Strings, SUSY and LHC

Joseph P. Conlon (Cavendish Laboratory and DAMTP, Cambridge)

fpuk, November 2007

What is the LHC?

The greatest experiment on earth!

The LHC

The LHC:

- ho pp collider
- a collision energy of 14TeV
- first collisions summer 2008
- a design luminosity of 100 fb⁻¹year⁻¹
- A cost to the UK of < (1 pint of beer) person⁻¹ year⁻¹

The TeVatron:

- $p\bar{p}$ collider
- a collision energy of 1.8TeV
- a current total integrated luminosity of 3.5 fb⁻¹.

The LHC

$$\mathcal{N}_{events} = \sigma \times \mathcal{L}$$

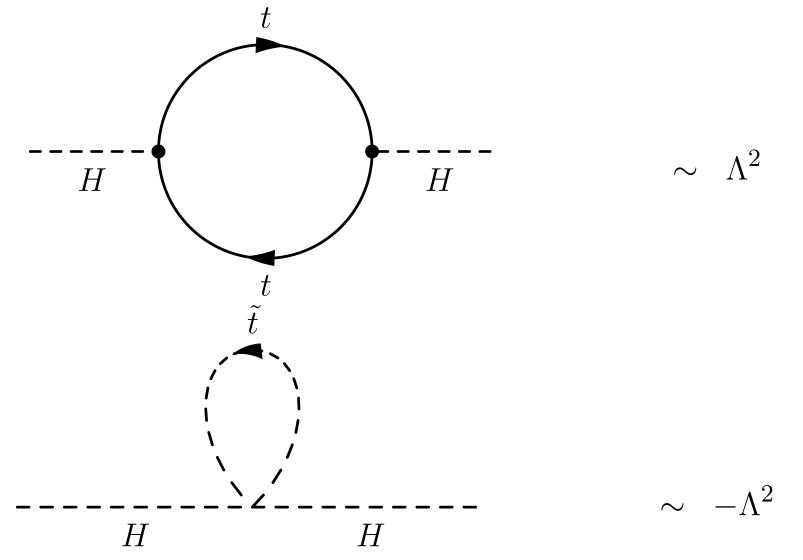
Cross-sections are

$$\begin{aligned} \sigma_{pp \to b\bar{b}} &\sim 7 \times 10^{11} fb \\ \sigma_{pp \to t\bar{t}} &\sim 9 \times 10^5 fb \\ \sigma_{pp \to H} &\sim 5 \times 10^4 fb \\ \sigma_{pp \to ZZ} &\sim 2 \times 10^4 fb \\ \sigma_{pp \to susy} &\sim (1 \to 10) \times 10^3 fb \end{aligned}$$

Design luminosity is

$$\mathcal{L}$$
 = $100 ext{fb}^{-1} ext{year}^{-1}$

Supersymmetry is a great solution to the gauge hierarchy problem:



TeV supersymmetry

- stabilises the Higgs mass against radiative corrections
- gives a good dark matter candidate
- explains gauge symmetry breaking through radiative electroweak symmetry breaking
- is compatible with LEP I precision electroweak data
- is the prime candidate for new physics discovered at the LHC

The MSSM soft Lagrangian is $\mathcal{L}_{soft} = \mathcal{L}_{susy} +$

$$\frac{1}{2}[M_{3}\lambda_{\tilde{g}}\lambda_{\tilde{g}} + M_{2}\tilde{W}^{a}\tilde{W}^{a} + M_{1}\tilde{B}\tilde{B} + h.c.] + \epsilon_{\alpha\beta}[-bH_{d}^{\alpha}H_{u}^{\beta}$$
$$-H_{u}^{\alpha}\tilde{Q}_{i}^{\beta}\tilde{A}_{uij}\tilde{U}_{j}^{c} + H_{d}^{\alpha}\tilde{Q}_{i}^{\beta}\tilde{A}_{dij}\tilde{D}_{j}^{c} + H_{d}^{\alpha}\tilde{L}_{i}^{\beta}\tilde{A}_{eij}\tilde{E}_{j}^{c} + h.c.]$$
$$+m_{H_{d}}^{2}|H_{d}|^{2} + m_{H_{u}}^{2}|H_{u}|^{2} + \tilde{Q}_{i}^{\alpha}m_{Qij}^{2}\tilde{Q}_{j}^{\alpha*}$$
$$+\tilde{L}_{i}^{\alpha}m_{Lij}^{2}\tilde{L}_{j}^{\alpha*} + \tilde{U}_{i}^{c*}m_{Uij}^{2}\tilde{U}_{j}^{c} + \tilde{D}_{i}^{c*}m_{Dij}^{2}\tilde{D}_{j}^{c} + \tilde{E}_{i}^{c*}m_{Eij}^{2}\tilde{E}_{j}^{c}$$

Susy is explicitly broken by:

The MSSM soft Lagrangian is $\mathcal{L}_{soft} = \mathcal{L}_{susy} +$

$$\frac{1}{2}[M_{3}\lambda_{\tilde{g}}\lambda_{\tilde{g}} + M_{2}\tilde{W}^{a}\tilde{W}^{a} + M_{1}\tilde{B}\tilde{B} + h.c.] + \epsilon_{\alpha\beta}[-bH_{d}^{\alpha}H_{u}^{\beta}$$
$$-H_{u}^{\alpha}\tilde{Q}_{i}^{\beta}\tilde{A}_{uij}\tilde{U}_{j}^{c} + H_{d}^{\alpha}\tilde{Q}_{i}^{\beta}\tilde{A}_{dij}\tilde{D}_{j}^{c} + H_{d}^{\alpha}\tilde{L}_{i}^{\beta}\tilde{A}_{eij}\tilde{E}_{j}^{c} + h.c.]$$
$$+m_{H_{d}}^{2}|H_{d}|^{2} + m_{H_{u}}^{2}|H_{u}|^{2} + \tilde{Q}_{i}^{\alpha}m_{Qij}^{2}\tilde{Q}_{j}^{\alpha*}$$
$$+\tilde{L}_{i}^{\alpha}m_{Lij}^{2}\tilde{L}_{j}^{\alpha*} + \tilde{U}_{i}^{c*}m_{Uij}^{2}\tilde{U}_{j}^{c} + \tilde{D}_{i}^{c*}m_{Dij}^{2}\tilde{D}_{j}^{c} + \tilde{E}_{i}^{c*}m_{Eij}^{2}\tilde{E}_{j}^{c}$$

Susy is explicitly broken by: scalar masses $m^2\phi\bar{\phi}$,

The MSSM soft Lagrangian is $\mathcal{L}_{soft} = \mathcal{L}_{susy} +$

$$\frac{1}{2}[M_{3}\lambda_{\tilde{g}}\lambda_{\tilde{g}} + M_{2}\tilde{W}^{a}\tilde{W}^{a} + M_{1}\tilde{B}\tilde{B} + h.c.] + \epsilon_{\alpha\beta}[-bH_{d}^{\alpha}H_{u}^{\beta}$$
$$-H_{u}^{\alpha}\tilde{Q}_{i}^{\beta}\tilde{A}_{uij}\tilde{U}_{j}^{c} + H_{d}^{\alpha}\tilde{Q}_{i}^{\beta}\tilde{A}_{dij}\tilde{D}_{j}^{c} + H_{d}^{\alpha}\tilde{L}_{i}^{\beta}\tilde{A}_{eij}\tilde{E}_{j}^{c} + h.c.]$$
$$+m_{H_{d}}^{2}|H_{d}|^{2} + m_{H_{u}}^{2}|H_{u}|^{2} + \tilde{Q}_{i}^{\alpha}m_{Qij}^{2}\tilde{Q}_{j}^{\alpha*}$$
$$+\tilde{L}_{i}^{\alpha}m_{Lij}^{2}\tilde{L}_{j}^{\alpha*} + \tilde{U}_{i}^{c*}m_{Uij}^{2}\tilde{U}_{j}^{c} + \tilde{D}_{i}^{c*}m_{Dij}^{2}\tilde{D}_{j}^{c} + \tilde{E}_{i}^{c*}m_{Eij}^{2}\tilde{E}_{j}^{c}$$

Susy is explicitly broken by: scalar masses $m^2\phi\bar{\phi}$, gaugino masses $M\lambda\lambda$,

The MSSM soft Lagrangian is $\mathcal{L}_{soft} = \mathcal{L}_{susy} +$

$$\frac{1}{2}[M_{3}\lambda_{\tilde{g}}\lambda_{\tilde{g}} + M_{2}\tilde{W}^{a}\tilde{W}^{a} + M_{1}\tilde{B}\tilde{B} + h.c.] + \epsilon_{\alpha\beta}[-bH_{d}^{\alpha}H_{u}^{\beta}$$
$$-H_{u}^{\alpha}\tilde{Q}_{i}^{\beta}\tilde{A}_{uij}\tilde{U}_{j}^{c} + H_{d}^{\alpha}\tilde{Q}_{i}^{\beta}\tilde{A}_{dij}\tilde{D}_{j}^{c} + H_{d}^{\alpha}\tilde{L}_{i}^{\beta}\tilde{A}_{eij}\tilde{E}_{j}^{c} + h.c.]$$
$$+m_{H_{d}}^{2}|H_{d}|^{2} + m_{H_{u}}^{2}|H_{u}|^{2} + \tilde{Q}_{i}^{\alpha}m_{Qij}^{2}\tilde{Q}_{j}^{\alpha*}$$
$$+\tilde{L}_{i}^{\alpha}m_{Lij}^{2}\tilde{L}_{j}^{\alpha*} + \tilde{U}_{i}^{c*}m_{Uij}^{2}\tilde{U}_{j}^{c} + \tilde{D}_{i}^{c*}m_{Dij}^{2}\tilde{D}_{j}^{c} + \tilde{E}_{i}^{c*}m_{Eij}^{2}\tilde{E}_{j}^{c}$$

Susy is explicitly broken by:

scalar masses $m^2 \phi \overline{\phi}$, gaugino masses $M \lambda \lambda$, trilinear scalar A-terms $A_{ijk} \phi^i \phi^j \phi^k$.

The MSSM soft Lagrangian is $\mathcal{L}_{soft} = \mathcal{L}_{susy} +$

$$\frac{1}{2}[M_{3}\lambda_{\tilde{g}}\lambda_{\tilde{g}} + M_{2}\tilde{W}^{a}\tilde{W}^{a} + M_{1}\tilde{B}\tilde{B} + h.c.] + \epsilon_{\alpha\beta}[-bH_{d}^{\alpha}H_{u}^{\beta}$$
$$-H_{u}^{\alpha}\tilde{Q}_{i}^{\beta}\tilde{A}_{uij}\tilde{U}_{j}^{c} + H_{d}^{\alpha}\tilde{Q}_{i}^{\beta}\tilde{A}_{dij}\tilde{D}_{j}^{c} + H_{d}^{\alpha}\tilde{L}_{i}^{\beta}\tilde{A}_{eij}\tilde{E}_{j}^{c} + h.c.]$$
$$+m_{H_{d}}^{2}|H_{d}|^{2} + m_{H_{u}}^{2}|H_{u}|^{2} + \tilde{Q}_{i}^{\alpha}m_{Qij}^{2}\tilde{Q}_{j}^{\alpha*}$$
$$+\tilde{L}_{i}^{\alpha}m_{Lij}^{2}\tilde{L}_{j}^{\alpha*} + \tilde{U}_{i}^{c*}m_{Uij}^{2}\tilde{U}_{j}^{c} + \tilde{D}_{i}^{c*}m_{Dij}^{2}\tilde{D}_{j}^{c} + \tilde{E}_{i}^{c*}m_{Eij}^{2}\tilde{E}_{j}^{c}$$

Susy is explicitly broken by:

scalar masses $m^2 \phi \overline{\phi}$, gaugino masses $M \lambda \lambda$, trilinear scalar A-terms $A_{ijk} \phi^i \phi^j \phi^k$. B-term $b \epsilon_{\alpha\beta} H_u^{\alpha} H_d^{\beta}$.

The MSSM Spectrum is:

- Gluino \tilde{g} , squarks \tilde{q} ,
- **Sleptons** \tilde{e} , $\tilde{\mu}$, $\tilde{\tau}$, sneutrinos $\tilde{\nu}$
- Neutralinos $\tilde{\chi}_1, \tilde{\chi}_2, \tilde{\chi}_3, \tilde{\chi}_4$ ($\tilde{B}, \tilde{Z}, \tilde{H}_1, \tilde{H}_2$)
- Charginos $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$
- Higgs fields: h_0, H_0, A, H^{\pm}

SUSY introduces new strongly interacting particles at the TeV scale.

Gluon $g \rightarrow$ Gluino \tilde{g}

Quark $q \rightarrow$ Squark \tilde{q}

A pp machine is a colour collider and a squark/gluino factory

$$p + p \rightarrow \tilde{g} + \tilde{g}, \tilde{g} + \tilde{q}, \tilde{q} + \tilde{q}$$

Squarks and gluinos are abundantly produced and have long decay chains.

LHC SUSY phenomenology is the study of cascade decays of squarks and gluinos.

$$p + p \rightarrow \tilde{g} + \tilde{g}$$

$$\tilde{g} \rightarrow \tilde{t} + t$$

$$\rightarrow \tilde{\chi}_{1}^{+} + b + W + b$$

$$\rightarrow \tilde{\chi}_{1} + W^{+} + b + q + q + b$$

$$\rightarrow \tilde{\chi}_{1} + l^{+} + \nu_{l} + b + q + q + b$$

SUSY events are complex, with

LHC SUSY phenomenology is the study of cascade decays of squarks and gluinos.

$$p + p \rightarrow \tilde{g} + \tilde{g}$$

$$\tilde{g} \rightarrow \tilde{t} + t$$

$$\rightarrow \tilde{\chi}_{1}^{+} + b + W + b$$

$$\rightarrow \tilde{\chi}_{1} + W^{+} + b + q + q + b$$

$$\rightarrow \tilde{\chi}_{1} + l^{+} + \nu_{l} + b + q + q + b$$

SUSY events are complex, with multi-jets,

LHC SUSY phenomenology is the study of cascade decays of squarks and gluinos.

$$p + p \rightarrow \tilde{g} + \tilde{g}$$

$$\tilde{g} \rightarrow \tilde{t} + t$$

$$\rightarrow \tilde{\chi}_{1}^{+} + b + W + b$$

$$\rightarrow \tilde{\chi}_{1} + W^{+} + b + q + q + b$$

$$\rightarrow \tilde{\chi}_{1} + l^{+} + \nu_{l} + b + q + q + b$$

SUSY events are complex, with multi-jets, multi-leptons,

LHC SUSY phenomenology is the study of cascade decays of squarks and gluinos.

$$p + p \rightarrow \tilde{g} + \tilde{g}$$

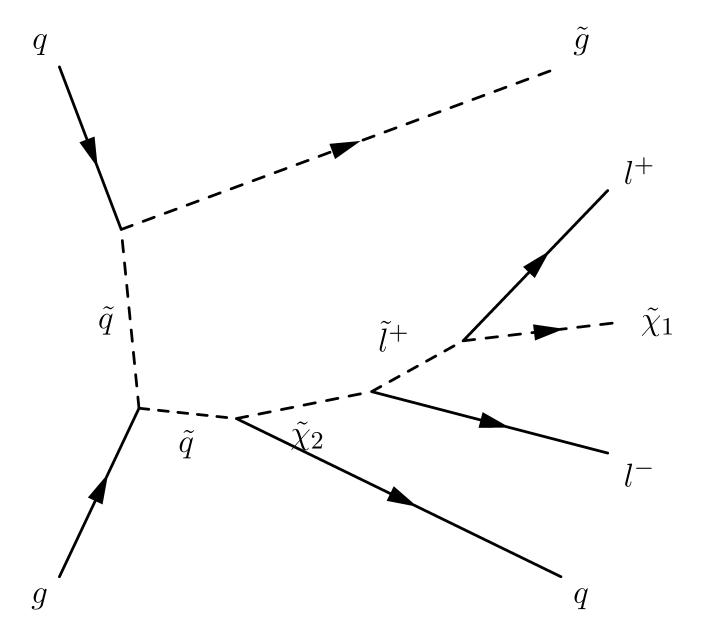
$$\tilde{g} \rightarrow \tilde{t} + t$$

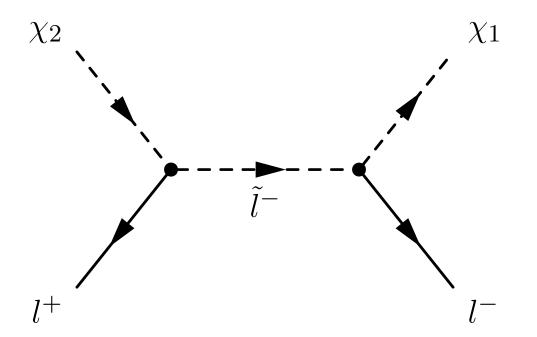
$$\rightarrow \tilde{\chi}_{1}^{+} + b + W + b$$

$$\rightarrow \tilde{\chi}_{1} + W^{+} + b + q + q + b$$

$$\rightarrow \tilde{\chi}_{1} + l^{+} + \nu_{l} + b + q + q + b$$

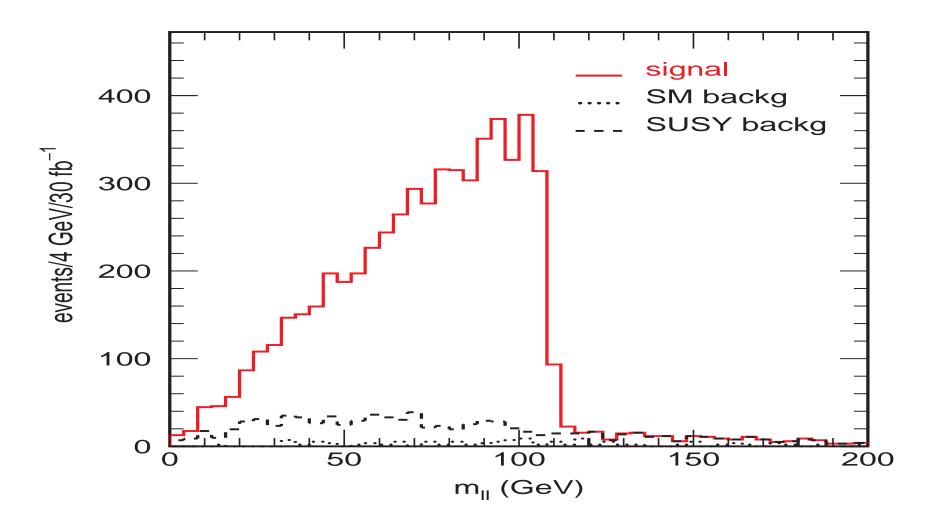
SUSY events are complex, with multi-jets, multi-leptons, missing E_T .





$$Max(M_{l+l-}) = M_{\tilde{\chi}_2} \sqrt{1 - \frac{M_{\tilde{l}}^2}{M_{\tilde{\chi}_2}^2}} \sqrt{1 - \frac{M_{\tilde{\chi}_1}^2}{M_{\tilde{l}_2}^2}}$$

This decay chain gives a characteristic edge.



(ATLAS TDR)

- Other sparticle masses can be measured through kinematic edges, thresholds and endpoints.
- If TeV SUSY is present, the LHC will find it.

The LHC will measure

the MSSM Lagrangian.

- Other sparticle masses can be measured through kinematic edges, thresholds and endpoints.
- If TeV SUSY is present, the LHC will find it.

The LHC will measure

with moderate accuracy combinations of some of the parameters of

the MSSM Lagrangian.

- Other sparticle masses can be measured through kinematic edges, thresholds and endpoints.
- If TeV SUSY is present, the LHC will find it.

The LHC will measure

with moderate accuracy combinations of some of the parameters of

the MSSM Lagrangian.

- A hadron collider is messy many MSSM parameters cannot be measured.
- For example, A-terms and particle spins are very hard to measure.

SUSY Breaking

Susy phenomenology is the study of supersymmetry breaking

What is the origin and underlying structure of the MSSM soft parameters?

How is supersymmetry broken?

SUSY Breaking

Gravity exists - SUSY is a local symmetry. Phenomenology of susy breaking is classified by gravitino mass

$$m_{3/2} = e^{K/2}W$$

 $m_{3/2} \gtrsim 1 {
m TeV}$: gravity mediation, moduli mediation, anomaly mediation $m_{3/2} \ll 1 {
m TeV}$: gauge mediation

Focus on gravity (moduli) mediation:

- natural in string theory
- Higgs potential automatically at weak scale
- only need to solve the hierarchy problem once!

Supersymmetry

We need

$$m_{3/2} = e^{K/2} W \ll 1$$

Big question:

Why is $m_{3/2}$ so small? Does the hierarchy come from $e^{K/2}$ or W?

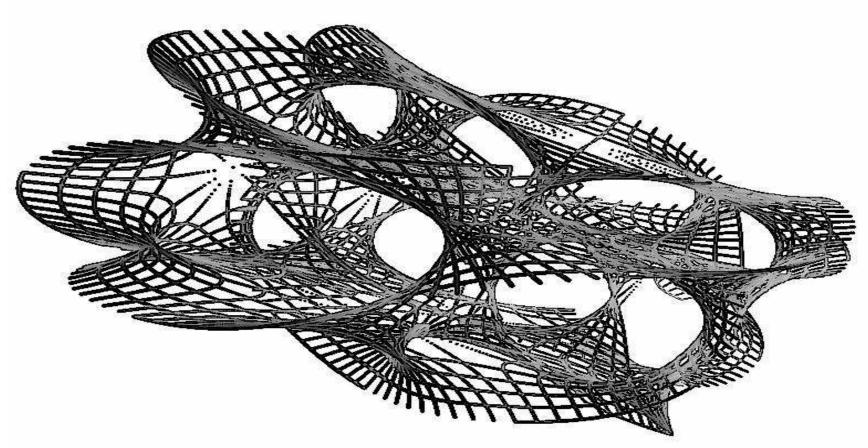
- Low-energy supersymmetry is a great channel to connect string theory to experiment
- The compactification geometry can break supersymmetry
- The compactification geometry determines the sparticle masses
- The existence of low energy supersymmetry can be correlated to very different physics (such as axions).

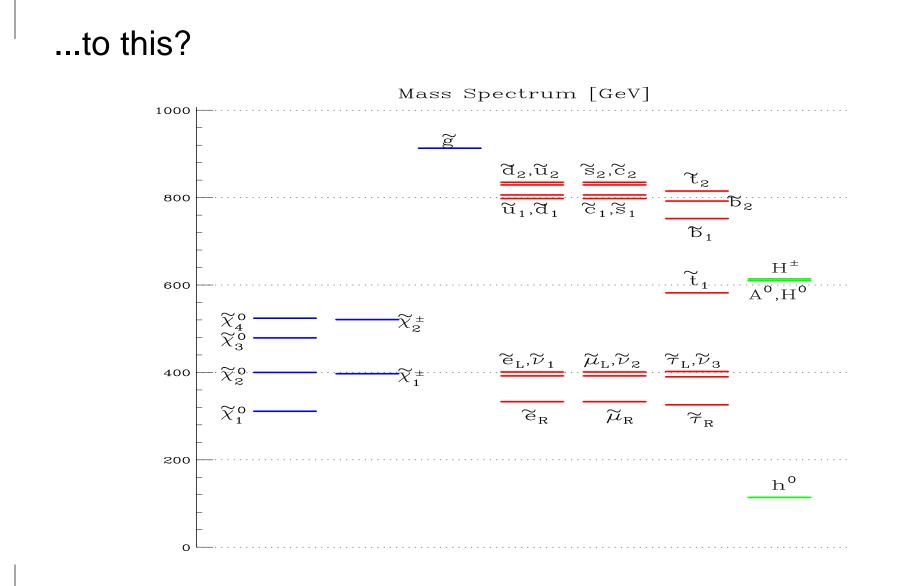
How to realise the Standard Model - heterotic, IIA, IIB?

How to break supersymmetry?

How to generate the hierarchy?

How to go from this...





- 1. Compactify.
- 2. Work out effective four-dimensional theory.
- 3. Minimise the moduli potential.
- 4. Compute the moduli F-terms in vacuo.
- 5. Compute the moduli couplings to Standard Model.
- 6. Compute the high-scale soft breaking terms.
- 7. Run soft terms to low energy and compute MSSM Lagrangian.
- 8. Feed Lagrangian into a Monte Carlo and study the collider phenomenology.

To study the moduli potential and supersymmetry breaking:

$$W = \hat{W}(\Phi) + \mu(\Phi)C^{\alpha}C^{\beta} + \frac{1}{6}Y_{\alpha\beta\gamma}(\Phi)C^{\alpha}C^{\beta}C^{\gamma} + \dots,$$

$$K = \hat{K}(\Phi,\bar{\Phi}) + \tilde{K}_{\alpha\bar{\beta}}(\Phi,\bar{\Phi})C^{\alpha}C^{\bar{\beta}} + \left[ZC^{\alpha}C^{\beta} + h.c.\right] + \dots,$$

$$f_{a} = f_{a}(\Phi).$$

$$V = e^{\hat{K}} (\hat{K}^{i\bar{j}} D_i \hat{W} D_{\bar{j}} \bar{\hat{W}} - 3|\hat{W}|^2)$$

Moduli scalar potential is

$$V = \left(K_{i\bar{j}} F^{i} F^{\bar{j}} - 3m_{3/2}^{2} M_{P}^{2} \right)$$

Supersymmetry breaking occurs if

$$F^{i} = e^{K/2} K^{i\bar{j}} (\partial_{\bar{j}} W + (\partial_{\bar{j}} K) W) \neq 0.$$

F-terms parametrise supersymmetry breaking.

No phenomenological restriction on nature of minimum.

We know

$$V = e^K \left(K^{i\bar{j}} D_i W D_{\bar{j}} \bar{W} - 3|W|^2 \right).$$

On physics grounds we expect

$$V = M_s^4 \left(\mathsf{stuff} \right).$$

and

$$M_s = e^{-\phi} \frac{M_P}{\sqrt{\mathcal{V}_s}}.$$

Holomorphy prevents T, S appearing in W, suggesting

$$K = -2\ln(\mathcal{V}_s) - 4\ln(g_s)$$

Fields must be written in holomorphic variables: IIB(D3/D7):

$$T = e^{-\phi} \mathsf{Vol}(\Sigma_4) + iC_4, \ U = \int_{\Sigma_3} \Omega, \ S = e^{-\phi} + ic_0$$

The moduli space Kähler potential is

$$\hat{K} = -2\ln(\mathcal{V}_E) - \ln\left(i\int\Omega\wedge\bar{\Omega}\right) - \ln(S+\bar{S})$$

This can be rigorously derived through dimensional reduction.

Flux Compactifications

- Flux compactifications can generate potentials for the moduli
- Fluxes source an energy density that depends on the size of cycles.
- In IIB, fluxes generate a superpotential

$$W = \int G_3 \wedge \Omega(U)$$

Moduli Stabilisation: Fluxes

$$\hat{K} = -2\ln\left(\mathcal{V}(T+\bar{T})\right) - \ln\left(i\int\Omega\wedge\bar{\Omega}(U)\right) - \ln\left(S+\bar{S}\right),$$

$$W = \int G_3\wedge\Omega\left(U\right).$$

$$V = e^{\hat{K}}\left(\sum_{U,S}\hat{K}^{\alpha\bar{\beta}}D_{\alpha}WD_{\bar{\beta}}\bar{W} + \sum_{T}\hat{K}^{i\bar{j}}D_{i}WD_{\bar{j}}\bar{W} - 3|W|^2\right)$$

$$= e^{\hat{K}}\left(\sum_{U,S}\hat{K}^{\alpha\bar{\beta}}D_{\alpha}WD_{\bar{\beta}}\bar{W}\right)$$

Stabilise S and U by solving $D_S W = D_U W = 0$.

Moduli Stabilisation: Fluxes

$$\hat{K} = -2\ln\left(\mathcal{V}(T_i + \bar{T}_i)\right),$$

$$W = W_0.$$

$$V = e^{\hat{K}}\left(\sum_T \hat{K}^{i\bar{j}} D_i W D_{\bar{j}} \bar{W} - 3|W|^2\right)$$

$$= 0$$

No-scale model :

- vanishing vacuum energy
- broken susy ($F^T \neq 0, F^U = 0$)
- T unstabilised
- Goldstino is breathing mode $g_{\mu\nu} \rightarrow \lambda^2 g_{\mu\nu}$

Moduli Stabilisation: KKLT

$$\hat{K} = -2\ln(\mathcal{V}),$$

$$W = W_0 + \sum_i A_i e^{-a_i T_i}.$$

- Non-perturbative ADS superpotential.
- T-moduli are stabilised by solving $D_T W = 0$.
- Supersymmetric minimum: needs extra energy to break susy.
- No hierarchy in $m_{3/2}$.

$$\hat{K} = -2 \ln \left(\mathcal{V} + \frac{\xi}{g_s^{3/2}} \right),$$

$$W = W_0 + \sum_i A_i e^{-a_i T_i}.$$

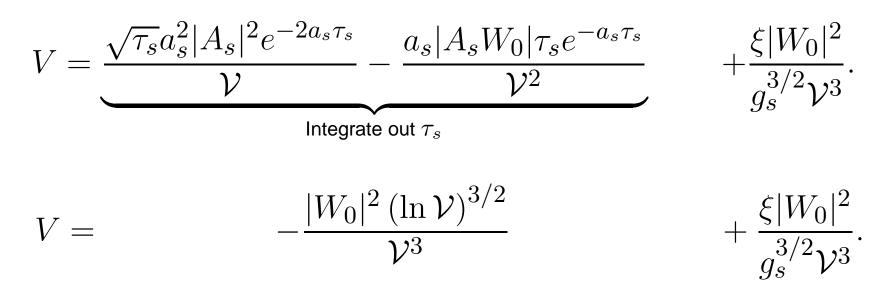
- Add the leading α' corrections to the Kähler potential.
- This leads to dramatic changes in the large-volume vacuum structure.

The simplest model $\mathbb{P}^4_{[1,1,1,6,9]}$ has two Kähler moduli.

$$\mathcal{V} = \left(\frac{T_b + \bar{T}_b}{2}\right)^{3/2} - \left(\frac{T_s + \bar{T}_s}{2}\right)^{3/2} \equiv \left(\tau_b^{3/2} - \tau_s^{3/2}\right).$$

If we compute the scalar potential, we get for $\mathcal{V} \gg 1$,

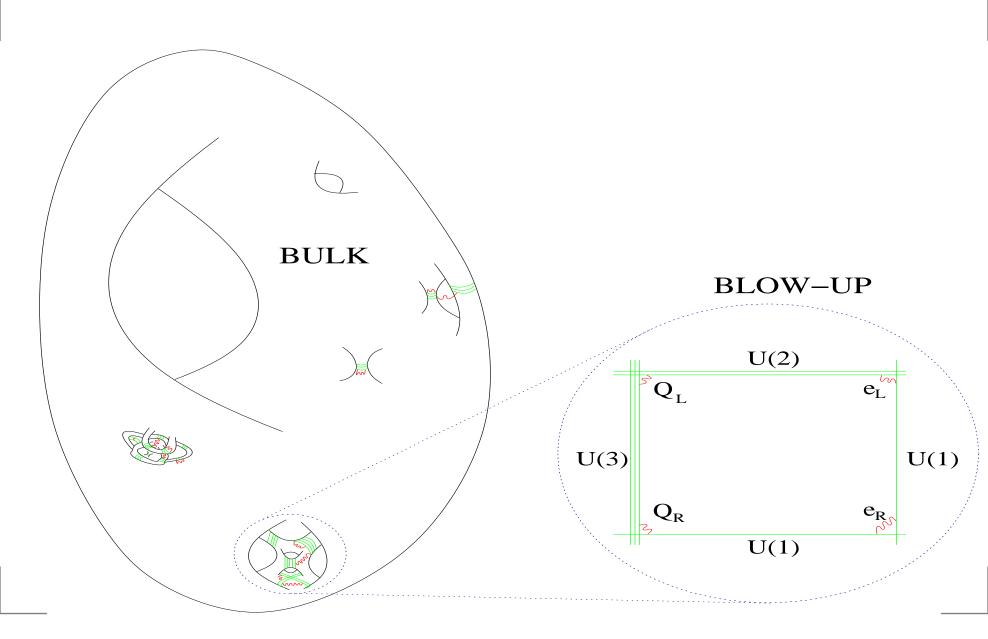
$$V = \frac{\sqrt{\tau_s} a_s^2 |A_s|^2 e^{-2a_s \tau_s}}{\mathcal{V}} - \frac{a_s |A_s W_0| \tau_s e^{-a_s \tau_s}}{\mathcal{V}^2} + \frac{\xi |W_0|^2}{q_s^{3/2} \mathcal{V}^3}.$$



A minimum exists at

$$\mathcal{V} \sim |W_0| e^{a_s \tau_s}, \qquad \tau_s \sim \frac{\xi^{2/3}}{g_s}.$$

This minimum is non-supersymmetric AdS and at exponentially large volume.



- The stabilised volume is exponentially large.
- The large volume lowers the string scale and gravitino mass through

$$m_s = \frac{M_P}{\sqrt{\mathcal{V}}}, \qquad m_{3/2} = \frac{M_P}{\mathcal{V}}.$$

- To solve the gauge hierarchy problem, need $\mathcal{V} \sim 10^{15}$.
- The vacuum is pseudo no-scale and breaks susy...

- The stabilised volume is exponentially large.
- The large volume lowers the string scale and gravitino mass through

$$m_s = \frac{M_P}{\sqrt{\mathcal{V}}}, \qquad m_{3/2} = \frac{M_P}{\mathcal{V}}.$$

- To solve the gauge hierarchy problem, need $\mathcal{V} \sim 10^{15}$.
- The vacuum is pseudo no-scale and breaks susy...
- Can generate the hierarchy and compute the moduli F-terms

$$F^{T_i} \neq 0, F^{U_j} = 0.$$

 $W = \hat{W}(\Phi) + \mu(\Phi)H_1H_2 + \frac{1}{6}Y_{\alpha\beta\gamma}(\Phi)C^{\alpha}C^{\beta}C^{\gamma} + \dots,$ $K = \hat{K}(\Phi,\bar{\Phi}) + \tilde{K}_{\alpha\bar{\beta}}(\Phi,\bar{\Phi})C^{\alpha}C^{\bar{\beta}} + [ZH_1H_2 + h.c.] + \dots,$ $f_a = f_a(\Phi).$

Couplings to visible matter determine the soft terms.

Soft scalar masses $m_{i\bar{j}}^2$ and trilinears $A_{\alpha\beta\gamma}$ are given by

$$\begin{split} \tilde{m}_{\alpha\bar{\beta}}^{2} &= (m_{3/2}^{2} + V_{0})\tilde{K}_{\alpha\bar{\beta}} \\ &- \bar{F}^{\bar{m}}F^{n} \left(\partial_{\bar{m}}\partial_{n}\tilde{K}_{\alpha\bar{\beta}} - (\partial_{\bar{m}}\tilde{K}_{\alpha\bar{\gamma}})\tilde{K}^{\bar{\gamma}\delta}(\partial_{n}\tilde{K}_{\delta\bar{\beta}})\right) \\ A'_{\alpha\beta\gamma} &= e^{\hat{K}/2}F^{m} \Big[\hat{K}_{m}Y_{\alpha\beta\gamma} + \partial_{m}Y_{\alpha\beta\gamma} \\ &- \left((\partial_{m}\tilde{K}_{\alpha\bar{\rho}})\tilde{K}^{\bar{\rho}\delta}Y_{\delta\beta\gamma} + (\alpha\leftrightarrow\beta) + (\alpha\leftrightarrow\gamma)\right)\Big]. \\ M_{a} &= \frac{F^{m}\partial_{m}f_{a}}{\mathsf{Re}(f_{a})} \end{split}$$

Similar expressions hold for μ and $B\mu$.

The matter metrics $\tilde{K}_{\alpha\bar{\beta}}$ can be computed if we know where the Standard Model is realised.

For example, in the large-volume models with the Standard Model on D7 branes wrapping a blow-up cycle,

$$\tilde{K}_{\alpha\bar{\beta}} = \frac{\tau_s^{1/3}}{\mathcal{V}^{2/3}} k_{\alpha\bar{\beta}}(U,\bar{U}), \ f_a = T_s + h_a(F)S$$

High-scale soft terms are

$$M_{i} = \frac{F^{s}}{2\tau_{s}} \equiv M,$$

$$m_{\alpha\bar{\beta}} = \frac{M}{\sqrt{3}}\tilde{K}_{\alpha\bar{\beta}},$$

$$A_{\alpha\beta\gamma} = -M\hat{Y}_{\alpha\beta\gamma},$$

$$B = -\frac{4M}{3}.$$

High-scale soft terms are

$$M_{i} = \frac{F^{s}}{2\tau_{s}} \equiv M,$$

$$m_{\alpha\bar{\beta}} = \frac{M}{\sqrt{3}}\tilde{K}_{\alpha\bar{\beta}},$$

$$A_{\alpha\beta\gamma} = -M\hat{Y}_{\alpha\beta\gamma},$$

$$B = -\frac{4M}{3}.$$

Big question:

How is the Standard Model realised?

The MSSM has a flavour problem: we need

 $m_{\tilde{u}} = m_{\tilde{c}}, m_{\tilde{d}} = m_{\tilde{s}}, \dots$

Squark mass universality to $\sim 0.5\%$ is constrained by $K_0 - \bar{K}_0$ mixing.

The MSSM has a flavour problem: we need

 $m_{\tilde{u}} = m_{\tilde{c}}, m_{\tilde{d}} = m_{\tilde{s}}, \dots$

Squark mass universality to $\sim 0.5\%$ is constrained by $K_0 - \bar{K}_0$ mixing.

SUSY breaking involves high-scale physics.

Flavour physics (Yukawa couplings) also involve high scale physics.

The MSSM has a flavour problem: we need

 $m_{\tilde{u}} = m_{\tilde{c}}, m_{\tilde{d}} = m_{\tilde{s}}, \dots$

Squark mass universality to $\sim 0.5\%$ is constrained by $K_0 - \bar{K}_0$ mixing.

SUSY breaking involves high-scale physics.

Flavour physics (Yukawa couplings) also involve high scale physics.

Why isn't susy breaking sensitive to flavour physics?

For flavour universality, we require

$$m_{\alpha\bar{\beta}}^{2} = m^{2}K_{\alpha\bar{\beta}},$$

$$A_{\alpha\beta\gamma} = AY_{\alpha\beta\gamma},$$

$$\phi_{M_{1}} = \phi_{M_{2}} = \phi_{M_{3}} = \phi_{A}.$$

Soft terms must be family-independent and insensitive to flavour.

Sufficient conditions for flavour universality:

1. Hidden sector factorises

$$\Phi_{hidden} = \Psi_{susy} \oplus \chi_{flavour}.$$

2. The kinetic terms are decoupled

$$\mathcal{K}(\Phi, \bar{\Phi}) = \mathcal{K}_1(\Psi + \bar{\Psi}) + \mathcal{K}_2(\chi, \bar{\chi}),$$

3. The superpotential Yukawas depend only on $\chi_{flavour}$:

$$Y_{\alpha\beta\gamma}(\Psi,\chi) = Y_{\alpha\beta\gamma}(\chi).$$

4. The gauge kinetic functions depend only on Ψ fields:

$$f_a(\Psi, \chi) = \sum_i \lambda_i \Psi_i.$$

4. The visible metric factorises.

$$\mathcal{K}_{\alpha\bar{\beta}}(\Psi,\bar{\Psi},\chi,\bar{\chi}) = h(\Psi+\bar{\Psi})k_{\alpha\bar{\beta}}(\chi,\bar{\chi})$$

5. Ψ breaks susy, χ does not:

$$D_{\Psi_i}W \neq 0, D_{\chi_j}W = 0.$$

If all these assumptions hold, susy breaking generates flavour universal soft terms.

4. The visible metric factorises.

$$\mathcal{K}_{\alpha\bar{\beta}}(\Psi,\bar{\Psi},\chi,\bar{\chi}) = h(\Psi+\bar{\Psi})k_{\alpha\bar{\beta}}(\chi,\bar{\chi})$$

5. Ψ breaks susy, χ does not:

$$D_{\Psi_i}W \neq 0, D_{\chi_j}W = 0.$$

If all these assumptions hold, susy breaking generates flavour universal soft terms.

Totally *ad hoc* in effective field theory!

String theory knows this structure!

- Calabi-Yau moduli space factorises in precisely this fashion.
- Kähler (T) and complex structure (U) moduli have factorised moduli spaces

$$IIB: \Psi_{susy} \to T, \chi_{flavour} \to U,$$
$$IIA: \Psi_{susy} \to U, \chi_{flavour} \to T.$$

In flux compactifications susy breaking factorises:

$$F^T \neq 0, \qquad F^U = 0.$$

The structure of Calabi-Yau moduli space provides a solution to the flavour problem of the MSSM

Naturalness in string theory \neq Naturalness in effective field theory

Open Problem

Find a compactification with:

- The Standard Model matter content and Yukawa couplings
- All moduli stabilised in a controlled fashion
- Hierarchically low susy breaking $m_{3/2} \sim 1 \text{TeV}$
- Known moduli-matter couplings

Open Problem

Find a compactification with:

- The Standard Model matter content and Yukawa couplings
- All moduli stabilised in a controlled fashion
- Hierarchically low susy breaking $m_{3/2} \sim 1 \text{TeV}$
- Known moduli-matter couplings

Predict all soft terms and MSSM spectrum, and compare with experiment!

Conclusions

