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Preamble

We will be discussing the Navier Stokes equation

p{aa—ltl + (u-V)u} = —Vp + nViu. (1)

It is amazing that such a seemingly simple equation can be used to describe

how fluids move across an enormous range of length scales.



A The Navier-Stokes Equation
A.1 Vectors: reminders and identities
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V?2u is a vector with components (Vzug;, V2u,, VQuZ)

(u-V)u is a vector with z-component

N.B.1 these formulas are different in different co-ordinate systems — see e.g.

Acheson appendix.
N.B.2 there are lots of useful vector identities

eg. V(F-G)=FA(VAG)+GA(VAF)+ (F-V)G+ (G:V)F

— also listed in Acheson appendix

Divergence theorem
/u-ﬁdS:/V-udV (2)
s %

where S is the closed surface surrounding a volume V.

An equivalent statement of the divergence theorem is

/quﬁdszfvwdv. (3)



Stokes theorem
7{ u~ds:/(V/\u)~f1dS
C s

where S is an open surface spanning a closed curve C.

A.2 Continuity equation

The continuity equation is a statement of conservation of mass.

Consider a volume V. Conservation of mass implies:

decrease of mass in V' = total mass flux out of V
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This is true for all V. =
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If the fluid is | incompressible, p is constant ‘ SO

(Incompressible implies that pressure variations in the flow do not significantly
alter the density. Liquids have a small compressibility so this is usually a very
a good approximation. For gases it is not so obvious, but often the pressure
variations are sufficiently small that it remains a good approximation.
quantitative criterion is Ma = u/cs < 1, where Ma is the Mach number, v is
the flow speed, and ¢ is the speed of sound. See eg Tritton 5.8.)

A.3 Material derivative

Let f be a quantity associated with a ‘fluid particle’. How does it change with

time?

Df d

or = g1/ @©):u(0).2(0).1).



Therefore, using the chain rule,
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D
—f is called the material derivative, the rate of change of f following the fluid.

Physically the material derivative is the rate of change of f that an observer
moving with the fluid would measure at any particular location in space and
instant in time where the derivative is evaluated.

So the acceleration of a fluid particle is

Du Ou

E—E‘F(UV)U

An example of the acceleration of a particle in a steady (22 = 0) flow:

1 h
(constant p) u larger here

D 0
D—ltl # 0 even though (’Tltl =0.

A.4 Euler equation

The Euler equation is a statement of conservation of momentum (ie Navier-
Stokes with zero viscosity).



Newton’s law for a fluid element (assuming an incompressible fluid so p is con-
stant) is

D
“mass X acceleration” :/ p—u dav
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“force” = — / pn dS +/ fdv
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where we have used the divergence theorem, eq. (3), p is the pressure and f is
a force per unit volume, sometimes called a body force.

True for all V' so

Du
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0
or, equivalently, Biltl +(u-Viu= _;Vp'h ;

NB if the force is gravity

(assuming k is the upwards unit vector).

A.5 Viscosity and the Navier-Stokes equation

. but there are other forces acting due to velocity gradients that we have
ignored so far. Velocity gradients lead to momentum transfer, ie to forces.



(a) the physics (cf kinetic theory)

(1) ’kinetic contribution to viscosity: dominant in a gas

du,
velocity gradient Mo
dy

/

force is along x

molecules crossing plane from above carry more z—momentum than those cross-
ing from below

(ii) momentum transfer due to intermolecular forces
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collisional contribution to viscosity:
dominant in a liquid

(b) the maths (outline only)

So far we have the Euler equation (ignoring external forces for now and writing
in component form)
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We generalise this by writing

6ui 1 0
ot + (u . V)uz = ;73‘%] {O'ij} (4)
Oou; Ou;
where 7= _péij B ((%g * al’i) . (5)

045 is the stress tensor
n is the dynamic viscosity

0;; is the ith component of the stress (force per unit area) on an element of
surface with normal in direction j.

So the ith component of stress on an element of surface area with normal n is
ti = OizNyg + Oy + 032N, = 045N

t=0on

Why does the viscous term take the form 7 (g;‘% + gzj ) ?
7 2

e must depend on velocity gradients

e we assume that gradients are small so the dominant contribution is linear
in first derivatives of the velocity

e this simple form assumes incompressibility

e the allowed combinations of gradients is restricted by symmetry (e.g. in-
terchanging ¢ and j cannot change the physics)
Putting o;; into the Navier-Stokes equation (4)
Ou; 1 Op 0 (Ou; Ou;
N, = - - — J )

ot +(u-V)u p < ox; +7}8xj {3xj * ox; })

But note that 5 /8
0 < w) — V2,
aa:j aa:j

aij (gzjz ) = 61 (ggj) =0 for an incompressible fluid.




So, returning to vector notation,

Ou 1 Mo
E—i—(u-V)u——pr—i—pV u.

v =mn/p is the kinematic viscosity.

A.6 Comments on the validity of the Navier-Stokes equa-
tion:

1. Navier-Stokes is a continuum equation, ie it is written in terms of contin-
uous variables or fields p, u. We assume that we can define the variables
at a point in space at a given time p(r,t); u(r,r) but really we are as-
sociating them with a region in space of size [, say. If [ is too small the
number of molecules in the region and their average velocity will fluctuate
widely so the continuum limit (or, equivalently, the hydrodynamic limit)
will not work. N-S appears to work well down to surprisingly small length
scales for a fluid (~ 50 nm & below). For rarefied gases need [ > X, where
A is the mean free path, and there are cases when N-S fails.

an + 8131

Ou;  Ou,
UijZ—P5ij+77< - uj)

is a constitutive relation between velocity gradients and the stress tensor.
It can be taken as the definition of a Newtonian fluid.

3. When does N-S fail.?
e viscoelastic fluids such as liquid crystals or polymer solutions have a
memory = need an extra time scale.

e steep velocity gradients mean that higher order derivatives will be
important.

e fluids that are magnetic or have free charges are described by more
complicated equations.

e if the flow of heat is important an extra temperature field is needed.
e relativistic effects are ignored.

4. Coefficients like viscosity n are numbers that need to be measured. Cal-
culating them requires a microscopic theory (like kinetic theory).



A.7 Visualising the flow field

velocity field:
plot of vectors u(r) at time ¢
gives information about direction and magnitude of the flow

streamline:
curves tangent to u at time ¢

In steady flow (%—‘t‘ = 0) the streamlines do not change with time and particle
paths = streamlines.

Streamlines are given by
do _dy _d:

Up Uy Uy

because (dz,dy, dz) is locally o u.
Streamlines cannot intersect.

Each streamline gives information about local direction of the flow; and the
density of streamlines gives information about magnitude of the flow.

N.B.1 the rate of change of f of a fluid particle following the fluid is

Df _of
ﬁ—a‘i‘u Vf

In steady flow % =0 and

Df

In steady flow particles move along streamlines so this is the rate of change of
f along a streamline, and if

Df _
Dt

f is constant along a streamline (but can vary from streamline to streamline).

u-Vf=0

N.B.2 streamlines can be measured experimentally by using tracer particles
which have to be small enough not to disturb the flow but large enough that
Brownian motion is insignificant ~ 0.5 pm.

streamtubes:
bundles of streamlines



|
area A j\ area As

speed uq ‘ ‘ speed us

rate at which mass entering at 1 = p; Ajuy
rate at which mass leaving at 2 = pa Aqus

so if the flow is incompressible
Au = constant

streamtube becomes smaller < flow accelerates
stream function v

Can be defined if flow is incompressible and two-dimensional by writing

o 3

U, = - Uy = —
T Oy Y Oz
so that the incompressibility condition V - u = 0 is automatically satisfied.

Why is ¢ useful? Consider

0 0
(U'V)wzum%-i-uy% =0.

1) is constant along a streamline so finding 1 is equivalent to finding the stream-
lines.

A.8 Solving N-S in a simple geometry

First we need boundary conditions. At a solid boundary u = 0.

Unormal = 0: obvious for no source or sink of fluid at the wall.
Utangential = 0: N0t obvious but an experimental fact.

This is called a boundary condition.

We shall consider pressure-driven flow down a pipe (aka channel flow, Poiseuille
flow).
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(i) geometry:

—Q —

pressure drop pg
over a length L

assume flow between 2 plates; translationally invariant in z = makes the prob-
lem 2D

(ii) the equation:

ou _ Vp  n_s
E—F(u Viu= p—i—qu (6)

(iii) simplifying the equation:

e steady flow
ou
0
ot

e assume (motivated by symmetry arguments)

0.=0

a flow field u,(y), uy = 0, u. = 0 so that (0 V)u =u, Zu, =0
so (6) simplifies to Vp = nV>2u.

Only the z-component survives

ap _ Dbo d2u$

%_L_ndyQ'
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(iv) integrate and put in the boundary conditions:

Po , o
= — (> + Ciy + Cs).
U 277[(34 1Y 2)

uy; =0at y=0and y =a so

giving a parabolic flow profile.

= [

NB1 In a circular pipe of radius a

Lo (a* —r?).

o = 4Ln
(Check using N-S in cylindrical polars.)
NB2 This solution is laminar flow (straight stream-lines).

For higher velocities it becomes unstable = turbulence.

For higher velocities end effects become important too; it takes an appreciable
length of pipe for flow to settle to its parabolic profile.

NB3 another simple laminar flow is shear flow or Couette flow.

<

e same geometry as for Poiseuille flow
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e no pressure gradient; forcing is from boundary

We need to solve

dPu, .
n =0 with wu, =ug at y=a, u, =0 at y=0.
dy?
Uy = %, a linear flow profile.
a
Yy
Ug
L 'Z'
A.9 The Reynolds number
(a) Non-dimensionalising Navier-Stokes
The N-S equation is
0 \Y
37‘; ¥ (u-Viu= _71’ + Vi (7)

The terms on the lhs are the intertial terms, the first term on the rhs is the
forcing term, and the second term on the rhs is the wviscous term.

We define dimensionless variables
~ u . X
= — X==

U’ L

where U is a velocity scale and L is a length scale. It follows that

- Ut = D p
t=—, V=LV, z =
L p U?p
Writing N-S in terms of dimensionless variables
Uloa U? - U?Vp  Uve,.
To T T WV Y



Dividing through by U?/L

ou o \Y Vi 1

—+(@-Va=-— — Viu=-—+—V?
gr T V)= —— VIS — 4 VTR
where
LU
Re = —
14

is the Reynolds number, a dimensionless number that characterises the flow.

For Re > 1, large length scales, high velocities, low viscosity, the inertial term
dominates.
For Re < 1, small length scales, low velocities, high viscosity, the viscous term
dominates.

(b) estimating the Reynolds number

stirring tea L~10"2m
U~10"tms™? ‘everyday’ length scales for water
v~107%m? s7! or air correspond to quite high Re
Re ~ 103

Niagara Falls L ~ 10m
U ~ 10ms™! turbulent flow
ve~1076 m? g7!
Re ~ 108

colloid L~10"%m
U~ 10 %ms~! can forget about the inertial term
v~ 1076 m? g1

Re ~ 1076
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(c) examples of increasing the Reynolds number in different geome-
tries

(i) Reynold’s experiment (1883)

Poiseuille flow in a circular tube
see https://www.youtube.com/watch?v=iY1YfWAIuBY

Re < Re, laminar flow
Re ~Re.  turbulent ‘surges’ that travel with the flow

Re £ Re. turbulence - transverse mixing of the fluid

(ii) Flow over a cylinder

Figure 1: Flow over a cylinder for different Reynolds numbers. (a) Re=0.16, al-
most symmetric, (b) Re=26, eddies behind cylinder, fixed in space, (¢) Re=200,
Bénard - von Karman vortex street, (d) Re=8000, turbulent wake.

(d) checking it all works for Poiseuille flow

In Section A.8 we showed that the velocity field for pressure driven flow between
two parallel plates is

Y4
Uy = %—OL (y —a). (8)

15



For a given forcing, the solution should only depend on the Reynolds number.
Let’s check that this is the case. Define dimensionless variables

Ug _-_ Y
_T jg=<

U’ a

Uy =
where U is a velocity scale and a is a length scale. It follows that

I
LZ*;

Po _ Po
a p

=02,
Writing the velocity profile (8) in terms of the dimensionless variables

U?poagj(ay — a) _ U?poag(y — 1)

Ui, = > Z .
2pvLa 2pvL
Therefore
Ua py y(y— 50 (i —
i=Ye P 9H-1) _p P §H-1)
v pL 2 pL 2

Do/ ﬁf/ is the dimensionless acceleration. So, for a given forcing, the solution
only depends on Re.

(e) Dynamical similarity

Flows with the same Re are identical if

e all geometrical features of the flow are scaled in the same way
e applied forces / pressure gradients are scaled appropriately

e there is no physics beyond N-S — or other dimensionless variables are
needed eg:
for compressible hydrodynamics, the Mach number, Ma=flow velocity/speed
of sound.
for a bouncing drop, the Weber number, We=kinetic energy /surface ten-
sion energy.

A.10 Vorticity

(a) definition and physical interpretation

vorticity
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Vorticity is useful, particularly at high Re, because of conservation theorems
which we will come to later.

An irrotational fluid or region of fluid has zero vorticity.
Vorticity is a local measure of the spin of a fluid. In 2D vorticity = 2 x (average

angular velocity of two infinitesimal, mutually perpendicular, fluid elements).
To show this:

oy

@)
x

Ox

If the velocity at the origin is (ug,u,) then, Taylor expanding, the velocity at
point 1 is

Oy ou
(um + By 0z, uy + a—my 5:17)

and the velocity at point 2 is

(um+méy,uy+auy5y>.

dy Ay
So the angular velocity of point 1 about O is 85;“ and the angular velocity of
point 2 about O is f%i;. So the average angular velocity of points 1 and 2

about O is

L(%uy _ Ous —lcurlu—lw
2\ 0 oy ) 2 2

w can be measured by putting a tiny ‘vorticity-meter’ in the flow (Figure 2).
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Small and light enough to
not disturb flow

Blob of point so can
follow rotation

Figure 2: A ‘vorticity meter’ — a device to measure the vorticity. It has to be
tiny because vorticity is a local property of the fluid.

(b) vortices
(ie things that look like whirlpools)

Consider the flow field
u=Qf(r)é 9)

where (2 is a constant that sets the velocity magnitude and we are using cylin-
drical polar co-ordinates (Fig. 3a).
The vorticity is

7 0 2
e A
0 Qrf(r) O

which depends on f(r).

For example, if f(r) = r~!, then w = 0. (The vorticity meter will not turn as
it moves around the vortex core (Fig. 3b).) This is a good approximation of a
bath plughole. However the zero vorticity condition must break down at r =0
(mathematically) and in a small region around r = 0 (physically). A model for
how this can happen is the Rankine vortex (see problem set).

3D versions of the same physics are vortex tubes and smoke rings which are
stable structures at high Re (Fig. 3d).

18



Figure 3: (a) a vortex: the flow field of Eq. (9), (b) a vortex with zero vorticity,
(c) rigid body rotation, (d) a 3D vortex ring.

If f(r) =r, u describes rigid body rotation, with angular velocity 2 (Fig. 3c),

798 214 N
wf?a{r }z = 2Qz.

(c) the vorticity equation
We will use the vector identities

curl grad = 0, (10)
curl(V?u) = V?(curlu), (11)

curl{(u- V)u} = (u- V) curlu — (curlu- V)u+ (V - u) curl u. (12)

The last term on the rhs of Eq. (12) is zero for an incompressible fluid.

Starting from the N-S equation

%: +(u-Vu= —% + vV,
taking the curl, and using Eqs. (10), (11), and (12),

aa—c:—l—(u-V)w—(w-V)u:VVZw
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or, equivalently

D
Dt

= (w-V)u+rViw.

In the same way as we defined streamlines and streamtubes for the velocity:
a vortex line is a line that is everywhere tangent to w.

a vortex tube is a bundle of vortex lines.
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