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Locality

There are many different proposals to realise Standard Model in
string theory.

What information comes from locality?

◮ Examples branes at singularity, F-theory/IIB GUTs

◮ Definition: Standard Model gauge and Yukawa couplings
remain finite in the limit V → ∞.

◮ Model specified by local and not global geometry

◮ Hierarchy between string (MP√
V ) and Planck (MP) scales.
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Holomorphy

This talk will make repeated use of one simple point:

◮ Kähler moduli Ti have a perturbative shift symmetry
Ti → Ti + iǫ and by holomorphy cannot appear in the
perturbative superpotential.

This plus locality plus GUT gives a surprising amount of
information.

Will focus on IIB/F-theory cases.
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Matter Kinetic Terms

Physical Yukawa couplings are given by

Ŷαβγ = eK̂/2 Yαβγ
√

ZαZβZγ

◮ Overall Kähler potential is

K̂ = −2 lnV(Ti + T̄i ) + . . .

◮ Holomorphic Yukawa couplings do not depend on Ti .

◮ Physical Yukawa couplings (by locality) do not depend on the
overall volume.

◮ Volume dependence of matter metrics is given by
Zα ∼ V−2/3.
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Non-Renormalisable Operators

Supergravity action is

Za

(
∂µΦa∂

µΦa + ψ̄aσ
µ∂µψa

)
+ eK̂/2∂α∂βWψαψβ

Consider a nonrenormalisable operator (e.g. HHLL,QQQL) in the
superpotential:

W =
1

MP

CabcdΦaΦbΦcΦd .

Cabcd cannot depend on V. Physical operator is

ĈabcdψaψbΦcΦd =
eK̂/2

MP

CabcdψaψbΦcΦd√
ZaZbZcZd

∼
(

1

RMs

)

Cabcd .
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Non-Renormalisable Operators

Suppresion scale is neither Ms nor MP but in fact RMs .

It’s easy to see that this follows more generally: a dimension-(3+n)

superpotential operator has a physical suppression scale of
(

1
RMs

)n

.

Consequence for local GUTs:

Higher dimension terms in the superpotential are suppressed by a
scale parametrically above the string scale.

Why is this and what is the origin of this scale?
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Super-renormalisable Operators

Likewise consider a µ-term:

W = MPHuHd

Locality and Z ∼ V−2/3 now gives a mass term

mH ∼ (RMs)

This is parametrically above the string scale in the limit V → ∞:

hard to see how such a term can be present.
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Threshold Corrections

In supergravity, physical and holomorphic gauge couplings are
related by Kaplunovsky-Louis formula:

g−2
phys(Φ, Φ̄, µ) = Re(fa(Φ)) (Holomorphic coupling)

+ ba

16π2 ln
(

M2
P

µ2

)

(β-function running)

+T (G)
8π2 ln g−2

phys(Φ, Φ̄, µ) (NSVZ term)

+
(
∑

r nrTa(r)−T (G))

16π2 K̂ (Φ, Φ̄) (Kähler-Weyl anomaly)

−∑

r
Ta(r)
8π2 ln det Z r (Φ, Φ̄, µ). (Konishi anomaly)

Relates measurable couplings and holomorphic couplings.
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Focus on volume dependence in local models:

◮ GUTs - assume universal holomorphic gauge kinetic function.

◮ Kähler potential K̂ is given by

K̂ = −2 lnV + . . .

◮ Matter kinetic terms Ẑ are given by

Ẑ ∼ 1

V2/3

These are the only non-universal ways the volume can enter the
Kaplunovsky-Louis formula.
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Plug in K̂ = −2 lnV and Ẑ = 1
V2/3 into Kaplunovsky-Louis formula.

We restrict to terms enhanced by lnV and obtain:

g−2
phys(Φ, Φ̄, µ) = Re(fa(Φ)) +

(
∑

r nrTa(r) − 3Ta(G ))

8π2
ln

(
MP

V1/3µ

)

= Re(fa(Φ)) + βa ln

(
(RMs)

2

µ2

)

.

◮ Gauge couplings start running from an effective scale RMs

rather than Ms .

◮ Universal Re(fa(Φ)) implies unification occurs at a
super-stringy scale RMs rather than Ms .
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◮ Argument implies inferred low-energy unification scale is
systematically above the string scale and has only relied on
model-independent V factors.

◮ Unification scale is a mirage scale - new string states already
occur at Ms = MGUT/R < MGUT .

◮ What is the string interpretation?
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Running gauge couplings are the 1-loop coefficient of

1

4g2

∫

d4x
√

gF a
µνF a,µν

◮ Turn on background magnetic field F23 = B .

◮ Compute the quantised string spectrum.

◮ Use the string partition function to compute the 1-loop
vacuum energy

Λ = Λ0 +
1

2

(
B

2π2

)2

Λ2 +
1

4!

(
B

2π2

)4

Λ4 + . . .

◮ From Λ2 term we can extract beta function running and
threshold corrections.
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String theory 1-loop vacuum function given by partition function

Λ1−loop =
1

2
(T + KB + A(B) + MS(B)).

◮ Require O(B2) term of this expansion.

◮ Background magnetic field only shifts moding of open string
states.

◮ Torus and Klein Bottle amplitudes do not couple to open
strings.

◮ Only annulus and Möbius strip amplitudes contribute at
O(B2).
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We want examples of calculable local models with non-zero beta
functions.

◮ The simplest such examples are (fractional) D3 branes at
orbifold singularities.

◮ String can be exactly quantised and all calculations can be
performed explicitly.

◮ Orbifold singularities only involve annulus amplitude further
simplifying the computations.

◮ Have studied D3 branes on C
3/Z4, C

3/Z6, C
3/Z′

6, C
3/∆27.

◮ Will focus here on D-branes at C
3/Z4 (reuslts all generalise).
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◮ The quiver for C
3/Z4 is:

n n

nn

0 1

23

◮ Anomaly cancellation requires n0 = n2, n1 = n3.
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◮ Orbifold action generated by zi → exp(2πiθi ) with
θ = (1/4, 1/4,−1/2).

◮ We only need to compute the annulus diagram

A(B) =

∫ ∞

0

dt

2t
STr

(
(1 + θ + θ2 + θ3)

4

1 + (−1)F

2
q(pµpµ+m2)/2

)

Here

q = e−πt , STr =
∑

bosons

−
∑

fermions

≡
∑

NS

−
∑

R

, α′ = 1/2

.

◮ β-function running and threshold corrections are encoded in
the O(B2) term.
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We separately evaluate each amplitude in the θN sector.

A(B) =

∫ ∞

0

dt

2t
STr

(
(1 + θ + θ2 + θ3)

4

1 + (−1)F

2
q(pµpµ+m2)/2

)

◮ θ0 = (1, 1, 1) is an ‘N = 4’ sector.

◮ θ1 = (1/4, 1/4,−1/2) and θ3 = (−1/4,−1/4, 1/2) are
‘N = 1’ sectors.

◮ θ2 = (1/2, 1/2, 0) is an ‘N = 2’ sector.

The amplitudes reduce to products of Jacobi ϑ-functions with
different prefactors.
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Auntwisted =

∫
dt

2t

1

4

(
B

2π2

)2

× 0 = 0. (N = 4 susy)

◮ The untwisted sector has effective N = 4 supersymmetry and
cannot contribute to the running gauge coupling.

Aθ = Aθ3 =

∫
dt

2t

1

4

(
B

2π2

)2

× (n0 − n2)

2

(

ϑ− functions
)

◮ The contribution of N = 1 sectors to gauge coupling running
has a prefactor (n0 − n2).

◮ This necessarily vanishes once non-abelian anomaly
cancellation is imposed.
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Aθ2 =

∫
dt

2t

1

4

(
B

2π2

)2

× (−3n0 + n1 + n2 + n3)
(

ϑ− function
)

.

Here
(

ϑ− function
)

is

−1

4π2

∑

ηαβ(−1)2α

ϑ′′
[ α
β

]

η3

ϑ
[ α
β

]

η3

ϑ
[ α
β + θ1

]

ϑ
[ 1/2

1/2 + θ1

]

ϑ
[ α
β + θ2

]

ϑ
[ 1/2

1/2 + θ2

] = 1.

We obtain

Aθ2 =

∫
dt

2t

1

2

(
B

2π2

)2

× (−3n0 + n1 + n2 + n3).
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A = Aθ2 =

∫ ∞

0

dt

2t

1

2

(
B

2π2

)2

× (−3n0 + n1 + n2 + n3)
︸ ︷︷ ︸

b0

.

◮ Reduction of ϑ-functions to a constant is a consequence of
N = 2 supersymmetry.

◮ Only BPS multiplets can affect gauge coupling running and
excited string states are non-BPS.

◮ Resultant amplitude is non-zero and gives field theory
β-function running in both IR and UV limits.
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The purely local computation omits the following worldsheets:

R
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◮ The purely local string computation includes all open string
states for t > 1/(RMs)

2, i.e. M < RMs .

◮ However for t < 1/(RMs)
2 we must include new winding

states in the partition function.

◮ These are essential for global consistency but are omitted by a
purely local computation.

◮ These enter the computation for t < 1/(RMs)
2 and enforce

finiteness (RR tapdole cancellation).
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◮ The bulk worldsheets enforce global RR tadpole cancellation
and effectively cut off the integral at t = 1

(RMs)2
.

◮ Threshold corrections become finite

∫ 1/µ2

1/∞2

dt

2t

1

4

(
B

2π2

)2

ba →
∫ 1/µ2

1/(RMs )2

dt

2t

1

4

(
B

2π2

)2

ba

◮ Effective UV cutoff is actually RMs and not Ms .!
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Physics of high scale RMs :

Local model generates a tadpole which is uncancelled locally and
cancelled globally.

Divergences cannot be regulated until finiteness is ensured at bulk
scale RMS .
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F-theory GUTs

Same physics should apply:
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F-theory GUTs

U(1)Y induces a local tadpole that vanishes globally

BU(1)Y

BU(1)Y

BU(1)Y

BU(1)Y C2

Basic diagram

Divergent limit

- induces running from an enhanced scale RMs .
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Flavour

In string theory gauge couplings are real parts of chiral superfields:

αGUT =
4π

g2
= Re(T )

where T has shift symmetry T → T + iǫ.

Can αGUT ∼ 1/25 be used as an expansion parameter for the
Yukawa couplings?

Yαβγ(αGUT ) is not compatible with holomorphy and the shift
symmetry of T .
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Flavour

Physical Yukawas are given by

Ŷαβγ = eK̂/2 Yαβγ
√

ZαZβZγ

What about using different behaviour in Zα?

An expansion 1 : αGUT : α2
GUT in the physical Yukawa couplings

requires kinetic terms Zα to behave as

Z1 : Z2 : Z3 as
(TSM + T̄SM)4

V2/3
:
(TSM + T̄SM)2

V2/3
:

1

V2/3

Requires kinetic terms that diverge in large-volume weak-coupling
limit gµν → λgµν : seems implausible.
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Conclusions

Locality and holomorphy give surprising amounts of information
about effective action.

◮ Non-local suppression scale for higher dimension operators.

◮ Significant contributions to threshold corrections.

◮ Restrictions on scenarios for expansion of Yukawa and CKM
matrices.

One final message...
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Come to Cambridge!

Mathematics and Applications of Branes in String and M-Theory

Isaac Newton Institute program January - June 2012

Organisers: David Berman, Joseph Conlon, Neil Lambert, Sunil
Mukhi, Fernando Quevedo
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