq. (6).
The dipolar tensor is

Djk = −
∫
ξkfj dξ. (24)

It is conventional to write

Djk − 13Diiδjk = Sjk + Tjk (25)

where Sjk is a traceless symmetric tensor, referred to as the stresslet, and Tjk is an
asymmetric tensor, the rotlet. Subtracting 13Diiδjk is permissible because ∇ ·G = 0
and hence this term does not change the velocity field.
The stresslet

Sjk = −1
2

∫
(ξkfj + ξjfk) dξ +

1

3

∫
ξifi δjk dξ (26)

is connected to straining flows, and is responsible for the changes in viscosity of a
fluid in the presence of colloids or swimmers. In the frame where the Sjk is diagonal
there will, in general, be two independent dipole moments contributing to the flow
field.
As a concrete example, and to check that we recover the dipolar flow field given in

Eq. (20), we consider a force distribution that is axisymmetric about, say, the z-axis:

f = fz(ρ, z)ez + fρ(ρ, z)eρ + fϕ(ρ, z)eϕ (27)
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where we use standard cylindrical polar co-ordinates (ρ, ϕ, z), and {e} are the asso-
ciated unit vectors. Then recalling that

fx = fρ cosϕ− fϕ sinϕ,
fy = fρ sinϕ+ fϕ cosϕ

(28)

it is straightforward to show that

Szz =

∫
(ρfρ − 2zfz)/3 dξ, (29)

Sxx = Syy = −Szz/2 (30)

with all the off diagonal terms zero by symmetry.
The corresponding contribution to the velocity field is

∂Gij

∂ξk
(r)Sjk. (31)

Recalling the summation over repeated indices, and using the relation between the
diagonal components of S, Eq. (30), and the derivatives of Gij(r),

∂Gij

∂ξk
(r) =

1

8πμ

{
− 1
r3
δijξk +

1

r3
(δikξj + δjkξi)− 3

r5
ξiξjξk

}
, (32)

gives

vi =
1

8πμ

3ξi
2r5
(r2 − 3z2)Szz (33)

corresponding to a resultant velocity field in the radial direction

vr =
1

8πμ

3

2r2
(1− 3 cos2 θ)Szz. (34)

For a swimmer, with point forces of strength f along the z-axis z = ±�/2,
Szz = − 23�f (35)

and hence we recover Eq. (20) for the flow field due to a pair of equal and opposite
forces acting along the polar axis.
The rotlet

Tjk = − 12
∫
(ξkfj − ξjfk) dξ (36)

can be interpreted physically by noting that the torque Γ exerted by a force distrib-
ution on the surrounding fluid is

Γi = −εijk
∫
fjξk dξ ≡ εijkTjk. (37)

The asymmetry of T combined with the properties of εijk mean that this expression
can be inverted to give

Tjk =
1
2εjklΓl. (38)

The corresponding term in the multipole expansion (23) is

∂Gij

∂ξk
(r)Tjk =

1

2
εjklΓl

∂Gij

∂ξk
= −1
2
(Γ×∇)jGij = −1

2
Γ · (∇×G). (39)
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For the special case of uniaxial symmetry

Txy = −Tyx = 1
2

∫
ρfϕ dξ,

Γz =

∫
ρfϕ dξ, (40)

as expected from the definition of torque, with all other components zero. The corre-
sponding flow field has components

vx =
1

8πμ

{
−2y
r3

}
Txy,

vy =
1

8πμ

{
+
2x

r3

}
Txy,

vz = 0 (41)

equivalent to a velocity

vϕ =
1

8πμ

2

r2
Txy. (42)

The rotlet was included for completeness, but self-propelled swimmers and bacteria
are torque free so this term does not appear in the multipole expansion. At higher
order, the counter-rotating head and tail of, for example, E. coli produce a rotlet
dipole, one consequence of which is that they swim in circular trajectories near a
surface.

4.3 Far flow field of the model swimmers

Vic’s swimmer: For Vic’s swimmer, solving Eqs. (9)–(11) for the force, substituting
into Eq. (20), and averaging over time, the far flow field is

vswimmer =
1

4πμ

3λωξl

16
cosΔϕ sinΔα

(3 cos2 θ − 1)
r2

(43)

where Δϕ and Δα are defined by Eq. (15). The dipolar contribution to the flow
field disappears for Δα = 0, π. For these values the swimmer is invariant under
time reversal, followed by a parity transformation r → −r, and the leading term is
quadrupolar, ∼ r−3. Comparing Eqs. (14) for the velocity of the swimmer and (43)
for the far flow field it is apparent that a fast swimmer does not necessarily produce
a strong far field velocity; the swimming speed is set by the near field.
Squirmer: Reading from Eq. (17) the squirmer has a dipole moment

(8πμ)B2a
2/3. Note that for this model the velocity and quadrupole moment

∼ (8πμ)B1a3 are not independent.

5 Consequences of the dipolar flow field

We have argued that, because no external force or torque acts on the swimmer, it
has a dipolar (or higher order) far flow field. This has several consequences, which
lead to significant differences between the hydrodynamic properties of a suspension
of swimmers and, say, a suspension of driven colloids. We give three examples:
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5.1 Velocity distribution of a dilute swimmer suspension

We consider the probability distribution function of the velocity at a point, the origin
say, in a suspension of non-interacting swimmers [29]. The magnitude of the velocity
due to a single swimmer scales as v ∼ r−n where n = 3 for a quadrupolar swimmer,
n = 2 for a dipolar swimmer, and n = 1 for a driven swimmer or colloid. Assuming
that the swimmers are non-interacting and distributed isotropically in space

P (r)dr ∼ r2dr, P (v)dv ∼ v−(1−3/n)dv. (44)

The probability distribution function for the velocity at a point due to a single swim-
mer is a power law. For many swimmers the linearity of the Stokes equations means
that the contributions from each swimmer can be summed, and the first surmise
would be that the Central Limit Theorem predicts a rapid crossover to a Gaussian
distribution of the velocity. However, the Central Limit Theorem only holds for a
distribution function with a finite variance and, because of the divergence of P (v) at
small distances, its variance is finite only for n < 3/2. Hence for n > 3/2 power law
tails persist in the distribution for all swimmer concentrations. This argument must
be supplemented by noting that in a physical system the short distance divergence of
the velocity will be truncated, by higher order terms in the multipole expansion, and
by the finite size of the swimmers. Hence there will be a slow crossover to Gaussian
behaviour but with marked power law tails persisting to high concentrations.
Indirect evidence for this behaviour has been observed by Leptos et al. [30], who

measured the probability distribution function of the displacement of tracer particles
in a dilute suspension of Chlamydomonas as a function of the concentration of the
swimmers. The data was taken after 1s, a time over which it is reasonable to approx-
imate displacement as proportional to a constant velocity, and therefore to assume
that the displacement and velocity distributions are similar. Pronounced tails are seen
in the data, corresponding to close approaches of swimmers and tracer particles. This
should be compared to similar experiments on Volvox, a swimmer which is sufficiently
large that the force of gravity is appreciable [31]. Hence the far flow field of Volvox
has a leading order term ∼ r−1 leading to a much quicker crossover to Gaussian
behaviour and less prominent tails in the displacement distribution.

5.2 Tracer loops

Next we discuss the diffusion constant of tracer particles in a bacterial suspension [32,
33]. Several experiments and simulations have shown that bacteria enhance diffusion
as a result of the flow fields they produce [30,34,35], and it is likely that this has the
advantage of helping to increase their nutrient supply. One might also image “stealth
swimmers”, anxious to avoid detection, that move in such a way as to to minimise any
far field flows. To fully understand the link between function and swimming stroke
we need to unravel how microswimmers act as stirrers.
The instantaneous statistics of the velocity field govern the initial rate of dis-

placement of a tracer particle. However at later times the path taken by a tracer
will depend on the detailed spatial and temporal correlations of the velocity. The
symmetry of the velocity field corresponding to multipoles with n > 1 means that
tracers move in a quantitatively different way as a force-free swimmer (stresslet) or
as a colloid (Stokeslet) move past.
Consider a swimmer that moves in a straight line from −∞ to +∞ along the

z-axis. The resulting displacement of a material sheet, a plane of tracers initially
perpendicular to the swimmer path is shown in Fig. 4. Tracers far from the swimmer
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path
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Fig. 4. Typical motion of a sheet of tracer particles as a swimmer moves in an infinite
straight trajectory from z = −∞ to z = +∞ perpendicular to the sheet. The initial position
of the tracer sheet is shown as a dotted line, and the envelope of the final tracer positions in
blue. Examples of the loop like trajectories of the tracers are indicated as lighter, red lines.

are pushed backwards, those close to the swimmer pulled forwards. The tracers move
in loops, a consequence of the symmetry of these flow fields [23]. If the tracer is
sufficiently far from the swimmer that its velocity can be neglected compared to the
swimmer velocity the loops are closed. The closed nature of the loops can be inferred
from the geometry of the flow field, but a simple mathematical proof helps to pinpoint
the approximations under which the loops are indeed fully closed [33].
In the absence of the Stokeslet it follows from Eq. (23) that the flow field produced

by the swimmer takes the form

u (r,k) = (ez · ∇)U0 (r,k) ≡ drT
dt

(45)

where rT is the position of the tracer and U0 is a velocity field whose Lagrangian
derivative at the position of the tracer rT is

dU0
dt
= (V · ∇)U0 −

(
drT
dt
· ∇
)
U0. (46)

Taking the swimmer velocity V = V ez and keeping just the Eulerian term

dU0
dt
≈ V (ez · ∇)U0. (47)

Comparing Eqs. (45) and (47) gives a tracer velocity

drT
dt
≈ 1
V

dU0
dt

(48)

and a total tracer displacement for the infinite, linear swimmer path

ΔrT =

∫ +∞
−∞

drT
dt
dt = − κ

V
(U0(+∞)−U0(−∞)) = 0. (49)
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Enhanced diffusion of the tracers in a swimmer suspension could not occur if the
tracers simply moved in closed loops, and mechanisms for non-closure can usefully
be identified from the approximations inherent in this proof. Firstly, the Lagrangian
contribution to the time derivative of the tracer velocity, which arises because the
tracer moves across stream lines was neglected in Eq. (47). This becomes increasingly
important as the tracer is closer to the swimmer and hence moves faster. At short
distances, the tracer is entrained by the swimmer (see Fig. 4).
Perhaps surprisingly, the total volume of fluid displaced by the swimmer as it

moves along an infinite, straight path takes a simple, universal form [33,36,37]

vD =
4πQ⊥
V

− vs − vwake (50)

where vs and vwake are the volumes of the swimmer and its wake and Q⊥ =
−12
∫
fzρ

2 dS is a quadrupole moment. vD is termed the Darwin drift: by comparison,
for a colloid at zero Reynolds number this quantity is infinite.
Secondly it is apparent from Eq. (49) that a finite swimmer path length will lead to

loops that are not closed. Bacteria do not move along infinite straight paths because of
rotational diffusion. Indeed some microorganisms, for example E. coli have an explicit
run and tumble behaviour which allows them to exploit a directed random walk to
move up a nutrient gradient. This important contribution to tracer diffusion is an
ongoing area of research. Another open question is the importance of dimensionality:
experimental work has shown a substantial increase of diffusivity in thin films [38].

6 Discussion

In these notes we have concentrated on individual swimmers in a simple fluid empha-
sising two features which characterise swimming at zero Reynolds number. The first
of these is the Scallop Theorem which demands that the stroke of a microswimmer
is non-invariant under time reversal. The second is the dipolar nature of the far flow
field of microswimmers which results from their motion being autonomous, and hence
force and torque free. We have shown that these properties lead to swimming strokes
and flow fields very different to those relevant on human length scales. In conclusion
we briefly summarise some questions of current interest: for a recent special journal
issue on Active Matter see [39].
One example is the effects of surfaces and interfaces on microscopic swimming:

many experiments are most easily performed in confined geometries and certain mi-
croorganisms, such as sperm, are strongly attracted to surfaces. Hydrodynamic be-
haviour is altered by the presence of a no-slip wall, with the Oseen tensor being
replaced by the Blake tensor [7], and there is current discussion about whether hy-
drodynamic or steric forces are dominant in controlling swimming trajectories near
surfaces [40,41].
Bacteria survive in an incredible range of places, many in viscoelastic fluids such as

mucus, and in highly crowded environments [42,43]. There is a lot to understand about
swimming strategies in the presence of polymers, colloids and biomolecules, which
may be much smaller than, but could also be of similar size to, the microswimmers
themselves. One might speculate about evolutionary strategies that have matched
bacterial shape and stroke to their host fluid.
We have concentrated primarily on theoretical aspects of low Reynolds number

hydrodynamics, but calculations are often inspired by experiments using enhanced
particle tracking techniques to follow the motion of single or multiple microorganisms
and to characterise the surrounding flow fields. Moreover, many groups are working to
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fabricate microswimmers, from self-propelled colloids, which can be driven by chem-
ical gradients or activated by light, to the magnetically-driven helical ribbons, shown
in Fig. 1f. Potential applications include mixing or transport in microchannels, and
as machines transforming chemical energy to mechanical work.
Finally, denser microswimmer suspensions provide examples of collective systems

that are operating out of thermodynamic equilibrium. In common with other active
systems, such as active colloids, molecular motors, shoals of fish and vibrated granular
matter, swimmers show transient clustering and, at higher densities, “turbulent”-like
flow patterns [12]. Formulating a non-equilibrium statistical physics to describe active
matter is an exciting and topical avenue for research.

We thank J. Dunkel, R. Golestanian, R. Ledesma-Aguilar and V.B. Putz for helpful discus-
sions. JMY and DOP acknowledge funding from the ERC Advanced Grant MiCE.
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