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INTRODUCTION

FIG. 1. Active turbulence: (a) in a dense suspension of
swimming bacteria. (b) The associated vorticity field. Red
(blue) regions correspond to high positive (negative) vor-
ticity. Simulations of active turbulence at a smaller length
scale. The bend deformation drives a velocity jet (black
flow lines, with arrows). (d) Snapshot from simulations
showing +1/2 (red) and -1/2 (blue) topological defects.
After [1, 2].

Self-propelled active particles create dipolar
flow fields which have nematic symmetry. A re-
sult of this is that the continuum equations of
motion needed to describe dense active particles
with hydrodynamic interactions closely resemble
those for passive liquid crystals, but with an addi-
tional active stress. The new term has far reach-
ing consequences. Long-range nematic order is de-
stroyed by the active flow and replaced by active
turbulence, a chaotic flow state with strong vor-
ticity (Fig. 1). In a two-dimensional, passive, ne-
matic defects usually approach each other, driven
by elastic interactions, and then annihilate in pairs
of topological charge +1/2 and −1/2. In an active
nematic the flow of energy means that defects can
also be created in pairs. Moreover a consequence
of the active stress is that the defects are self
motile. Hence active turbulence is characterised
by a dynamic gas of defects that are continually
being created, moving around and annihilating.

Active turbulence relies on particles that are
elongated in shape or deformable to give local ne-
matic ordering. Examples of active nematics in-
clude dense suspensions of microswimmers, bacte-
rial colonies, biological filaments driven by motor
proteins, and confluent cell layers and tissues.

This chapter introduces the continuum equa-
tions of motion that can be used to describe these
materials, and motivates the form for the active
stress. We then outline how active flows lead to
instabilities, and thence to active turbulence, and

we describe the properties of active turbulence and topological defects. We argue that the short-range ne-
matic ordering required for active turbulence can be initiated by the active flows themselves, and therefore
that the turbulence can occur in a system that is isotropic in the passive limit.

The interplay of surfaces, interfaces and activity leads to rich physics and we describe how active nematics
behave in confined geometries, and as friction screens the flow. The majority of the experimental and
theoretical work so far has been in two dimensions. However active turbulence has now been identified and
studied in three dimensions, where the ±1/2 defects are replaced by active disclination lines and loops. We
summarise how active dislocations and active anchoring can drive shape changes in active droplets and shells.

Active nematics are reviewed in [3–5].



ACTIVE NEMATOHYDRODYNAMICS

Equations of motion

The continuum dynamics of an active nematic is described by coupled equations for the velocity, u, and
the order parameter, Q = d

d−1S (nn− I/d), where n is the director, S is the magnitude of the nematic
order and d is the dimensionality of space. Q evolves according to [6]

∂tQ + u ·∇Q− S = ΓH. (1)

In addition to advection by the flow, accounted for by the first two terms in this equation, elongated particles
respond to flow gradients in a way captured by the co-rotational term,
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where Ω and E are the vorticity and the rate of strain tensors respectively. The relative dominance of the
rate of strain and the vorticity in affecting the alignment of nematogens with the flow is characterised by
the tumbling parameter λ.

The ΓH term describes relaxational dynamics of the nematic tensor to the minimum of a free energy
through a molecular field defined by
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with Γ the rotational diffusivity. The free energy is typically taken to have the usual Landau-de Gennes
form [7]
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where the coefficients of the bulk terms A, B, C are material parameters, and the final term describes the
elastic free energy cost of spatial inhomogeneities in the order parameter field, assuming a single elastic
constant K.

The velocity field, assuming a constant density ρ, obeys the incompressible Navier-Stokes equations:

∇ · u =0, (5)

ρ (∂tu + u ·∇u) =∇ ·Π. (6)

Many active particles are sufficiently small that the low Reynolds number limit is appropriate and the left-
hand side of Eq. (6) can be neglected. Π is the stress tensor. It includes the pressure, P , the usual viscous
stress,

Πviscous =2ηE, (7)

where η is the viscosity, and the elastic stress which describes the backflow induced by any motion of the
nematic particles,

Πelastic = 2λ(Q + I/3)(Q : H)− λH · (Q +
I

3
)− λ(Q +

I

3
) ·H −∇Q

δF
δ∇Q

+ Q ·H −H ·Q. (8)

The active stress

Equations (1)–(8) describe a passive nematic. The simplest additional term that can account for the
stresses induced by active particles is

Πactive =− ζQ (9)
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where ζ is the activity coefficient. An argument to motivate Eq. (9) was given by Simha and Ramaswamy [8].
By Newton’s third law the forces on a self-propelled particle must be equal and opposite. Averaging over
the details of the swimming stroke, a simple model of a self-propelled particle i which gives the correct far
flow field is a rod centred at xi along n̂i with equal and opposite forces ±f n̂i acting at its ends, at xi + an̂i
and xi − a′n̂i. Hence the force per unit volume due to the swimmers is

factiveα (x) =
∑
i

fn̂i,α{δ[x− xi − an̂i]− δ([x− xi + a′n̂i]}

≈ − (a+ a′)

2

∑
i

f∇βn̂i,βn̂i,αδ[x− xi] (10)

where the second line of this equation follows from expanding the δ-functions and we have used Greek
indices with the usual Einstein summation convention to represent Cartesian directions. Recalling the
relation between force and stress

∇ ·Πactive ≡ factive (11)

the leading order contribution to the active stress is

Πactive
αβ = −(a+ a′)

∑
i

fn̂i,βn̂i,αδ[x− xi]. (12)

Coarse-graining, we may replace n̂i by the director n and the sum over i by the concentration of active
particles c(x)

Πactive
αβ = −(a+ a′)c(x)nαnβ . (13)

From the definition of the Q-tensor, and noting that constant terms in the stress do not affect the dynamics,
Eq. (9) follows immediately. The unknown microscopic parameters, which depend on the details of the active
forces, and the concentration of active particles determine the activity ζ. ζ > 0 corresponds to extensile
particles that pump fluid outwards away from their ends and ζ < 0 to contractile particles that draw fluid
inwards towards their ends. Note that the form of the active stress remains the same for both polar (a 6= a′)
and apolar (a = a′) active particles.

Exercise 1: Deriving the active stress.

Starting from Eq. (10) follow through the steps that lead to the expression for the active stress, filling
in details.

Active instabilities

Πactive appears under a derivative in the equations of motion. Thus any gradient in the direction or
magnitude of the nematic field induces stresses and hence flows. Linear stability analysis shows that a
far-reaching consequence is that the homogeneous nematic phase is unstable to active stresses [8, 9].

We assume that the director is oriented along the x-direction and calculate how small perturbations to the
nematic order evolve with time. The elements of the perturbed nematic tensor are Qxx = Q0

xx + δQxx and
Qxy = Q0

xy+δQxy where (Q0
xx, Q

0
xy) = (S0/2, 0). Using Eqs. (1) and (6), representing the Fourier transform

of any fluctuating field δf as δf(r, t) =
∫
dq f̃(q, t) eiq·r, and setting λ = 0 for simplicity, the evolution of

the perturbations in the low-Reynolds number limit are

∂tQ̃xx = −Q̃xx(Kq2 + 2S2
0A)Γ, (14)

∂tQ̃xy = −Q̃xy
{
KΓq2 − (2η)−1S0ζ cos 2θ

}
− (2η)−1Q̃xx sin 2θS0ζ (15)
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where θ is the angle between q and the nematic director. Eq. (14) shows that the longitudinal perturbations
relax to zero and Eq. (15) gives the growth rate of transverse perturbations Q̃xy as

ω = −
{
KΓq2 − (2η)−1S0ζ cos 2θ

}
. (16)

For ω < 0, perturbations die out over time whereas for ω > 0 perturbations grow and long-range nematic
order is unstable. Fig. 2 indicates pictorially how the instability in an extensile active nematic leads to
destabilising flows.

Exercise 2: Active instabilities.

a. What type of nematic distortion drives the instability in (i) extensile (ζ > 0), (ii) contractile
(ζ < 0) active nematics?

b. Draw a diagram illustrating the formation of the instability for a contractile active nematic. Hint:
see Fig. 2 for the extensile case.
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proportional to the Q tensor and a coe�cient ⇣ that measures the strength of the activity.
⇣ > 0 describes an extensile system and ⇣ < 0 a contractile system.

The form of the active term can be motivated by realising that the contribution to the
continuum stress tensor from the dipole terms in the multipole expansion is the averaged
stresslet per unit volume [35] which, from Eq. (15), is

(45) ⇧jk = h�1

2
(⇠kfj + ⇠jfk) +

1

3
⇠ifi�jki.

Assuming that each of the active particles produces forces along the director fj = ±fnj

at positions ⇠k = ±ank this becomes

(46) ⇧jk = hfa(�1

2
(nknj + njnk) +

1

3
nini�jk)i = hfa(�njnk +

1

3
�jk)i ⌘ �⇣Qjk

averaging over a region where the dipole moment fa and the magnitude of the nematic
order q can be considered constant. The relation (46) makes it apparent that ⇣ is a
measure of the activity, and that the sign of the stress distinguishes extensile (positive)
and contractile (negative) particles.

B"A"

Fig. 6. – An extensile active nematic is unstable to a bend instability. A: each nematogen in
the bent configuration produces flow shown in blue. The flow is unbalanced giving a resultant
vortical flow shown as large black arrows. B: The shear acts to increase the bend deformation
destabilising the ordered nematic state (courtesy of S. Thampi).

Many properties of active nematics can be interpreted by noting that the active term
appears in the stress, under a derivative, and therefore any change in the direction
or orientation of the nematic order induces a flow. An immediate consequence

FIG. 2. Instability in an extensile active
nematic: A: each nematogen in the distorted
configuration produces flow shown in blue. The
flow is unbalanced giving a resultant vortical
flow shown as large black arrows. B: The shear
acts to increase the deformation destabilising
the ordered nematic state (courtesy of S. P.
Thampi).

ACTIVE TURBULENCE

Long-range nematic order is destroyed by active flows, but
how do the instabilities grow beyond the linear regime? Nu-
merical solutions of the active nematohydrodynamic equa-
tions have helped to answer this question, showing that the
system settles into a state, termed active or mesoscale tur-
bulence, which is characterised by strong fluid jets and high
vorticity in the flow field, and short-range nematic order and
motile topological defects in the director field [10, 11].

Fig. 3 illustrates the onset of active turbulence. The dis-
tortions created by the hydrodynamic instabilities tend to
localise to form walls, lines of high distortion separated by
nematic regions. Because of their high elastic energy the
walls are preferential sites for the formation of ±1/2 topo-
logical defects. Rather than immediately annihilating, local
stresses cause the +1/2 defect to move away from the -1/2
defect. The defects initially tend to move along walls but
their dynamics, together with that of the walls, rapidly be-
comes chaotic. If oppositely charged defects encounter each
other they annihilate [12].

Hence a dynamical steady state results, with motile defects
continuously being created and destroyed. The flow field, driven by stresses due to defects and other director
gradients is highly chaotic. Vortices form over a range of length scales, with areas that are exponentially
distributed [13]. The active length scale, which governs the decay of the vorticity correlations is

√
(K/ζ).

Snapshots of active turbulence are shown in Fig. 1.
Active turbulence is markedly different from inertial turbulence, as one might expect given the very

different Reynolds number. In active turbulence (Reynolds number very small) the energy input is at
the scale of the individual particles, and the energy is dissipated on the scale of the vortices. In inertial
turbulence (Reynolds number very large) energy is input at large scales and cascades to smaller scales. A
detailed statistical analysis of active turbulence indeed shows a clear distinction from inertial turbulence in
terms of intermittency, energy spectrum, and flow structure [14].

4



FIG. 3. Onset of active turbulence: Snapshots at successive times of the director field (dashed lines) and +1/2
and −1/2 defects (red and blue, respectively) during the development of active turbulence from an ordered nematic
state (a) for an extensile system. Walls are formed (b) and sharpen (c). Defect pairs appear at walls (d). Initially
they move along the walls (and restore nematic order) but their motion quickly becomes chaotic (e). After [12]. An
experiment showing this instability is described in [16].

As an alternative to the continuum equations, an approach based on kinetic theory, has been used to model
the nematohydrodynamics of active, rod-like particles [15]. Each particle is represented as a slender rod with
a surface velocity that results in extensile or contractile dipolar flows, and the distribution function for the
number density of the particles is described by the Smoluchowski equation. The particle concentration and
nematic tensor are then constructed from the first and second moments of the distribution function, and the
centre of mass position and orientation of the rods are found from slender body theory for zero-Reynolds
number flows. Such a kinetic theory approach is able to reproduce the generation of active turbulence and
the dynamics of active defects.

Motile topological defects

Topological defects are regions of high director distortion and hence they act as sources of stress and
flow. A calculation by Giomi et al. [17] has shown that it is possible to obtain the velocity field of defects
analytically under certain approximations. The director field of a point defect is n = (cosmφ, sinmφ) where
φ is the polar angle and m is the topological charge of the defect. The body force due to activity follows
immediately as

factive = ∇ ·Πactive =
ζ

2r
x̂, m = +1/2, (17)

=
ζ

2r
(− cos 2φ x̂ +− sin 2φ ŷ), m = −1/2. (18)

Within the Stokes’ approximation the velocity induced by this force field is

vi(r) =

∫
dA′Gij(r − r′)fj(r

′) (19)

where Gij is the two-dimensional Oseen tensor

Gij(r) =
1

2πη

{(
log

R

r
− 1

)
δij +

rirj
r2

}
. (20)

Substituting the active force distribution (18) into equation (19) and using (20) gives (see the appendix of
[17] for details)

va+(r, φ) =
ζ

12η
{(3(R− r) + r cos 2φ)x̂ + r sin 2φ ŷ} (21)
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for the velocity field produced by a +1/2 defect and

va−(r, φ) =
ζr

12ηR
{((3r/4−R) cos 2φ−R cos 4φ/5)x̂ + ((3r/4−R) sin 2φ+R sin 4φ/5)ŷ}

(22)

for a −1/2 defect.
To obtain these formulas it is necessary to make assumptions about the extent of the domain and the

behaviour of the director and velocity fields on its boundaries. The choice used here is that outside a radius
R the director field is uniform and that there are no slip conditions on the velocity field at R. In active
turbulence the cut off is most likely to be provided by other defects.

Under the assumption that the convective dynamics of the flow dominates director relaxation the defect
can be considered as a particle moving at the velocity of its core. Putting r = 0 in Eqns. (21) and (22) gives
an estimate for the velocity of +1/2 defects, (ζR/4η) x̂, and confirms that −1/2 defects are not self-propelled.

Exercise 3: Active topological defects.

a. Use the expressions (21) and (22) to plot the flow field around a +1/2 and a −1/2 active defect.

b. From the literature, find (at least) five different experimental systems where active topological
defects have been identified.

FIG. 4. Activity-induced nematic ordering in an
isotropic system of active particles. Blue solid lines indi-
cate nematic directors and red arrows denote the activity-
induced flows. The disordered region at the centre is
aligned by the shear flow set up by the neighbouring or-
dered regions.

Activity-driven active turbulence

A second, competing, instability is also relevant
to the behaviour of active nematics [18–20]. If
the thermodynamic parameters are chosen so that
the passive liquid crystal is in the isotropic phase,
short-range nematic order and active turbulence
can still be observed. This occurs because local
fluctuations in the magnitude of the nematic or-
der set up shear flows which can, in turn, enhance
the ordering. A stability analysis shows that the
critical wave number below which the system is
unstable is

qc =

√
λζ

2K(2ηΓ + λ2)
. (23)

Hence the instability only occurs if λζ > 0, for extensile, rod-like particles or contractile, disc-shaped particles
that align in a shear flow.

A diagram showing the physical mechanism involved in the creation of nematic order is shown in Fig. 4.
Each active particle creates a dipolar flow field. The dipole lies along the long axis of the particle, and
extensile particles pull fluid in from their sides and push it out from their ends. In a perfectly isotropic
arrangement of active particles the dipolar flows generated by each particle cancel each other on sufficiently
large length scales so there is no net flow. However, if a fluctuation generates a local nematic alignment of
active particles, then this results in the generation of locally shearing flow fields. In such shear flows particles
align further in a manner that enhances the shear. This again results in the strengthening of the nematic
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order creating a bootstrap effect: stronger alignment leads to stronger flows that in turn generate stronger
alignment ... but this process will be balanced by the instability that we described earlier, the destruction
of long-range nematic ordering by flow, which will be occurring simultaneously.

Experimental systems

An early identification of active turbulence was in suspensions of Bacillus subtilis swimming near the
contact line of a sessile drop [21]. Since then it has become apparent that this is a generic behaviour of
many dense suspensions of microswimmers. Another nematic model system is living liquid crystals. These
are bacteria dispersed in aqueous-based liquid crystals, a set-up which allows the swimming characteristics
of the bacteria and the orientational order of the medium to be controlled independently [22]. The bacteria
align along the director of the liquid crystal and motility is tuned by the amount of dissolved oxygen. After
an oxygen supply is initiated, bacteria start swimming and trigger a stripe-like instability that, at sufficiently
high activity, gives rise to the nucleation of half-integer defects proliferating into active turbulence. Flows
resembling active turbulence are also seen in assemblies of bacterial cells crawling on a surface although here
friction is expected to screen the hydrodynamic interactions. An example is Pseudomonas aeruginosa which
uses pili, hair like appendages, to pull itself along [23].

A particularly important experimental system that has been key in investigating the properties of active
turbulence is a dense mixture of microtubules, biopolymers about 1.5 µm in length, and double-headed ver-
sions of the motor protein kinesin, driven by ATP [24]. The addition of the depleting agent PEG concentrates
the microtubules into bundles. The microtubules are polar and the kinesin bridges between pairs of micro-
tubules and walks towards the plus end. If the microtubules are parallel there is no net displacement, but if
they are antiparallel the microtubules move relative to each other and this results in polarity-sorted bundles
of the biopolymers. The bundles are not stable but buckle and fracture leading to the dynamical steady-state
of active turbulence. In many experiments, the active microtubule and motor protein mixture assembles at
an oil-water interface giving a two dimensional active layer where properties such as the velocity-velocity
correlation function and the trajectories of active defects can be measured. More recently three-dimensional
assays have been developed by enhancing the nematic ordering by adding a passive colloidal liquid crystal
based on filamentous viruses [25].

Perhaps more surprisingly, active turbulence and motile topological defects have been observed in confluent
cell layers. Epithelial cells are tightly connected by means of cell-cell junctions and active inter-cellular forces
constantly drive deformations of the shapes of the cells. By mapping out the (coarse-grained) direction of
the long axis of the deformed cells, Saw et al. [26] identified nematic order and motile topological defects
within a two-dimensional confluent layer of epithelial MDCK cells. The flow fields and stresses around the
defects were in agreement with active nematic theories, and experiments showed that there is a correlation
between the level of activity (controlled in the experiments by adding blebbistatin) and the number of defects
in the cell layer. Kawaguchi et al. [27] worked with neural progenitor cells, showing that, at high densities
and under confinement, they are capable of aligning over long length scales, forming migratory streams.
The cells tended to deplete the neighbourhood of -1/2 defects and instead to accumulate at +1/2 defects,
forming mounds. Following these papers, active turbulence and topological defects are now being identified
in an increasing number of cell monolayers.

CONFINEMENT

When active nematics are confined the hydrodynamics is screened and active turbulence can be replaced
by more regular flows. These depend sensitively not only on the fluid parameters and the confinement
dimensions but also on the boundary conditions and the strength of intrinsic fluctuations. Simulations of
active flow in a one-dimensional channel show that, as the activity number, A =

√
(ζh2)/K, where h is

the channel height, is increased the change in flow configurations is from no flow → laminar flow (shear or
unidirectional)→ a one-dimensional line of flow vortices→ active turbulence (Fig. 5) [28]. The system starts
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to flow when the active stresses can overcome the pinning effect of the boundaries, velocity vortices can form
once the channel becomes wide enough to accommodate them, and then a further increase in channel width
allows relative motion of the vortices, corresponding to active turbulence.
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(b)
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FIG. 5. Channel flow; Flow states of an active nematic
confined in a channel. The black lines are the streamlines of
the velocity field and the colourmap represents the vorticity
field. Circles (green) and diamonds (magenta) mark +1/2
and -1/2 topological defects. After [29].

The motile, active defects add complexity to
this sequence. Channel walls are preferential sites
for defect formation The stationary -1/2 defects
remain close to the walls due to elastic interac-
tions, whereas the self- propelled +1/2 defects
move toward the centre of the channel. +1/2 de-
fects can traverse the channel to be annihilated
by the -1/2 defects at the opposite wall. In the
vortex regime, however, they can alternatively be
captured by the flow vortices and perform a ceilidh
dance, with right- and left-moving defects moving
past each other on sinusoidal trajectories in a way
reminiscent of the great chain figure in country
dancing. Similar interplays between active flow
and the dynamics of motile topological defects
govern the behaviour of active materials confined
to circles [30].

The transition from the flow vortex lattice to ac-
tive turbulence in a channel has interesting proper-
ties. Turbulent patches continually appear, com-
bine and die out, giving a kymograph (space-time
diagram) reminiscent of directed percolation [31].
Measuring the behaviour of the transition where
the turbulent cluster first spans the system indi-
cates that it is indeed in the directed percolation
universality class. The same behaviour is associ-
ated with the transition to inertial turbulence in
channel flow.

The confinement flows have been observed in ex-
periments, although different systems are needed
to probe different activity numbers. Confluent cell
layers correspond to low activities and the transi-
tion from a quiescent state to flow has been ob-
served in layers of spindle-shaped cells confined to

a stripe on a micro-patterned glass substrate [32]. Experiments on microtuble-motor protein bundles cor-
respond to higher activity numbers. By changing the channel width Hardouin et al. [33] were able to
demonstrate the transitions from laminar (shear) flow, to a flow-vortex state with dancing defects, and then
to active turbulence. The experiments identified a state where well-defined shear flow alternates in a regular
way with bursts of instability characterised by +1/2 topological defects moving across the channel. This
occurs because the shear aligns the microtubules parallel to the walls so that they then undergo the usual
active instability, bending to create defect pairs

Friction

Friction, with external fluids or boundaries, screens hydrodynamic flows and leads to a crossover from a
wet to a dry system. It has a complex effect on the properties of active nematics and is likely to be important
in many experiments.
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For active nematics with strong thermodynamic ordering, friction introduces a memory into the system so
that the motion of topological defects leaves trails, arch-like distortions in the director field, that persist for
a time that increases with increasing friction. Defects in both extensile and contractile systems move in the
same direction with respect to the polar axis of arches. They interact with the trails left by other defects,
which leads to a polar order of the +1/2 defects. At very high friction there is insufficient energy to create
new topological defects, but if there are defects already in the system they create arches in the director field
before eventually annihilating. The arches align parallel to each other and readjust to equal widths to form
regular arch patterns that coexist with the nematic phase [34]. For active nematics with activity-induced
ordering, however, it is much easier to create topological defects. The number of defects proliferate with
increasing friction and elastic and hydrodynamic interactions lead to nematic defect ordering on length scales
many times larger the the active length scale [35].

FIG. 6. Dislocation lines: A local −1/2 wedge can con-
tinuously transforms into a +1/2 wedge via an interme-
diate twist disclination. The director field winds about
the rotation vector Ω (black arrows) by an angle π. The
angle between the rotation vector Ω and the local disclina-
tion line tangent t (yellow arrow), called the twist angle β,
varies continuously along a disclination line. Twist discli-
nations correspond to β ≈ π/2 and +1/2 and −1/2 wedge
disclinations to β ≈ π and 0, respectively. Adapted from
[25].

If the friction is anisotropic so that the nemato-
gens move more easily along than perpendicular to
their length, yet other flow states and defect con-
figurations are possible. If the active particles are
flow-aligning the chaotic flows can be streamlined
into flow lanes with alternating directions, and
widths large compared to the active length scale.
This reproduces the laning state that has been ob-
served in experiments by interfacing microtubule-
motor protein mixtures with smectic liquid crys-
tals. By contrast, for flow tumbling particles, the
synergistic effects of friction anisotropy and flow
tumbling can lead to the emergence of bound pairs
of active defects that align at an angle to the easy
flow direction and move together [36].

THREE DIMENSIONS

Three-dimensional active turbulence is again
characterised by spatiotemporally chaotic flows.
However, point defects are replaced by disclina-
tion lines which constantly undergo transforma-
tion events such as breakup, recombination, nu-
cleation and annihilation. In bulk systems discli-
nation lines typically form closed, charge-neutral
loops [25]. However, they can also terminate at
surfaces and the dynamics of the resultant defects on the surface is coupled to the disclination line dynamics
in the bulk by elastic interactions and flows [37].

Disclination lines can continuously transform from a local −1/2 configuration in the plane perpendicular
to the line into a +1/2 configuration through an intermediate twist winding as indicated in Fig. 6. Moving
around the core of a disclination in the plane perpendicular to the local disclination line segment, the director
field winds around a specific axis, the rotation vector Ω (black arrows) by an angle π. The angle β between
Ω and the local line tangent t (yellow arrow) is called the twist angle and can be used to locally characterise
the disclination line. For −1/2 (+1/2) wedge-type defects the twist angle corresponds to β ≈ 0(π), while
line segments with local twist-type defects are indicated by β ≈ π/2.

As a consequence of the activity, disclination lines act as self-propelled entities moving through the fluid.
Based on a simplified model neglecting elastic interactions, each disclination line segment can be associated
with a local self-propulsion velocity which has a component perpendicular to the local tangent of the line
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FIG. 7. Deformable active droplets: (a) Active shell showing protrusion formation at a +1/2 topological defect.
After [38]. (b) Wrinkle formation in a contractile active droplet. (c) Invagination of a smaller contractile active
droplet. After [39]. These results were obtained by solving the active nematohydrodynamic equations using a hybrid
lattice Boltzmann algorithm.

which depends on the twist angle β as [40]

vSP⊥ ∝ (1− cosβ)2 . (24)

Thus line segments with β = 0 are passive while β = π line segments are most active in pushing around the
surrounding fluid and distorting the dislocation loops.

A combination of activity, defect and disclination dynamics, and active anchoring can lead to an enormous
range of behaviours in deformable active drops and shells. Fig. 7(a) shows simulations of a deformable active
shell (with the director field strongly anchored to lie within the shell). The extending protrusion is caused
by flows normal to the surface initiated near a +1/2 topological defect [38]. Analogous behaviour has been
implicated in driving tentacle formation in the marine polyp Hydra [41].

Fig. 7(b) shows simulations of a contractile deformable droplet. The wrinkles that form are related to
points where dislocation lines reach the surface. Fig. 7(c) shows the time evolution of a contractile droplet,
but now a much smaller one. In contractile systems active flows favour normal surface alignment and hence
there is at least one +1 disclination-loop in the bulk due to topological constraints. These loops are associated
with a large elastic energy cost. Therefore a ring with in-plane surface alignment is formed encircling the
droplet to maximize the area of perpendicular surface alignment favoured by active anchoring while avoiding
the formation of the +1 defect-loop in the bulk. The contractile activity of this director configuration
produces flows that cause the droplet to invaginate, forming a cup shape [39]. A similar transition occurs
in gastrulation, the stage of morphogenesis where a single cell sheet reorganises into a multilayer structure
which then differentiates into the cell types that will initiate the formation of different organs.
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WHAT NEXT?

Active nematics have potential as devices, translating chemical energy to mechanical work. However, to
achieve this potential it is necessary to design synthetic active systems that can be produced in bulk and are
cheap and easy to handle.

They comprise a large number of particles that behave collectively but remain out of thermodynamic
equilibrium. There is a lot of research still to be done to extend the theories of non-equilibrium statistical
mechanics that are currently being developed for simpler active systems to active nematics. For example,
although we understand a lot about active turbulence from simulations, predictive theories are still at an
early stage.

Increasingly the ideas underlying active nematic dynamics are being applied to biological systems. Active
turbulence and motile defects have now been observed in many confluent cell layers. It is interesting to ask
which additional features are important in biological active flows, and to start to apply the ideas arising
from active nematic physics to three-dimensional mechanobiology.
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