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C. Lubrication approximation

(also known as the thin film approximation)

z=h(x)	
	
z=0	

x	

z	

h	

Figure 1: Geometry for the lubrication approximation. h� other dimensions.

(i) set-up

Consider the geometry in Figure 1. Let

• U be a typical horizontal (ie along x) flow speed,
• L be a typical horizontal length scale,

and assume that h� L .

(h can be a function of x and y in general, but we will just consider x to
shorten the writing, and we assume steady flow.)

This geometry is relevant for the flow of thin films eg lubriction of a bear-
ing, coating flows, paint spreading, printing.
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(ii) How do velocities and their derivatives scale?

ux ∼ U
∂ux
∂z
∼ U

h
because the flow has magnitude U in the bulk, but is no-slip at the surfaces

∂2ux
∂z2

∼ U

h2

∂ux
∂x
∼ U

L
∂2ux
∂x2

∼ U

L2
note that x-gradients of velocity� z-gradients of velocity

To see how uz scales we use incompressibility, ∇ · u = 0.

∂ux
∂x

+
∂uz
∂z

= 0 ⇒ U

L
∼ uz

h
⇒ uz ∼

Uh

L
� ux

(iii) Identify the leading order terms in the Navier-Stokes equation

assume steady flow

(u·∇)u =

(
ux

∂

∂x
+ uz

∂

∂z

)
(ux, uz) ∼

(
U

L
+
Uh/L

h

)
(U,

Uh

L
) ∼ U2

L
+smaller terms

ν∇2u ≈ ν ∂
2ux
∂z2

+ smaller terms ∼ νU

h2

so
(u · ∇)u

ν∇2u
∼ Uh2

νL
∼ Re

(
h2

L2

)

So for low Re, (but the h2/L2 terns helps to satisfy the inequality) the non-
linear term in N-S can be ignored. Writing out the components of N-S retaining
only the dominant viscous term gives

1

ρ

∂p

∂x
= ν

∂2ux
∂z2

,
1

ρ

∂p

∂z
= 0.

So p is just a function of x and the two equations we need to solve in the
lubrication approximation are

1

ρ

dp

dx
= ν

∂2ux
∂z2

, (1)

and the continuity equation

∂ux
∂x

+
∂uz
∂z

= 0. (2)
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(iv) An example: the sticky ruler

ruler	
	
fluid	
	
table	

x	

z	
a	

h<<a	

uz=W	

Figure 2: A ruler being pulled off a table at speed W . (We are looking at the
ruler edge on and assuming that it is infinite along y; the z-scale is magnified.)

1. Start from Equation (1). Integrate twice wrt z to find how ux depends on
z remembering that dp

dx is independent of z. Put in the boundary conditions,
ux = 0 at z = 0 and z = h to give

ux = − 1

2η

dp

dx
z(h− z). (3)

2. Differentiate Equation (3) wrt x and substitute into the continuity equa-
tion (2)

1

2η

d2p

dx2
z(h− z) =

∂uz
∂z

(4)

and then integrate wrt z to obtain

uz =
1

2η

d2p

dx2

(
hz2

2
− z3

3
+ C

)
. (5)

The constant C = 0 because uz = 0 at z = 0.

3. At z = h, uz = W so Equation (5) gives

W =
1

2η

d2p

dx2
h3

6
. (6)

4. Integrate Equation (6) twice to get the pressure distribution in the fluid. The
boundary conditions are p = p0 (atmospheric pressure) at x = ±a.

p− p0 =
6ηW

h3
(x2 − a2). (7)
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5. Substituting back into Equation (3) gives ux,

ux = −6Wx

h3
z(h− z). (8)

x	

z	

ux	

uz=W	
p=p0	 force	needed	to	overcome	

p	difference	between	top	
	and	bo8om	of	ruler	

p<p0	

Figure 3: To check that the signs make sense.

D. Waves

Linear sound waves

Our aim is to derive the equation for sound propagation in the linear approxi-
mation. Sound is a wave motion that couples p, ρ and u. Therefore we will use
the compressible Navier-Stokes equations, and we will assume inviscid flow.

We will need

• the vector identity

∇(∇ · u′) = ∇2u′ +∇∧ (∇∧ u′) ≡ ∇2u′ for irrotational flow. (9)

• the equation of state of the gas p(ρ). Taylor expanding about a reference
density ρ0

p(ρ0 + ρ′) = p(ρ0) +
dp

dρ

∣∣∣∣
ρ0

ρ′ + . . .

∇p =
dp

dρ

∣∣∣∣
ρ0

∇ρ′. (10)
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The equations of motion are

Euler: ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p. (11)

continuity:
∂ρ

∂t
+∇ · (ρu) = 0 ⇒ ∂ρ

∂t
+ ρ∇ · u + u · ∇ρ = 0. (12)

We will expand Equations (11) and (12) for small deviations from the equilib-
rium state p = p0, ρ = ρ0, u = 0,

ρ = ρ0 + ρ′(r, t),

p = p0 + p′(r, t) ≡ p(ρ0 + ρ′),

u = u′(r, t),

and keep terms linear in small (′) quantities. We will choose to write the result-
ing equations in terms of the variables ρ′ and u′.

Expanding the Euler equation and using Equation (10)

(ρ0 + ρ′)

{
∂u′

∂t
+ (u′ · ∇)u′

}
= −∇p

∣∣∣∣
ρ0+ρ′

= −dp
dρ

∣∣∣∣
ρ0

∇ρ′.

So to leading order

ρ0
∂u′

∂t
= −dp

dρ

∣∣∣∣
ρ0

∇ρ′. (13)

Expanding the continuity equation

∂(ρ0 + ρ′)

∂t
= −(ρ0 + ρ′)∇ · u′ + u′ · ∇(ρ0 + ρ′)

and to leading order

∂ρ′

∂t
= −ρ0∇ · u′. (14)

Differentiating Equation (13) with respect to time

ρ0
∂2u′

∂t2
= −dp

dρ

∣∣∣∣
ρ0

∂

∂t
(∇ρ′). (15)

Taking the grad of Equation (14) and using the identity (9)

∂

∂t
(∇ρ′) = −ρ0∇2u′. (16)
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Comparing Equations (15) and (16) gives

∂2u′

∂t2
=
dp

dρ

∣∣∣∣
ρ0

∇2u′. (17)

This is the wave equation with velocity c2 = dp
dρ |ρ0 . Small oscillations in p, ρ and

u propagate as a wave. The wave is undamped (as we have set ν = 0). It is
non-dispersive, as the speed is independent of frequency. Thermal conduction
is normally negligible for sound waves in air so pρ−γ =constant and c2 = γp/ρ0
where γ is the ratio of specific heats.

Incompressibility

This is just a short aside to check the condition for incompressibility.

For it to be a good approximation to treat a fluid as incompressible we re-
quire

pressure variation due to flow � pressure variation due to sound waves

From Bernoulli the pressure variation due to the flow satisfies

u2

2
+
p

ρ
= constant ⇒ ∆p ∼ u2∆ρ.

For sound waves

∆p ∼ dP

dρ
∆ρ ∼ c2∆ρ.

Therefore, for incompressibility,

u2 � c2 or Ma� 1

where the Mach number, Ma = u/c.

Surface waves

Consider a deep body of fluid with a surface at y = 0 and let the small displace-
ment of the surface be η(x, t). We want to find the dispersion relation for waves
on the surface.

(i) Equation of motion:

Assume irrotational, incompressible flow so

∇2φ = 0 (18)
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where φ is the velocity potential.

(ii) Boundary conditions:

Assuming small velocities and amplitudes –

1. The time-dependent Bernoulli’s function is constant at the free surface.

∂φ

∂t
+
u2

2
+
p0
ρ

+ gη = constant at y = 0.

Ignoring the non-linear term in u2, because we are assuming u is small, and
choosing the constant to be p0/ρ this becomes

∂φ

∂t
+ gη = 0 at y = 0.

(Taking p = p0 (atmospheric pressure) means that we are ignoring surface ten-
sion which is a good approximation for waves with wavelength more than a few
cm.)

2. Assume that the y component of the velocity is equal to the vertical ve-
locity of the interface:

uy =
∂φ

∂y
=
∂η

∂t
at y = 0.

3. Velocities tend to zero far below the surface:

uy =
∂φ

∂y
= 0 as y → −∞.

(iii) Solving the equation

Look for a solution
φ = A cos(kx− ωt) g(y).

Substituting in to Laplace’s equation (18), solving, and using boundary condi-
tion 3 gives

φ = A cos(kx− ωt) eky.

Boundary condition 2 then gives

η = −Aω
g

sin(kx− ωt)

which is consistent with boundary condition 1 if the dispersion relation is

ω2 = gk.
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Figure 4: Non-linear waves

Non-linear waves

The equations for non-linear waves are more complicated. A ‘toy model’ that
gives the right physics is

∂z

∂t
+ z

∂z

∂x
= 0. (19)

The general solution of this equation is

z = F (x− zt). (20)

Let’s check that this is a solution:
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∂z

∂t
= F ′

{
−z − ∂z

∂t
t

}
∂z

∂x
= F ′

{
1− ∂z

∂x
t

}
⇒ ∂z

∂t
+ z

∂z

∂x
= F ′

{
−∂z
∂t
t− z + z − z ∂z

∂x
t

}
= F ′

{
−t

(
∂z

∂t
+ z

∂z

∂x

)}
= 0.

Compare the wave (20) to the solution of the linear wave equation z = F (x−ct).
In the linear case the wave velocity is a constant, c. In the non-linear case the
velocity is z(x) ie it depends on the wave displacement z at any point x. This
means that points of larger displacement move faster, and the wave steepens
(Figure 4). Physically the slope of the displacement cannot become infinite
because viscosity must eventually become important (the viscous dissipation
increases with gradients). However, wave profiles can become very steep.

E. Zero Reynolds number

At low Re viscosity dominates. Examples of viscous flows are:
slow movements of the earth’s mantle
creep of a glacier
treacle dripping from a spoon
microfluidics
bacterial swimming

At Re=0 we can ignore the inertial terms in the Navier Stokes equations giving
the Stokes equation

∇p = η∇2u.

There is no explicit time dependence in the Stokes equations which implies
kinematic reversibility. A striking example of this is provided by a blob of dye
suspended in a high viscosity fluid contained between two cylinders. When the
fluid is sheared by rotating the outer cylinder the dyed blob can be stretched to
wrap several times around the inner cylinder. If the motion of the cylinders is
reversed the dyed fluid returns to its original shape. See
https://www.youtube.com/watch?v=p08 KlTKP50

Stokes drag
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Stokes flow is linear, forces are proportional to velocities.

In particular the force needed to pull a colloid of radius a through a fluid at
velocity u, called the Stokes drag, is

F = 6πηau.

(see problem set)

(b) bacterial swimming
2 Will be inserted by the editor

Fig. 1. Low Reynolds number swimmers: (a) a sperm cell [13], the wave moving along the
flagellum defines a direction in time and allows motion at zero Reynolds number; (b) E. coli,
an example of a pusher, the far flow circulates outwards from the head and tail and inwards
to the sides; (c) Chlamydomonas, the ‘breast-stroke’ of the flagella leads to a contractile
(puller) far flow which circulates from the sides to the front and rear; (d) Euglena metaboly,
shape changes of the body result in propulsion; (e) Paramecium, the surface is covered by
beating cilia, these synchronise, and metachronal waves in the beating pattern move across
the surface of the organism; (f) a fabricated microswimmer, driven by a rotating magnetic
field [11].

bacteria and algae, and fabricated microswimmers, swim. For such tiny entities the
governing equations are the Stokes equations, the zero Reynolds number limit of the
Navier-Stokes equations. This implies the well-known Scallop Theorem, that swim-
ming strokes must be non-invariant under time reversal to allow a net motion, ideas
introduced in Sec. 2. Then, in Sec. 3, we define two model microswimmers and show
how to calculate their swimming speeds.

A concept that we stress in this review is that biological swimmers move au-
tonomously, free from any net external force or torque. As a result the leading order
term in the multipole (far field) expansion of the Stokes equations vanishes and mi-
croswimmers generically have dipolar far flow fields. Sec. 4 is a discussion of the
multipole expansion, and its application to microswimming, and we introduce the
stresslet and rotlet. Then, in Sec 5, we describe physical examples where the dipolar
nature of the bacterial flow field has significant consequences, velocity statistics in a
dilute bacterial suspension and tracer di↵usion in a swimmer suspension. A discussion
of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.
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II. METHODOLOGY
A. Immersed Boundary-Lattice Boltzmann Method.

The swimmer and cilia reside in a fluid domain. The fluid flow
is computed using the lattice Boltzmann method,7 which is an
efficient numerical solver for the Navier−Stokes equations. The
size of the fluid domain is Lx × Ly × Lz = 60 × 40 × 60 in lattice
Boltzmann units, with periodic boundary conditions in the x
and z directions and no-slip conditions applied on the
boundaries y = 0 and y = Ly. To match the scales of recently
fabricated synthetic cilia and well-studied swimming micro-
organisms, such as the alga Chlamydomonas reinhardtii, we set
the lattice Boltzmann grid spacing Δx = 2.5 μm and the time
step Δt = 1 μs. This yields a cilium length and swimmer length
of 25 μm and biologically relevant swimmer speeds on the
order of 102−103 μm/s (see below).
In our simulation, the upper and lower walls lie 100 μm

apart. We will focus on swimmer dynamics near the lower wall,
where the cilia are located. Although the wall separation is only
4 times the swimmer length, we anticipate that our conclusions
also apply in the case that the upper wall is further away or even
absent. Notably, bacterial cell scattering experiments have
suggested that a wall has negligible hydrodynamic effect until
the swimmer collides with it, aligning with the wall and
remaining in close proximity.14 Once our model swimmer
reaches the ciliated lower wall, the upper boundary is
sufficiently far away to be inconsequential.
The flow field generated by the cilia also potentially depends

on the wall separation. Performing simulations with the wall
separation doubled, however, we found that the flow profile
within the ciliary layer was qualitatively identical. The main
difference was a reduced shear rate in the fluid above the cilia
(see Figure S1). Since for our analysis we are primarily
interested in the dynamics of swimmers that reach the ciliary
layer, the location of the upper wall is not critical, provided that
it is at least a few body lengths away from the lower wall.
The LB method is coupled to the dynamics of solid objects

using the immersed boundary method as follows.10 An object in
the fluid is defined by a collection of mesh nodes. At each time
step, internal forces and torques acting on each node are
computed using a constitutive model relating the stresses to
strains within the object. These forces and torques are
transferred to the fluid in accordance with local force and
torque balance. The resulting flow field is then used to advect
the object nodes, thereby satisfying a no-slip condition on the
object. An additional feature not present in traditional IBMs is
that nodes have an associated orientation, which is updated
using the fluid vorticity field.15 This is required for the elastic
filament model of the cilia (see Supporting Information text).
Although this method of advecting immersed boundaries

helps to prevent interpenetration of bodies,15 we reinforce
excluded volume effects around objects by imposing a short-
ranged repulsive force between nodes of swimmers and those of
cilia. The form of this force corresponds to the repulsive part of
a Morse potential interaction

= − − −V r D( ) (1 e )a r rMorse ( ) 20 (1)

where the maximal interaction range is r0 = 1.5Δx. The precise
details of the repulsive interaction are not expected to
qualitatively influence the outcomes of the model.
B. Swimmer Model. The swimmer that we simulate herein

is based on a theoretical model proposed by Najafi and
Golestanian.16 The body consists of three linked spherical

beads arranged along a line. The lengths of the links between
neighboring beads oscillate as illustrated in Figure 1A. The

stroke is nonreciprocal, which is a well-known prerequisite for
generating a net displacement from a cyclic sequence of body
deformations in the zero-Reynolds-number limit.17 This model
swimmer was chosen because it is one of the simplest that
captures the fundamental characteristic of self-propulsion in a
viscous fluid and is, as for many biological swimmers, attracted
to a surface in the absence of the cilia. (However, the approach
described here is sufficiently general that we can introduce
other types of swimmers, such as a flagellated organism;18 this
will be the subject of future work.)
In our three-dimensional numerical model, each bead of the

swimmer is advected with the local flow velocity. Linear elastic
forces and torques are employed to maintain a swimmer
configuration that is close to rigid and collinear. Using one
immersed boundary node for each bead gives an effective
hydrodynamic radius R = Δx. We choose the link lengths to
oscillate between Lmin

link = 4Δx and Lmax
link = 6Δx so that the

average total swimmer length is Lswim = 10Δx = 25 μm. We
investigate swimmers with two different stroke periods, Tswim =
200Δt and 1000Δt. In both cases, we determined the net
displacement after one cycle to be about 1% of the swimmer
length. This is consistent with the analytical result for the
displacement, Δ, given by Earl et al.:19

ε εΔ = + ≈R L L L7
12

[( / ) ( / ) ] 0.009max
link 2

max
link 3 swim

where ε = (Lmax
link − Lmin

link).
Converting to physical units, the average speeds of the fast

and slow swimmers are vswim = 1250 and 250 μm/s,
respectively. By comparison, experiments have found swimming
speeds up to 240 μm/s for the 10 μm long C. reinhardtii,20

while bacteria and certain fish larvae are known to reach relative
speeds of 50 body lengths per second.21 Our simulated
swimmers are therefore representative of biological examples in
terms of speed. For a fluid with the viscosity of water, the
corresponding Reynolds numbers are Refast = 0.03 and Reslow =
0.006, indicating the dominance of viscous over inertial effects.

C. Cilium Model. Each cilium is modeled as an elastic rod
of length Lcil = 10Δx = 25 μm, discretized into N = 10
segments of equal lengths. The rod segments are characterized
by position and orientation vectors. Internal mechanics of the
rod are governed by linear elastic constitutive relations

Figure 1. Simulation setup and details of the individual components.
(A) A schematic of the swimming stroke cycle for the three-linked-
sphere swimmer. The darker sphere indicates the leading end of the
swimmer. One full cycle leads to a net displacement of about 1% of the
body length. (B) The simulation domain containing nine cilia and one
swimmer. (C) A superposition of configurations of a single cilium
showing the periodic stroke induced by the external driving force. This
stroke is animated in Movie S1.

Langmuir Article

dx.doi.org/10.1021/la402783x | Langmuir 2013, 29, 12770−1277612771

A	  
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C	  

D	  

Figure 5: Microscopic swimmers that have evolved to overcome the Scallop
Theorem. A: E. coli, B: sperm cells, C: Euglena metaboly, D: a model 3-sphere
swimmer.

A far-reaching consequence of the Re = 0 limit is Purcell’s Scallop Theorem:

To achieve propulsion at zero Reynolds number in Newtonian fluids a swim-
mer must deform in a way that is not invariant under time reversal.

As a swimmer moves through a low Re fluid there is nothing in the equa-
tions of motion of the surrounding fluid that picks out a preferred direction. If
the boundary conditions, i.e. the swimmer’s stroke cycle, is invariant under time
reversal as well, its net displacement after each cycle must be zero – otherwise re-
versing time would give the same physical system, but a different displacement.
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Therefore at zero Re the stroke must be non-invariant under time reversal to
allow swimming.

Microscopic swimmers have evolved several strategies to overcome the Scallop
Theorem (Figure 5). Many move by using long, thin appendages called flagella.
Bacterial flagella (e.g. E. coli) are driven by rotary motors which induce helical
waves to overcome the Scallop Theorem. Eukaryotic flagella tend to oscillate
through bending waves. Paramecium is covered by cilia, shorter but similar in
structure to eukaryotic flagella that have distinct power and recovery strokes.
Cilia also act as pumps in the body, clearing mucus from the lungs and initiating
asymmetry in morphogenesis. Euglena metaboly produces a suitable swimming
stroke by altering its body shape so that the relative motion of its ends is coupled
to changes in their mass.

At least three degrees of freedom are needed to define a suitable stoke for zero Re
swimming. A simple model swimmer is the three-sphere swimmer, which com-
prises three spheres coupled by rods. The rods have no hydrodynamic coupling
to the fluid, but specifying their lengths as a function of time serves to define
the swimming stroke. The stroke and the swimmer displacement as a function
of time are shown in Figure 5D. The advantage of building the swimmer out
of spheres is that the flow field around a sphere is known analytically in the
Stokes limit. Hence exact results can be obtained for the swimming speed if the
sphere radii are small compared to their separation. (See An introduction to
the hydrodynamics of swimming microorganisms, J.M. Yeomans, D.O. Pushkin
and H. Shum, European Physics Journal: Special Topics 223 1771-1785 (2014)
for more - not on the syllabus - details.)

F. Instabilities

Rayleigh-Bernard convection

Consider a fluid between two horizontal plates. The top plate is at temperature
T1 and the bottom plate is at temperature T2. If T2 < T1 the colder fluid, at the
bottom, has higher density and nothing happens. If T2 > T1 it is reasonable to
expect that the lighter fluid will rise if it gains enough gravitational energy by
doing so. This would mean that the zero velocity state is unstable, and that the
instability leads to a different flow configuration. This is indeed what happens
for a sufficiently large temperature difference: for T2−T1 < ∆Tc the zero velocity
state is stable; for T2 − T1 > ∆Tc it is replaced by counter rotating convection
cells (Figure 6). The diameter of the rolls ∼ the distance between the plates
and the velocity of the rotating fluid increases with distance from the threshold.
At higher ∆T more complicated flow patterns occur, eg non-stationary rolls.
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(a)	

(b)	

Figure 6: Rayleigh-Bernard convetion rolls: (a) from the side, (b) from above.

To understand the mechanism which drives the instability consider a fluid par-
ticle which, due to a local random fluctuation, starts to move upwards. If it
doesn’t cool down too quickly it will be surrounded by a fluid of increasingly
high density as it moves so the buoyancy force acting on it will increase and
its velocity will be amplified, setting up a positive feedback loop and driving
the instability. This will work if the thermal diffusivity, κ, which equalises the
temperature, and the viscosity, ν, which damps out any velocity differences, are
not too large. The control parameter is the Rayleigh number

Ra =
α∆Tgd3

νκ
, where

1

ρ0

dρ

dT
= −α

and d is the distance between the plates.

Scaling argument for the Rayleigh number

A fluctuation gives a fluid particle of volume V and linear dimensions ∼ r0
an upwards velocity. Is the flow amplified or does it die out? To answer this
question we will compare the upthrust, due to buoyancy forces, to the Stokes

12



drag:

characteristic time for thermal relaxation of the particle is τQ ∼
r20
κ
,

distance moved by particle in this time is vτQ,

resulting difference in temperature between particle and fluid is δT =
∂T

∂y
δy ∼ ∆T

d
vτQ,

so difference in density between particle and surrounding fluid is δρ =
∂ρ

∂T
δT ∼ ρ0α

∆T

d
v
r20
κ
,

therefore the upthrust is ∼ δρV g ∼ ρ0α
∆T

d
v
r20
κ
r30g.

The Stokes drag is ∼ ηr0v ∼ ρ0νr0v.

So buoyancy is greater than drag if ρ0α
∆T

d
v
r50g

κ
> ρ0νr0v.

Rearranging Ra =
α∆Tgd3

νκ
>

(
d

r0

)4

.

Remember that we have ignored all factors of order unity so this tells us that
the Rayleigh number is a suitable control parameter for this instability, that
there is a critical Rayleigh number and that Rac > 1. It does not tell us the
value of Rac which experiments show is 1708.

Other instabilities

Rayleigh-Plateau
The Rayleigh-Plateau instability (Figure 7) causes the break-up of fluid fila-
ments eg the stream of water falling from a tap. Small fluctuations on the sur-
face of the fluid can be decomposed into Fourier components. Some wavelengths
die out, but some grow, and the most unstable (fastest growing) wavelength de-
termines the final spacing of the drops.

The physics driving the instability is the Laplace pressure. There is a pressure

drop across a curved interface: ∆P = σ
(

1
r1

+ 1
r2

)
where σ is the surface tension

and r1 and r2 are the principal radii of curvature. It turns out that the pressure
inside the filament is higher at the necks than in the bulges, so fluid is pushed
out of the necks, which break, forming a line of droplets.
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Figure 7: Examples of the Rayleigh-Plateau instability. A falling stream of
water breaks up into drops. A series of tiny satellite drops can form between
the main droplets. Dew on a spider’s web forms drops rather than coating the
fibres because of the Rayleigh-Plateau instability.

Rayleigh-Taylor
Instability of an interface between two fluids of different densities. Consider
a dense fluid on top of a less dense one under gravity. A small perturbation
of the interface will decrease the gravitational energy but increase the surface
tension energy. For long enough wavelengths gravity wins; for water over air
‘long enough’ is ∼ 1cm.

Kelvin-Helmholtz
Caused by shear across a fluid or at the interface between two fluids. Wind
blowing over the ocean leads to waves as a result of the Kelvin-Helmholtz in-
stability. Certain cloud patterns and the patterning around the great red spot
on Jupiter are other examples.
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G. Turbulence

Understanding turbulence is a hard problem We do not have a complete, pre-
dictive, theory of turbulence.

• deterministic chaos ... can be described by the N-S equation (we assume)
but there is little understanding how.

• in any real fluid thermal fluctuations may be important as there is sensi-
tive dependence on initial conditions.

• the velocity and vorticity fluctuate ‘randomly’ but this is not just white noise;
there is structure and there are correlations in the velocity field.

Statistical description of turbulence

Write (using index notation)
vi = vi + v′i (21)

where vi is the mean flow and v′i are velocity fluctuations about the mean. Note
that, by definition, v′i = 0. The average, denoted by an overbar, is taken at a
point over a long time, or over a large system at a given time. If the system is
ergodic these will give the same answer.

N-S written in index notation is

∂vi
∂t

+ (vj∂j)vi = −1

ρ
∂ip+ ν∂2j vi. (22)

Substituting for vi from Equation (21) gives

∂vi
∂t

+
∂v′i
∂t

+ (vj + v′j)∂j(vi + v′i) = −1

ρ
∂ip+ ν∂2j (vi + v′i). (23)

Averaging, remembering that averages and derivatives commute and that the
average of a product is not equal to the product of averages, gives

∂vi
∂t

+ (vj∂j)vi + (v′j∂j)v
′
i = −1

ρ
∂ip+ ν∂2j vi (24)

where we have used v′i = 0.

Equation (24) is N-S for the mean flow plus a non-linear term (v′j∂j)v
′
i. This can

be considered to produce an additional stress acting on the mean flow. Attempts
to deal with it include modelling it as an additional velocity, the eddy viscosity.
But this just shifts to problem to understanding how the eddy viscosity depends
on the local flow properties.
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Kolmogorov scaling

Kolmogorov scaling is a useful way of describing turbulence that approximately
matches experiment and probably contains some of the correct physics.

Kolmogorov described turbulence in terms of an energy cascade. Energy injected
into the flow field is transmitted to the largest vortices. These transmit energy
sequentially to smaller and smaller vortices with no dissipation. Energy is finally
dissipated by the viscosity at the scale of the smallest vortices.

Let

ε be the rate at which the energy per unit mass is flowing down the cascade,
` be a characteristic vortex size,
v` be the velocity of vortices of size `,
so the energy per unit mass of a vortex ∼ v2` .

By dimensional analysis

ε ∼ v3`
`
≡ v2`/(`/v`).

The range of ` over which this scaling holds is called the inertial subrange. It
is bounded above by the length scale at which energy is injected. It is bounded
below by the breakdown of the assumption of no dissipation.

Let ξ be the characteristic vortex size at which dissipation starts to become
important. For vortices of size ξ

rate of energy flow ∼ rate of energy dissipation

ε ∼
v3ξ
ξ

(as before) ∼ ν
v2ξ
ξ2

(expected to depend linearly on the viscosity, and

then a (time scale)
2

is needed to get the dimensions right)

which can be rearranged to give the

ξ ∼ ν3/4ε−1/4 vξ ∼ (νε)1/4

Kolmogorov length Kolmogorov velocity

As a consistency check, we would expect the energy dissipation to become ap-
preciable at Re ∼ 1:

Re =
ξvξ
ν

=
ν3/4ε−1/4(νε)1/4

ν
= 1.
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Comparison to experiment

Energy	per	unit	
k-range	

Figure 8: Scaling in the inertial subrange of bulk turbulence.

The experimental results in Figure 8 are a reason to believe that Kolmogorov
scaling is at least a partial description of the physics of turbulence. To obtain
these results the velocity spectrum is measured by putting an array of fine wire
sensors in the fluid and heating them – the rate of heat transfer to the fluid is
a measure of the local velocity. The spectrum of the velocity squared is then
Fourier transformed to give the energy per unit mass per unit k-range, where k
is the wavevector.

Note that Figure 8 is a log-log plot, and that the dependence is linear (except
at high and low k). Thus the experiments show that the energy has a power
law dependence on k, that is E(k) ∼ kα where here α = −5/3. The scaling is
built in to the Kolmogorov picture. The theory can also explain the value of
the exponent, −5/3, as follows:

• E(k) cannot depend on ` as the Kolmogorov assumption is that the energy
flow between different length scales or, equivalently, different k is independent
of ` in the inertial range.
• E(k) cannot depend on ν as there is no viscous dissipation in the inertial
range.
• E(k) can depend on ε and k and, by dimensional analysis,

E(k) ∼ ε2/3 × k−5/3

[length]3[time]−2 ([length]2[time]−3)2/3 (length−1)−5/3

17


