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Non-linear dynamics and chaos, which is an excellent introduction
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1 Introduction

The aim is to understand how systems, particularly non-linear systems, evolve
in time. Consider the differential equations:

ẋ1 = f1(x1, x2, . . . xn)

ẋ2 = f2(x1, x2, . . . xn)

...

ẋn = fn(x1, x2, . . . xn). (1)

Even if it is not possible to solve these explicitly, it is possible to learn use-
ful things about the properties of the dynamical system by looking at flows or
trajectories in the n-dimensional phase space (x1, x2, . . . xn).

• Higher order DE’s can be reduced to the form (1). For example

ẍ1 = − sinx1 is equivalent to ẋ1 = x2

ẋ2 = − sinx1.

• DE’s with time dependence can be reduced to the form (1). For example

ẋ1 = − sinx1 + f(t) is equivalent to ẋ1 = − sinx1 + f(x2)

ẋ2 = 1.

• We shall also consider difference equations

xn+1 = f(xn)

where n labels discrete time steps.

2 One-dimensional systems, ẋ = f(x)

2.1 Fixed points and linear stability analysis

At a fixed point x∗ the system does not change with time, ẋ(x∗) = f(x∗) = 0.

Linearising about a fixed point gives its stability. Let

x = x∗ + η

where x∗ is the position of the fixed point and η is small. Then

ẋ = η̇ = f(x∗ + η) = f(x∗) +
df

dx

∣∣∣∣
x∗
η + higher order terms.
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f(x∗) = 0 so

η̇ = λη where λ =
df

dx

∣∣∣∣
x∗
.

This means that

For λ > 0 any small perturbation away from the fixed point grows exponen-
tially ⇔ unstable fixed point.
For λ = 0 higher order terms are needed to draw any conclusion.
For λ < 0 any small perturbation away from the fixed point shrinks exponen-
tially ⇔ stable fixed point.

unstable	fixed	point	
	
	
	
	
marginal	fixed	point	
	
	
	
	
	
stable	fixed	point	

x	

Figure 1: Fixed point stabilities.

2.2 Example: a simple population model

Ṅ = rN

(
1− N

K

)
(2)

where the first term represents exponential growth due to friendly animals and
the second a limitation of resources that results from over-friendly animals. (Ex-
hausted animals would just reduce r.) r,K > 0 are parameters describing the
degree of friendliness /amount of food and N > 0 is the number in the popula-
tion.

At fixed points Ṅ = 0 so the fixed points are N∗ = 0 and N∗ = K.
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Linearising around the fixed points to find their stability:

dṄ

dN
= r − 2rN

K
⇒

dṄ
dN

∣∣∣∣
0

= r > 0 ∴ unstable fixed point,

dṄ
dN

∣∣∣∣
K

= −r < 0 ∴ stable fixed point.

We can use this information to sketch the flows in phase space. These show
that, as expected, once a population is established it grows until it becomes
resource limited.

0																																		K			
																																																																																								N													

Figure 2: Flows in phase space for the population model (2).

2.3 Bifurcations

Bifurcations are qualitative changes in the behaviour of a dynamical system as
a parameter is varied.

2.3.1 Saddle node bifurcation

This is the mechanism by which fixed points are created or destroyed. The
canonical example is

ẋ = r + x2. (3)

Remember that x is the variable and r is a parameter: flows are in the phase
space {x}, and they may change as the parameter r is varied.

To find the flows in phase space for the dynamical system (3) we find the fixed
points, and their stabilities.
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x	

r<0													r=0															r>0					

r	

x	

Figure 3: Top: flows in phase space for a saddle node bifurcation (3). Bottom:
the flows are usefully plotted on a stability diagram which shows how they
change as r is varied. It is usual to plot the stability diagram with x on the
vertical axis and r on the horizontal axis. Note that the flows have to be vertical
as r is a parameter that does not change in time, x is a variable that does.

fixed points

ẋ = 0 ⇒ x2 = −r ⇒

r > 0 no fixed points

r = 0 special case x∗ = 0 (twice)

r < 0 two fixed points x∗+ =
√
−r, x∗− = −

√
−r

check stability

dẋ
dx = 2x ⇒

dẋ

dx

∣∣∣∣
x∗+

> 0 ∴ unstable,
dẋ

dx

∣∣∣∣
x∗−

< 0 ∴ stable.
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2.3.2 Transcritical bifurcation

Fixed points exchange stability at a transcritical bifurcation. The canonical
form is

ẋ = rx− x2.

Figure 4: Stability diagram for a transcritical bifurcation.

2.3.3 Supercritical pitchfork bifurcation

A pitchfork bifurcation can occur if a system is unchanged when x⇔ −x. The
canonical form is

ẋ = rx− x3. (4)

For r < 0 there is a stable fixed point at x∗ = 0. For r > 0 the fixed point
x∗ = 0 is unstable, and there are two stable fixed points at x∗ = ±√r. The
stability diagram is shown in Figure 5.

The transition to Rayleigh-Bernard convection rolls is a supercritical pitchfork
bifurcation. Near the transition

τȦ = εA− gA3 + higher order terms that are small (5)

where τ is a time scale, A is the amplitude of eg the velocity and ε is a control
parameter eg the temperature difference between the plates. It follows from
Equation (5) that A ∼ ε1/2 (Figure 5).
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FIGURE 0. E dependence of 17i,,, at Z** = j d .  
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E =( R -  R ,  ) ' R ,  
FIGURE 10. E dependence of V,,,,. 

( b )  Coinparison between the amplitudes of the horizontal and vertical components 
of the same harmonic is very instructive, because i t  expresses the conservation of the 
mass flow in a roll: Vk,,, is almost equal to  V',,,, (square rolls, 6X = d, 62 = d )  and 
Vg,,, is about one-third of V",,,, (rectangular rolls, 6X = i d ,  62 = d )  (see figure 7). 

( c )  Vi-,,, does not exactly follow the power law (9) given above. For high values of 
E we have to rewrite (9) as 

wit.h the approximate experimental relation 

(12) 

A V k  N 1.5e1'5pm s-l. (13) 

Vxmax 1 = 132e06+AV~-pms-1 

Figure 5: Top: stability diagram for a supercritical pitchfork bifurcation. Bot-
tom: scaling near the onset of Rayleigh-Bernard convection

NB if the x⇔ −x symmetry is lost, the system undergoes an imperfect pitchfork
bifurcation (see problem sheet).

2.3.4 Subcritical pitchfork bifurcation

The canonical form for a subcritical pitchfork bifurcation is

ẋ = rx+ x3. (6)

The stability diagram is shown in Figure 6 (top).

For r > 0, x diverges to ±∞ with increasing time, so this is unlikely to be
a good model of a physical system. A more physical example, that includes a
subcritical pitchfork bifurcation and two saddle node bifurcations, is

ẋ = rx+ x3 − x5. (7)
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The stability diagram, shown in Figure 6 (bottom), predicts hysteresis, a lack
of reversibility as r is varied.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2

-1

0

1

2

saddle	node	

saddle	node	

subcri.cal	pitchfork	

Figure 6: Stability diagrams for Equations (6) (top) and (7) (bottom) which
contain subcritical pitchfork bifurcations.
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3 Two-dimensional systems

ẋ = f(x, y)

ẏ = g(x, y)

The phase plane is the space (x, y).
The phase portrait is the set of flows in the phase plane.

3.1 Fixed points and linear stability analysis

The fixed points are points where ẋ = 0 and ẏ = 0. We shall use linear stability
analysis to investigate the flows near the fixed points.

Let

x = x∗ + η,

y = y∗ + ε

where η and ε are small. Then

˙(x∗ + η) = η̇ = f(x∗ + η, y∗ + ε) = f(x∗, y∗) +
∂f

∂x

∣∣∣∣
∗
η +

∂f

∂y

∣∣∣∣
∗
ε+ higher order terms,

˙(y∗ + ε) = ε̇ = g(x∗ + η, y∗ + ε) = g(x∗, y∗) +
∂g

∂x

∣∣∣∣
∗
η +

∂g

∂y

∣∣∣∣
∗
ε+ higher order terms.

f(x∗, y∗) and g(x∗, y∗) are zero so, to leading order,

(
η̇
ε̇

)
=

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)∣∣∣∣
∗

(
η
ε

)
≡ J

(
η
ε

)

where all the derivatives are evaluated at the fixed point and J is the Jaco-
bian matrix.

Let J have eigenvalues λ1, λ2, and corresponding eigenvectors u1 and u2. If

(
η(0)
ε(0)

)
= α1u1 + α2u2

then it is easily checked that

(
η(t)
ε(t)

)
= α1u1 expλ1t+ α2u2 expλ2t.
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3.2 Classification of fixed points

1. λ1, λ2 real and positive ⇔ unstable node

2. λ1, λ2 real and negative ⇔ stable node

3. λ1 > 0, λ2 < 0, both real ⇔ saddle node

4. λ1, λ2 pure imaginary ⇔ centre

5. λ1, λ2 = λR ± iλI , λR > 0 ⇔ unstable spiral

6. λ1, λ2 = λR ± iλI , λR < 0 ⇔ stable spiral

Figure 7: Fixed points in two dimensions.
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3.3 To check that pure imaginary eigenvalues correspond
to a centre

Consider the example

ẋ = −y,
ẏ = x.

This is simple harmonic motion so we expect trajectories (cos t, sin t).

The fixed point is (x∗, y∗) = (0, 0) and the Jacobian J =

(
0 −1
1 0

)

with eigenvalues and eigenvectors

λ+ = i, u+ = (1,−i),
λ− = −i, u− = (1, i).

For an initial perturbation

(
η(0)
ε(0)

)
=

(
1
0

)
= 1

2u+ + 1
2u−

(
η(t)
ε(t)

)
=

(
1
0

)
= 1

2u+e
it + 1

2u−e
−it

= 1
2

(
1
−i

)
eit + 1

2

(
1
i

)
e−it =

(
cos t
sin t

)
.

3.4 Example 1: Lotka-Volterra preditor-prey model

Ṙ = aR− bRF,
Ḟ = −cF + dRF. (8)

a, b, c, d > 0; R,F > 0.

Scaling variables, to minimise the number of free parameters, we take

R = αx, F = βy, t′ = γt ⇒ d

dt
= γ

d

dt′
.

Then the equations (8) become

αγx′ = aαx− bαβxy, (9)

βγy′ = −cβy + dαβxy, (10)
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where x′ = dx
dt′ , etc. Reorganising equation (9) gives

x′ =
a

γ
x− bβ

γ
xy,

so choose γ = a and β = a/b to give

x′ = x(1− y).

Reorganising equation (10) gives

y′ = − c
γ
y +

dα

γ
xy = − c

a
y +

dα

a
xy.

Choose α = c/d to give

y′ = µy(−1 + x)

where µ = c/a.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

centre	

saddle	

Figure 8: Phase portrait of the Lotka-Volterra model.

The fixed points are (x∗, y∗) = (0, 0) and (1, 1) and the Jacobian is

J =

(
1− y −x
µy µ(x− 1)

)
.
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If x = y = 0, J =

(
1 0
0 −µ

)
so λ = 1,−µ with eigenvectors (1, 0)

and (0, 1) and this is a saddle.

If x = y = 1, J =

(
0 −1
µ 0

)
so λ = ±i√µ and this is a centre.

• to find the directions of the flows test a few points.

• this model is unphysical because it doesn’t pick out a preferred orbit.

θ	

θ	
�	

Figure 9: Phase portrait of a pendulum.

3.5 Example 2: The pendulum

θ̈ + sin θ = 0.

Rewrite as

θ̇ = ν ν̇ = − sin θ

This has fixed points, ν = 0, sin θ = 0 ⇒ θ = nπ.

The Jacobian is

J =

(
0 1

− cos θ 0

)
so λ2 = − cos θ and

for θ = nπ, n even, λ = ±i corresponding to a centre.
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for θ = nπ, n odd, λ = ±1, with eigenvectors (1, 1) and (1,−1), corresponding
to a saddle.

The phase portrait is shown in Figure 9. Closed orbits correspond to oscil-
lations around θ = 0. Open orbits correspond to a circulating pendulum.

Figure 10: A stable limit cycle.

3.6 Limit cycles

A limit cycle is a closed trajectory in phase space which corresponds physically
to an oscillation eg beating heart, firing of neurons. Figure 10 shows the flows
around a stable limit cycle. The flows close to an unstable limit cycle away from
the closed orbit.

• Limit cycles are inherently non-linear, which is why they did not appear
in our classification of flows given in Sec. 3.2.
• They are not the same as a centre, which is not an isolated orbit.
• An example of a stable limit cycle is

ṙ = r(1− r2), θ̇ = 1.

3.7 Hopf bifurcations

The bifurcations we considered in Sec. 2.3 can be found in two- and higher-
dimensional phase space: in a one-dimensional subspace with the new dimen-
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sions just giving simple attraction or repulsion. There are also new bifurcations
which correspond to turning oscillations on or off.

• supercritical Hopf bifurcation

A stable spiral becomes an unstable spiral surrounded by a small limit cy-
cle. Physically, oscillations that decay in time became oscillations that have
constant amplitude in time.

• subcritical Hopf bifurcation

An unstable spiral shrinks and engulfs the origin which changes from a sta-
ble to an unstable fixed point. The trajectories can then fly off to a distant
region of phase space. Physically, small decaying oscillations suddenly change
their character. If the flows end on a large limit cycle they can be replaced by
large amplitude oscillations. Turning the control parameter back down does not
destroy the large oscillations because of hysteresis and this can cause problems
in mechanical or biological systems.

(a)	

(b)	

Figure 11: (a) Supercritical and (b) subcritical Hopf bifurcations.
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3.8 Poincaré-Bendixson Theorem

In two dimensions (in phase space), if a trajectory is confined to a closed,
bounded region that contains no fixed points then it must eventually approach
a closed orbit.

But in three and higher dimensions trajectories may wander around forever
in a closed region without reaching a fixed point or closed orbit. This allows
chaos and strange attractors.

4 Higher dimensions and chaos

4.1 Background

4.1.1 Flows in phase space

How do volumes in phase space change with time? They can

• contract, eg a region in the vicinity of a stable fixed point
• expand, eg a region in the vicinity of an unstable fixed point
• stay the same, but change shape (cf incompressible flow in real space). This
is the case for Hamiltonian systems.

Consider a closed volume V (t). Points on the surface S move with velocity
u(x, t) and have normal n̂(x, t). Then

V (t+ dt) = V (t) +

∫

S

u · n̂ dS dt,

dV

dt
=
V (t+ dt)− V (t)

dt
=

∫

S

u · n̂ dS =

∫

V

∇ · u dV.

If ∇ · u is constant

dV

dt
= V ∇ · u. (11)

So, in a way analogous to incompressible flows, volumes in phase space are
preserved if the divergence of the velocity is zero.

17



4.1.2 Liouville’s theorem

A Hamiltonian system is characterised by a function H(x, y) where

ẋ =
∂H
∂y

ẏ = −∂H
∂x

. (12)

Hamilton’s equations (12) imply

dH
dt

=
∂H
∂x

ẋ+
∂H
∂y

ẏ = 0.

For a Hamiltonian system

dV

dt
= V∇ · u = V

(
∂ẋ

∂x
+
∂ẏ

∂y

)
= 0

showing that volumes are conserved in phase space.

4.1.3 Fractals

(a)																																												(b)						

Figure 12: Rules for constructing regular fractals: (a) von Koch curve: replace
the middle third of each line with the other two sides of an equilateral triangle;
(b) Sierpinski carpet: remove central triangle.

Fractals are characterised by

• structure at all length scales
• self-similarity over a range of length scales
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• a non-integer dimension

The similarity dimension is defined by

m = rd ⇒ d =
lnm

ln r

where m is the number of copies and r is the change in scale. So for the von
Koch curve (Figure 12a) m = 4, r = 3 and d = ln 4/ ln 3 = 1.26 and for the
Sierpinski carpet (Figure 12b) m = 3, r = 2 and d = ln 3/ ln 2 = 1.59.

Examples of fractals that are only approximately self-similar are: coastlines,
mountain ranges, electrical discharges, broccoli, river deltas. To describe these a
different way of defining the dimension is needed. To define the correlation dimension
consider a fractal that is a set of points, and a ball (circle in 2D, sphere in 3D)
of radius ε centred at x. Then the number of points in the ball

nx(ε) ∝ εd(x).

In general d will depend on x, but averaging over x,

C(ε) = 〈nx(ε)〉x ∝ εd (13)

where d is the correlation dimension. If the scaling (13) does not hold, then the
set of points do not form a fractal. Usually d is found numerically by plotting
lnC against ln ε. If there is a straight line over a sufficient range of ε (preferably
several decades) its slope can be identified as the fractal dimension d. For small ε
the scaling will break down because there are too few points in the test ball. For
large ε the scaling will break down because the test ball is of a size comparable
to that of the whole set.

4.2 Lorenz equations

4.2.1 Contraction of volumes in phase space

The Lorenz equations are a simplified model of convection rolls in the atmo-
sphere:

ẋ = σ(y − x),

ẏ = rx− y − xz,
ż = xy − bz.

Parameters σ, related to the Prandtl number, r, related to the Rayleigh num-
ber, and b are positive.
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This is a dissipative system, volumes in phase space contract exponentially fast.

∇ · u =
∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
= −(σ + 1 + b).

Therefore, integrating Equation (11),

V (t) = V (0)e−(σ+1+b)t

so at a long time the flows must approach

• a stable or saddle node,
or
• a stable or saddle-like limit cycle,
or
• something else with dimension in phase space that is < 3 – a strange attractor.

4.2.2 Fixed points and stability

The fixed points of the Lorenz equations are

• the origin (0, 0, 0) which exists for all r. It is stable for r < 1.

• C+: (
√
b(r − 1),

√
b(r − 1), r − 1) which exist for r > 1. They are stable for

• C−: (−
√
b(r − 1),−

√
b(r − 1), r − 1) 1 < r < rH where rH = σ(σ+b+3)

(σ−b−1) .

For r < 1 the origin is stable. At r = 1 there is a supercritical pitchfork
bifurcation where the fixed point at the origin becomes unstable and a pair of
symmetric stable fixed points are formed. At r = rH the stable fixed points
undergo subcritical Hopf bifurcations (unstable cycle + stable fixed point ⇒
unstable fixed point) and the trajectories fly to a distant ...

4.2.3 Strange attractor

Figure 13 shows the flows at σ = 10, b = 8/3, r = 28 (cf rH = 24.74).
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(a)																																																			(b)	

Figure 13: (a) y(t) showing aperiodic, irregular oscillations that persist as t→∞
but never repeat. (b) Phase portrait projected onto (z, x). The oscillations
switch unpredictably between the left-hand and right-hand loops. Note that
this is a projection of a > 2-dimensional structure onto 2 dimensions which
is why it looks as if there are crossings. (c) The correlation dimension of the
strange attractor is just above 2.

4.2.4 Exponential divergence of trajectories in phase space

We aim to find how the distance apart of two points in phase space |δx| evolves
with time.

First note that

ẋ = f(x)

˙x+ δx = f(x+ δx)

∴ ˙δx = f(x+ δx)− f(x) =
df

dx
δx

or, more generally, in higher dimensions

d(δx)

dt
= J (δx). (14)

Consider

d(|δx|2)

dt
=
d(δxT δx)

dt
= δxT · d(δx)

dt
+
d(δx)T

dt
· δx

= δxT (J + J T )δx.

Assume δx is an eigenvector of (J + J T )/2 with eigenvalue λi. Then

d(|δx|2)

dt
= 2λi(δx)T δx = 2λi(|δx|2).

Integrating (assuming λi remains constant along the trajectory)

|δx| ∼ eλit .
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Suppose that our required tolerance is a, i.e., a prediction becomes intol-

erable when ||δx(t)|| > a. We can estimate the time horizon beyond with

the prediction will break down as:

thorizon ∼ O

(
1

λ1
ln

a

||δx||0

)
. (14.6)

[Again this neglects any O(δx2) effects.]

It is the logarithmic dependence on ||δx||0 that hurts here.

For example, suppose a = 10−3, ||δx||0 = 10−7

⇒ thorizon ∼ 4 ln 10

λ1
.

But if we improve our original error to ||δx||0 = 10−13

⇒ thorizon ∼ 10 ln 10

λ1
,

i.e., just 2.5 times longer!

14.5 Mechanism for sensitive dependence on initial conditions

Trajectories on a strange attractor remain confined to a bounded region of

phase space, yet separate from their neighbours exponentially fast. How?

The mechanism involves stretching and folding — just like mixing of a

dye in a fluid flow, or making filo pastry:

FFC 14-7

Monday, 8 November 2010

Figure: Strogatz (1994)

After many folds, the shaded region will be spread throughout the dough.

The shaded volume is not fractal (its volume is conserved throughout the

stretches and folds) but does demonstrate sensitivity to initial conditions.

To obtain a fractal, one also needs to the shaded volume to shrink as it is

stretched and folded, as confirmed by (14.1).

The modern definition of a strange attractor is an attractor that exhibits

sensitive dependence on initial conditions. Strange attractors were origi-

nally called strange because they are often (but not always) fractal sets.

Nowadays, this geometric property is regarded as less important than the

dynamical property of sensitive dependence on initial conditions.

Indeed, it is possible to obtain sensitive dependence on initial conditions in

conservative systems (where attractors cannot exist — why?) An example

is the double pendulum (Lecture 1) — this is known as Hamiltonian chaos.

FFC 14-8

Figure 14: Stretching and folding of phase space leads to trajectories that ini-
tially separate exponentially fast but remain within a bounded region of phase
space.

The λi are called the Liapunov exponents.

If any of the λi > 0, trajectories that start close together separate exponen-
tially fast. Therefore it is not possible to predict the long-term behaviour of a
chaotic system.

4.2.5 Chaos

Properties of a chaotic system:

• aperiodic long term behaviour (ie trajectories in phase space that do not
settle down to fixed points or periodic orbits).

• sensitive dependence on initial conditions (at least one positive Liapunov ex-
ponent).

• deterministic (ie no noisy inputs, the irregular behaviour is a consequence
of non-linear terms in the equations of motion).

Examples of chaotic systems:

population models, double pendulum, billiards on a on oval table, gravitational
three-body problem, atmosphere
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Mechanism for sensitive dependence on initial conditions:

Trajectories on a strange attractor remain confined to a bounded region of
phase space, yet they initially separate exponentially fast. A mechanism for
this is continual stretching and folding - like kneading dough (Figure 14).

Returning to the Lorenz equations:

For the parameters we are using λ = −8/3 corresponding to an eigenvector
along z, and 10 (positive implying chaos), and −21, corresponding to eigenvec-
tors in the (x, y) plane. Hence the dominant growth and decay is in the (x, y)
plane.

4.3 Logistic map

Figure 15: (a) Orbit diagram of the logistic map (b) Correlation dimension at
r∞ (from Grassberger and Procaccia (1983)).

The logistic map is a difference equations

xn+1 = rxn(1− xn).

Consider 0 ≤ r ≤ 4 so that the map remains in the interval 0 ≤ x ≤ 1.
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r < 1 x∗n = 0 is a stable fixed point
1 < r < 3 x∗n = 1− 1

r is a stable fixed point

r1 = 3 period 2 cycle born
r2 =3.449. . . period 4 cycle born
r3 =3.544. . . period 8 cycle born
r4 =3.564 . . . period 16 cycle born

...
r∞ = 3.569946 . . . period ∞ cycle born

r∞ < r < 4 chaos interspersed with periodic windows

This is called the period doubling route to chaos.

δ = limn→∞
rn − rn−1
rn+1 − rn

= 4.669 . . .

δ = 4.669 . . . is a universal number, which is the same for a wide range of 1D
maps. It has been measured experimentally for Rayleigh-Bernard convection at
the transition between the roll state and turbulence and in electronic circuits
that have a transition to chaos.
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