String Theory and Cosmology: Ships That Pass In The Night?

Joseph Conlon, Oxford University

Leuven, 7th April 2017

Joseph Conlon, Oxford University String Theory and Cosmology: Ships That Pass In The Night?

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ □ □

JQ (?

- 1. String Theory and Cosmology
- 2. Dark radiation: reheating and modulus decays
- 3. (TransPlanckian Inflation and Tensor Modes)
- 4. Searches for Axion-Like Particles

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

De Vliegende Hollander

Joseph Conlon, Oxford University String Theory and Cosmology: Ships That Pass In The Night?

STRING THEORY AND COSMOLOGY

Joseph Conlon, Oxford University String Theory and Cosmology: Ships That Pass In The Night?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● のへで

This is the age of precision cosmology.

A six-parameter Λ CDM model provides a good fit to the large-scale properties of the universe.

Baryon density	$\Omega_b h^2$	0.022
Dark matter density	$\Omega_c h^2$	0.119
Age of the universe	t_0	$1.38 imes 10^{10} \mathrm{years}$
$\operatorname{Scalar spectral index}$	n _s	0.967
Density perturbations	Δ_R^2	$2.44 imes10^{-9}$
Optical depth to reionisation	au	0.066

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● のへで

String theory requires extra dimensions.

- There are a very large number of compactification manifolds.
- There is an even larger number of flux choices on these manifolds.

< □ ▶

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ →

3

5900

These different choices give different low energy physics.

- Different gauge groups
- Different matter content
- Different symmetry breaking scales

With so many different choices, how is it possible to be predictive?

▲母▶▲臣▶▲臣▶ 臣 のへで

These different choices give different low energy physics.

- Different gauge groups
- Different matter content
- Different symmetry breaking scales

With so many different choices, how is it possible to be predictive?

With 10⁵⁰⁰ choices, how can one ever say something useful?

The Standard Cosmology

Joseph Conlon, Oxford University String Theory and Cosmology: Ships That Pass In The Night?

5900

₹

What have string theory and cosmology to do with each other?

Where is a fundamental theory of the Planck scale relevant to cosmology and astrophysics?

▲□ ▲ 三 ▲ 三 ▲ 三 ▲

SQ (V

II DARK RADIATION

Joseph Conlon, Oxford University String Theory and Cosmology: Ships That Pass In The Night?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

Central to inflationary cosmology is <u>reheating</u>: the transfer of energy from the inflationary perturbations back into Standard Model degrees of freedom.

Reheating proceeds from decays of a scalar field, often in a simplified framework with a single field responsible both inflation and reheating. However:

• Non-relativistic matter redshifts as $ho_{\Phi} \sim a^{-3}$

$$\blacktriangleright$$
 Radiation redshifts as $ho_\gamma \sim a^{-4}$

► 3 < 4

Reheating is dominated by the LAST scalar to decay NOT the first.

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ - 国 - 釣��

Decay Rates

How long do particles survive?

Perturbative decay

$$\Gamma = rac{g^2}{8\pi} m_{\Phi}, \qquad au = rac{8\pi}{g^2 m_{\Phi}}$$

Loop decay

$$\Gamma = \frac{g^2}{8\pi} \frac{g^4}{16\pi^2} m_{\Phi}, \qquad \tau = \frac{8\pi}{g^2} \frac{16\pi^2}{g^4} \frac{1}{m_{\Phi}}$$

• Non-renormalisable decay suppressed by scale Λ

$$\Gamma = rac{1}{8\pi} rac{m_{\Phi}^3}{\Lambda^2}, \qquad au = 8\pi rac{\Lambda^2}{m_{\Phi}^3}$$

Particles with couplings suppressed by M_P live the longest

Decay Rates

In string theory, there are extra dimensions, and the size and shape of these extra dimensions are parametrised by moduli - the 'normal modes'.

Moduli are massive scalars that interact only via 'gravitational' couplings suppressed by M_P^{-1} .

Their existence is a generic consequence of extra dimensions and is independent of the 'landscape'.

Moduli are generically displaced from their final minimum during inflation, and subsequently oscillate as non-relativistic matter is a

590

Moduli are assumed to displace from their minimum after inflation. Neglecting anharmonicities their equation of motion is

$$\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = 0$$

and so oscillations start at $3H \sim m$.

Moduli redshift as matter and come to dominate universe energy density.

Hot Big Bang is recovered after moduli decay and reheat Standard Model.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cosmological Moduli Problem

Moduli can decay via 2-body processes, e.g. $\Phi \rightarrow gg$, $\Phi \rightarrow qq$, etc For direct couplings such as

$$\frac{\Phi}{4M_P}F_{\mu\nu}F^{\mu\nu} \quad \text{or} \quad \frac{\Phi}{2M_P}\partial_{\mu}C\partial^{\mu}C$$

the 'typical' moduli decay rate is

$$\Gamma \sim rac{1}{16\pi} rac{m_\phi^3}{M_P^2}$$

with a lifetime

$$au \sim \left(rac{40 \,\mathrm{TeV}}{m_{\phi}}
ight)^3 1 \,\mathrm{s} \equiv \left(rac{4 imes 10^6 \,\mathrm{GeV}}{m_{\phi}}
ight)^3 10^{-6} s$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

As gravitationally coupled particles, moduli generally couple to everything with M_P^{-1} couplings.

Visible sector :
$$\frac{\Phi}{4M_P}F_{\mu\nu}^{color}F^{color,\mu\nu}, \ \frac{\partial_{\mu}\partial^{\mu}\Phi}{M_P}H_uH_d, \dots$$

Hidden sector :
$$\frac{\Phi}{2M_P}\partial_{\mu}a\partial^{\mu}a, \ \frac{\Phi}{4M_P}F_{\mu\nu}^{hidden}F^{hidden,\mu\nu}\dots$$

This is supported by explicit studies of string effective field theories Axionic decay modes naturally arise with $BR(\Phi \rightarrow aa) \sim 0.01 \rightarrow 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Standard Cosmology + ΔN_{eff}

Joseph Conlon, Oxford University String Theory and Cosmology: Ships That Pass In The Night?

< ロ > < 回 > < 回 > < 回 > < 回 >

5900

臣

The observable sensitive to non-Standard Model radiation is N_{eff} .

 N_{eff} measures the 'effective number of neutrino species' at BBN/CMB: in effect, any hidden radiation decoupled from photon plasma (not necessarily connected to neutrinos).

At CMB times,

$$\rho_{total} = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{eff} \right).$$

For a canonical Hot Big Bang, $N_{eff} = 3.046$: $\Delta N_{eff} = N_{eff} - 3.046$ represents dark radiation - additional radiation decoupled from SM thermal bath.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Decays to any massless weakly coupled hidden sectors (axions, ALPs, hidden photons, RR U(1)s etc), gives dark radiation.

Visible/hidden branching ratio sets magnitude of dark radiation.

 $\Phi \rightarrow hidden$ with branching ratio f_{hidden} $\Phi \rightarrow gg, \gamma\gamma, qq, \ldots$ with branching ratio $1 - f_{hidden}$

$$egin{aligned} \Delta N_{eff} &=& rac{43}{7} rac{f_{hidden}}{1-f_{hidden}} \left(rac{g(T_{
u\,dec})}{g(T_{reheat})}
ight)^{1/3} \ &\simeq& 3.43 rac{f_{hidden}}{1-f_{hidden}} \qquad \left(T_{reheat}=1 ext{GeV}
ight) \end{aligned}$$

 $\Delta N_{eff} \sim 0.01$ (stage-IV CMB) probes $f_{hidden} \sim 0.003$.

▲ロト ▲□ト ▲ヨト ▲ヨト 三目 めへで

Dark radiation occurs whenever reheating involves decays to a massless hidden sector as well as the Standard Model.

Such massless hidden sectors exist in many BSM constructions -QCD axion, axion-like particles, hidden photons, WISPs, chiral fermions....

- ▲ □ ▶ - ▲ □ ▶ - □ □ -

SQ (V

A Cosmic Axion Background

Joseph Conlon, Oxford University String Theory and Cosmology: Ships That Pass In The Night?

Thermal bath cools into the CMB while axions never thermalise and freestream to the present day:

Ratio of axion energy to photon temperature is

$$\frac{E_a}{T_{\gamma}} \sim \left(\frac{M_P}{m_{\Phi}}\right)^{\frac{1}{2}} \sim 10^6 \left(\frac{10^6 \text{GeV}}{m_{\Phi}}\right)^{\frac{1}{2}}$$

This suggests an O(keV) relic cosmic axion background....

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Axion-like particles

- Light axion-like particles (ALPs) are one of the most motivated ways to extend the Standard Model
- They arise generically in string theory.
- Phenomenologically, they are parametrised by the coupling

$$a g_{a\gamma\gamma} \mathbf{E}.\mathbf{B} \equiv \frac{a}{M} \mathbf{E}.\mathbf{B}$$

 In the presence of a background B field, the ALP a and photon γ eigenstates mix, leading to photon-ALP oscillations (cf neutrino oscillations)

Axion-Like Particles in String Theory

■ 30-year old result:

String compactifications lead to a plenitude of axions in the low-energy theory

- 'Model-dependent' axions number O(100) for typical compactifications
- Axion-like particles are one of the most motivated targets in looking for signatures of string compactifications

X-Ray Searches for Axions

How to search for ALPs?

- The basic physics used here to look for ALPs is very simple.
 - 1. Send photons from A to B
 - 2. Have a magnetic field inbetween A and B
 - 3. Photon-ALP interconversion causes some of these photons to oscillate into ALPs
 - 4. The photon spectrum on arrival at B will show modulations compared to the source photon spectrum at A.
- In our case, the source A will be the central AGN (Active Galactic Nucleus) of the Perseus galaxy cluster and B is the Chandra X-ray telescope

Originally Wouters + Brun 2013

AGNs are Unique Probes of Fundamental Physics

- Light comes from within a FEW SCHWARZSCHILD RADII of the central black hole interesting physics
- Black holes are fundamental objects cf superradiance
- Large number of photon counts high statistics
- Photons experience an identical line of sight through the host galaxy and galaxy cluster uniform effect
- They experience a dark matter column density larger than almost any other line of sight in the local universe extreme conditions
- Sensitive to milli-parsec dark matter spikes near central Black Hole unique sensitivity

NGC 1275

- NGC1275 is the central supergiant elliptical galaxy of the Perseus cluster
- It is located at a redshift of 0.0176 (68 Mpc distant)
- At its centre is a very bright AGN, powered by accretion onto the supermassive black hole.
- The AGN brightness is time-variable (1980 brightness was 20x bigger than in 2001, progressive increase in brightness since 2001)
- The AGN is unobscured, and shines to us through both NGC1275 and the Perseus cluster

X-ray image of the Perseus cluster: NGC1275 AGN is the central white dot

The AGN jets blow bubbles into the surrounding intra-cluster medium

Perseus in X-rays (NASA, Chandra)

Photon-ALP Conversion

The fundamental ALP-photon coupling is

$$a g_{a\gamma\gamma} \mathbf{E}.\mathbf{B} \equiv \frac{a}{M} \mathbf{E}.\mathbf{B}$$

- In a magnetic field, this gives a 2-particle interaction between the ALP and the photon
- The ALP and photon eigenstates $mix the 'mass' eigenstates are no longer the same as the 'flavour' eigenstates (a and <math>\gamma$)
- Propagating through the magnetic field, photon eigenstates oscillate into ALP eigenstates

Photon-ALP Conversion

- Source is NGC1275, destination is earth: intervening magnetic field is magnetic field of the Perseus cluster.
- Galaxy clusters are particularly good locations for photon-ALP interconversion
- Magnetic fields extend over approx. 1 Mpc regions, with coherence lengths in 1- 10kpc region.
- Magnetic field strengths are 1 10 microGauss.
- Photon-ALP couplings $g_{a\gamma\gamma}$ of 10^{-12} to 10^{-11} GeV⁻¹ generate conversion probabilities of order 10 50%.
- No exact knowledge of Perseus magnetic field; central value should be in range 10 – 25 microGauss.

Photon-ALP Conversion – why X-rays?

 Axion-photon interconversion (for m_a<10⁻¹²eV, effectively massless) in galaxy clusters:

$$P_{\gamma \to a} = \frac{1}{2} \frac{\Theta^2}{1 + \Theta^2} \sin^2 \left(\Delta \sqrt{1 + \Theta^2} \right)$$

 $\Theta = 0.28 \left(\frac{B_{\perp}}{1 \ \mu \text{G}}\right) \left(\frac{\omega}{1 \ \text{keV}}\right) \left(\frac{10^{-3} \text{cm}^{-3}}{n_e}\right) \left(\frac{10^{11} \text{GeV}}{M}\right) \qquad \Delta = 0.54 \left(\frac{n_e}{10^{-3} \text{cm}^{-3}}\right) \left(\frac{L}{10 \text{kpc}}\right) \left(\frac{1 \text{keV}}{\omega}\right)$

• Sweet spot at X-ray energies:

ALPS

AGNs are bright point sources of photons

Photons pass through galaxy cluster magnetic field

ALP-Photon conversion induces irregularities in observed X-ray spectrum

Precise form of modulations depends on cluster magnetic field

Simulated photon survival probability...

...now convolved with detector resolution

The Observations

- NGC1275 observed by Chandra in 2002 and 2004 for 1Ms with ACIS-S and 0.5 Ms in 2009 with ACIS-I.
- In ACIS-S observations, NGC1275 is on-axis, in 2009 observations 300ks with NGC1275 around 4 arcmin off-axis and 200ks with NGC1275 around 8 arcmin offaxis.
- Treat these three sets separately, focus on last case.
- Chandra on-axis point spread function is around 0.5 arcsec diameter on-axis, broadening to around 10 arcsec diameter when source is around 8 arcmin off-axis.

The Observations

- We extract the AGN spectrum and subtract nearby cluster emission for background.
- We fit the AGN spectrum between 0.8 and 5 keV with an absorbed power law
- We examine these spectra and look for residuals
- Counts are grouped so that there are approximately one hundred bins in total
- Total counts from AGN is
 - 1. 230000 for 2009 ACIS-I 'edge' observations (cleanest dataset)

FOCUS ON THIS!

2. 242000 for 2009 ACIS-I 'midway' observations - heavy pileup contamination

3. 183000 for 2002-4 ACIS-S on-axis observations – heavy pileup contamination

Complete extraction for ACIS-I edge

Fit to absorbed power law gives two main features – excess at 2 – 2.2 keV, deficit at 3.4 – 3.5 keV

Features in ACIS-I Edge Data

Two main features:

1. Excess at 2 – 2.2 keV

Subtle because of effective area dip at these energies

Possible to generate fake excesses via energy mismeasurement

2. Deficit at 3.4 – 3.5 keV

Possible connection to 3.5 keV line – not discuss here

ALP Constraints

Unambiguous statement – there are no spectral irregularities greater than 10% ALP couplings leading to 20-30% irregularities are excluded

ALP Constraints

Exact Perseus magnetic field along line of sight is unknown. We consider three magnetic field cases:

1. B_central = 25 μ G, 100 domains between 3.5 and 10kpc

(reasonable)

2. B_central =
$$15 \mu G$$
, 100 domains between 0.7 and 10kpc

(conservative)

3. B_central = $10 \mu G$, 100 domains between 0.7 and 10kpc

(ultra-conservative)

We generate simulated magnetic fields, compute the photon-ALP conversion probability and generate spectra corresponding to them.

We say $g_{a\gamma\gamma}$ is ruled out at 95% confidence if 95% of simulated spectra have worse chi-squared fits to an absorbed power-law than the actual data does.

ALP Constraints

1. Reasonable case (B_central = $25 \mu G$, 100 domains between 3.5 and 10kpc)

 $g_{a\gamma\gamma}$ < 1.5 x 10⁻¹² GeV⁻¹

2. Conservative case: (B_central = $15 \mu G$, 100 domains between 0.7 and 10kpc)

 $g_{a\gamma\gamma} < 3.8 \times 10^{-12} \text{ GeV}^{-1}$

3. Ultra-conservative: (B_central = $10 \mu G$, 100 domains between 0.7 and 10kpc)

 $g_{a\gamma\gamma} < 5.6 \times 10^{-12} \text{ GeV}^{-1}$

Absence of any spectral modulations at 20-30% level gives leading bounds on ALP-photon coupling at small mass

