Galaxy Clusters as Tele-ALP-scopes

Joseph Conlon, Oxford University

Bethe Institute, Bonn, 16th March 2016

Thanks to my collaborators

This talk is based on fun and ongoing collaborations over the last 3 years on a variety of topics concerning ALP-photon conversion in various astrophysics environments (particularly galaxy clusters), with

Pedro Alvarez, Stephen Angus, Igor Buchberger, Michele Cicoli, Francesca Day, Nick Jennings, David Kraljic, Sven Krippendorf, M. C. David Marsh, Andrew Powell, Markus Rummel, Lukas Witkowski

Talk Structure

- 1. Axion-like Particles
- 2. Galaxy Clusters, and $a \rightarrow \gamma$ interconversion
- 3. The 3.5 keV line
- 4. Bounding ALPs via spectral distortions of cluster thermal bremsstrahlung spectrum
- 5. Dark Radiation and the Cluster Soft Excess

I AXION-LIKE PARTICLES

Axion-Like Particles

Light, weakly coupled particles represent one of the most interesting ways to extend the Standard Model

- Search strategies entirely decoupled from collider physics
- ► Such particles (axion-like particles, hidden photons...) arise generically in string compactifications
- No immediate technological obstruction to searches
- ▶ Ability to probe the far UV using low energy experiments
- Plenty of (theoretical) low-lying fruit
- Several current interesting hints exist

Axion-Like Particles

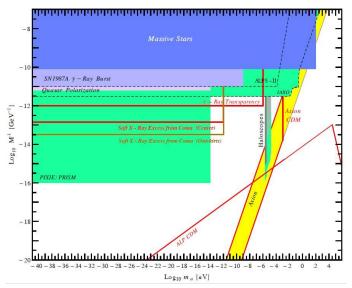
Basic ALP Lagrangian is

$$\mathcal{L}_{\mathsf{a}-\gamma} = -\frac{1}{4} \mathsf{F}_{\mu\nu} \mathsf{F}^{\mu\nu} - \frac{1}{4 \mathit{M}} \mathsf{a} \mathsf{F}_{\mu\nu} \tilde{\mathsf{F}}^{\mu\nu} + \frac{1}{2} \partial_{\mu} \mathsf{a} \partial^{\mu} \mathsf{a} - \frac{1}{2} \mathsf{m}_{\mathsf{a}}^2 \mathsf{a}^2.$$

For general axion-like particles $M \equiv g_{a\gamma\gamma}^{-1}$ and m_a are unspecified.

Will assume $m_a \lesssim 10^{-12} \mathrm{eV}$ in this talk.

Coupling to electromagnetism is


$$\frac{1}{M}a\mathbf{E}\cdot\mathbf{B}$$

Direct bounds (ALP production in supernovae) are $M\gtrsim 2\times 10^{11} {\rm GeV}.$

review Ringwald 1210.5081

Bounds on ALP parameter space

Axion-Like Particles

ALPs and photons interconvert in coherent magnetic fields.

In small angle limit,

$$P(a \rightarrow \gamma) \sim \frac{B^2 L^2}{4M^2}$$

Conversion

- Grows with B^2 big fields
- Grows with L^2 coherent over large distances
- ▶ Drops off with M^2 suppressed by weak couplings

Note heavy suppression (M^{-4}) for any physics based on $\gamma \to a \to \gamma$ - eg light shining through walls, solar axion production.....

Seeing ALPs

ALP-to-photon conversion probability for ALP energy E_a in transverse magnetic field B_{\perp} of domain size L is:

$$P(a \to \gamma) = \sin^2(2\theta)\sin^2\left(\frac{\Delta}{\cos 2\theta}\right)$$

where

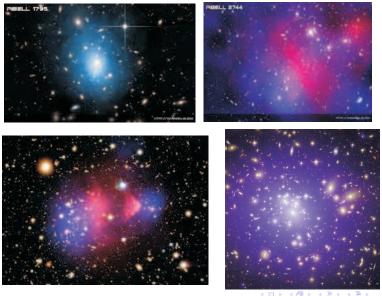
$$\theta \approx 2.8 \cdot 10^{-5} \times \left(\frac{10^{-3} \text{cm}^{-3}}{n_e}\right) \left(\frac{B_{\perp}}{1 \ \mu \text{G}}\right) \left(\frac{E_a}{200 \ \text{eV}}\right) \left(\frac{10^{14} \ \text{GeV}}{M}\right),$$
$$\Delta = 0.27 \times \left(\frac{n_e}{10^{-3} \text{cm}^{-3}}\right) \left(\frac{200 \ \text{eV}}{E_a}\right) \left(\frac{L}{1 \ \text{kpc}}\right).$$

Seeing ALPs

'Astrophysical parameters' at X-ray energies:

Small angle:
$$P_{a \to \gamma} \equiv 2P_{\gamma \to a} = 2.0 \cdot 10^{-5} \times \left(\frac{B_{\perp}}{3 \ \mu \text{G}} \frac{L}{10 \ \text{kpc}} \frac{10^{13} \ \text{GeV}}{M}\right)^2$$
.

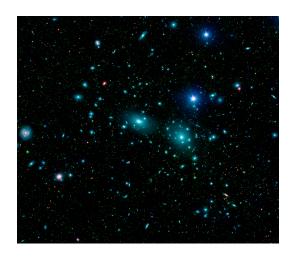
'Terrestrial parameters' at X-ray energies:


Small angle:
$$P_{a \to \gamma} \equiv 2P_{\gamma \to a} \simeq 2.0 \cdot 10^{-23} \times \left(\frac{B_{\perp}}{10 \mathrm{T}} \frac{L}{10 \mathrm{m}} \frac{10^{13} \mathrm{~GeV}}{M}\right)^2$$
.

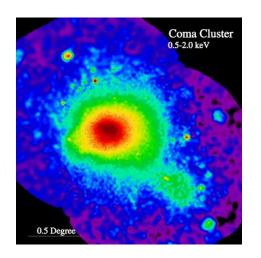
Astrophysical sources have more efficient conversion

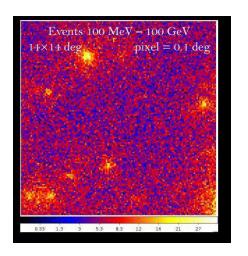
II GALAXY CLUSTERS

Galaxy Clusters


Galaxy Clusters

Galaxy clusters are:


- ▶ The largest virialised structures in the universe
- ▶ Typical size 1 Mpc, 100-1000 galaxies, total mass $10^{14} \div 10^{15} M_{sun}$.
- By mass 1 per cent galaxies, 10 per cent gas, 90 per cent dark matter.
- ▶ Suffused by magneto-ionic plasma with $T_{gas} \sim 2 \div 10 \text{keV}$, emitting in X-rays via thermal bremsstrahlung
- ▶ Plasma is magnetised with $B \sim 1 \div 10 \mu \text{G} (1 \div 10 \cdot 10^{-10} \text{ T})$ with coherence scales $L \sim 1 \div 10$ kpc.
- Sit at the 'large magnetic fields over large volumes' frontier of particle physics.


The Coma Cluster in IR/Visible

The Coma Cluster in X-rays

The Coma Cluster in Gamma Rays

 $(\mathsf{Ando} + \mathsf{Zandanel},\ 1312.1493)$

Seeing ALPs

ALPs convert to photons in coherent magnetic field domain: want large magnetic fields supported over large volumes.

The cluster magnetic field $B\sim 1-10\mu G$ is more than compensated by coherence lengths $L\sim 1-10{\rm kpc}\sim 10^{34}{\rm GeV}^{-1}$.

Quantum mechanical coherence:

$$\mathcal{A}(\mathsf{a} o \gamma) \propto \mathsf{L}$$

$$P(a \rightarrow \gamma) \propto L^2$$

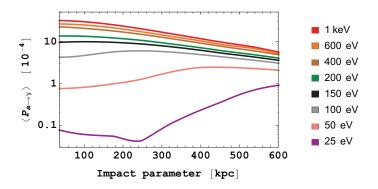
For $E_a \sim 1 {\rm keV}$ and $M \sim 10^{13} {\rm GeV}$, a relativistic ALP has $P(a \to \gamma) \sim 10^{-3}$ passing through a cluster.

Converts energy to light 1000 times more efficiently than the sun....

ALP Propagation through Centre of Coma Cluster

Magnetic field model is best fit to Faraday rotation (Bonafede et al 1002.0594):

- Magnetic field has Kolmogorov spectrum, $|B(k)| \sim k^{-11/3}$, generated between $k_{max} = \frac{2\pi}{2 \text{kpc}}$ and $k_{min} = \frac{2\pi}{34 \text{kpc}}$.
- Spatial magnetic field has Gaussian statistics.
- Central magnetic field $\langle B \rangle_{r < 291 kpc} = 4.7 \mu G$
- Equipartition radial scaling of B, $B(r) \sim n_e(r)^{1/2}$
- **Electron** density taken from β -model with $\beta = 0.75$,


$$n_e(r) = 3.44 \times 10^{-3} \left(1 + \left(\frac{r}{291 \text{kpc}} \right)^2 \right)^{-\frac{357}{2}} \text{cm}^{-3}$$

▶ Numerical 2000³ magnetic field with 0.5kpc resolution.

Numerical propagation of ALPs with $E=25 \text{eV} \div 25000 \text{eV}$ and determination of $P(a \to \gamma)$.

ALP Propagation through Centre of Coma Cluster

 $a \to \gamma$ conversion probabilities for different ALP energies as a function of radius from the centre of Coma with $M=10^{13} {\rm GeV}$

Note the high suppression for $E_a < 100 eV$

Angus JC Marsh Powell Witkowski 1312.3947

ALP Propagation through Clusters

Main Point: Even at $M \gtrsim 10^{11} {
m GeV}$, ALP-photon interconversion in a cluster is unsuppressed.

Any primary population of relativistic ALPs will give a large photon signal

The population of X-ray photons can also 'disappear' into ALPs

The inter-conversion of ALPs and photon inside galaxy clusters leads to interesting physics applications. Three studied so far are:

- An explanation of the Cluster Soft Excess through a primordial Cosmic Axion Background, generated at the time of reheating, converting to photons in the cluster magnetic field.
- A model for the 3.5 keV line (Bulbul et al) consistent with all data and explaining why signal would be stronger in clusters (especially Perseus) and much weaker/absent in galaxies.
 (1)
- A method of searching for/ improving bounds on ALPs through hunting for small-scale deviations of cluster X-ray spectrum from thermal bremsstrahlung.

APPLICATIONS I THE 3.5 KEV LINE

Submitted to ApJ, 2014 February 10, Accepted 2014 April. 28 Preprint typeset using WTeX style emulateanty, 04/17/13

DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY

ESRA BULBUL^{1,2}, MAXIM MARKEVITCH³, ADAM FOSTER¹, RANDALL K. SMITH¹ MICHAEL LOEWENSTEIR^{2,4}, AND SCOTT W. RANDALL¹

1 Harvard-Smithsonian Center for Astrobusies. 60 Garden Street. Cambridge, MA, USA

² CRESST and X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbett, MD, USA and X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbett, MD, USA and A-Department of Astronomy, University of Maryland, College Park, MD, USA

Submitted to ApJ, 2014 February 10, Accepted 2014 April 28

ABSTRACT

We detect a weak unidentified emission line at $E = (3.55 - 3.57) \pm 0.08$ keV in a stacked XMM-Newton perctrum of 73 galaxy clusters spanning a redshift range 0.01 - 0.35. MOS and PN observations independently show the presence of the line at consistent energies. When the full sample is divided into three subsamples (Perseus, Centaurus-Ophiuchus+Coma, and all others), the line is seen 2.5 at statistical significance in all three independent MOS spectra and the PN "all others" spectrum.

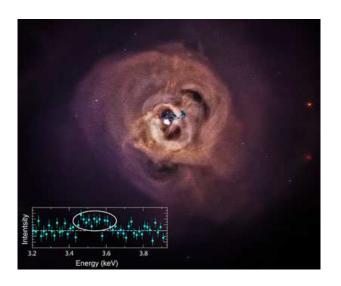
An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster

A. Boyarsky¹, O. Ruchayskiy², D. Iakubovskyi³/s and J. Franse^{1,5}

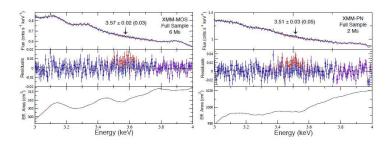
¹Institute-Lorentz for Theoretical Physics, Universited Leiden, Niels Bohrweg Z. Leiden, The Netherlands

²Ecole Polytechnique Federal de Laussume, FSBITPLOP, GSR CH-1015, Lussume, Switzerland

³Bogolyubov Institute of Theoretical Physics, Metrologichus Str. 144, 05860, Kyiv, Ukraine


⁴National University "Kyiv-Molyla Academy", Skorvordy Str. 2, 04070, Kyiv, Ukraine

⁵Leiden Observatory, Leiden University, Niels Bohrweg 2, Leiden, The Netherlands


We identify a weak line at $E \sim 3.5$ keV in X-ray spectra of the Andromeda galaxy and the Perseus galaxy cluster – two dark matter-dominated objects, for which there exist deep exposures with the XMM-Newton X-ray observatory. Such a line was not previously known to be present in the spectra of galaxies or galaxy clusters.

1402.2301, 1402.4119

Inn 201

Small signal on a large background...

Most detailed evidence for signal comes from analyses involving galaxy clusters

- ▶ Stacked sample of 73 clusters in Bulbul et al. paper
- Two XMM instruments MOS and PN
- Individual subsamples of Perseus,
 Coma+Ophiuchus+Centaurus, All Others
- Perseus reconfirmed with deep Chandra observations, both ACIS-S and ACIS-I
- Boyarsk et al finds line in outskirts of Perseus cluster (XMM-MOS, XMM-PN)
- Line also found in M31 by Boyarsky et al

Significance Counting

Sample	Instrument	$\Delta \chi^2$	N
Bulbul et al.			
Perseus	XMM-MOS	15.7	1
Coma + Centaurus + Ophiuchus	XMM-MOS	17.1	1
All others stacked (69 clusters)	XMM-MOS	16.5	1
All others stacked (69 clusters)	XMM-PN	15.8	1
Perseus	Chandra ACIS-I	11.8	2
Perseus	Chandra ACIS-S	6.2	1
Boyarsky et al.			
Perseus outskirts	XMM-MOS	9.1	2
Perseus outskirts	XMM-PN	8.0	2
Andromeda galaxy	XMM-MOS	13.0	2

Data Evaluation

- ► (+) Line seen by four instruments (XMM-MOS, XMM-PN, Chandra ACIS-I, Chandra ACIS-S)
- ▶ (+) Line seen independently by two separate collaborations
- ▶ (+) Collaborations do not consist of BSM theorists
- ► (+) Line seen from at least five different sources at consistent energy
- ► (+) Line absent in deep 16Ms blank sky observations

However - need excellent control over backgrounds:

- ▶ (-) Signal one percent above continuum
- ► (-) X-ray atomic lines from hot gas at similar energies
- ▶ (-) Detector backgrounds also generate X-ray lines
- ▶ (-) Effective area wiggles can mimic signal

6. CAVEATS

As intriguing as the dark matter interpretation of our new line is, we should emphasize the significant systematic uncertainties affecting the line energy and flux in addition to the quoted statistical errors. The line is very weak, with an equivalent width in the full-sample spectra of only ~ 1 eV. Given the CCD energy resolution of ~ 100 eV, this means that our line is a $\sim 1\%$ bump above the continuum. This is why an accurate continuum model in the immediate vicinity of the line is extremely important; we could not leave even moderately significant residuals unmodeled. To achieve this, we could not rely on any standard plasma emission models and instead

Subsequently:

- No 3.5 keV line in Chandra data of Milky Way centre (1405.7943)
- ➤ 3.5 keV line in XMM-Newton data of Milky Way centre (1408.1699, 1408.2503) - K XVIII or dark matter?
- ▶ No line in M31 from 3-4 keV fit, bananas in clusters (1408.1699)
- ▶ No 3.5 keV line in dwarf spheroidals, stacked galaxies (1408.3531, 1408.4115)
- ➤ Yes line in M31, 3-4 keV fit lacks precision (1408.4388)
- No bananas in clusters use correct atomic data instead (1409.4143)

Subsequently:

- ► Suzaku data also show line in Perseus, no line in Coma, Virgo, Ophiuchus (1411.0050)
- ▶ Perseus line strongest in centre of the cluster (1411.0050)
- ➤ XMM-Newton line in Perseus concentrated in cool core, galactic centre morphology incompatible with dark matter (1411.1758)
- ▶ Reply to comment on comment on..... (1411.1759)
- ▶ No/highly suppressed line in Draco

Sterile Neutrino?

Sample	Instrument	$\sin^2 2\theta$
		$\times 10^{-11}$
All others stacked (69 clusters)	XMM-MOS	$6.0^{+1.1}_{-1.4}$
All others stacked (69 clusters)	XMM-PN	$5.4_{-1.3}^{+0.8}$
Perseus	XMM-MOS	$23.3^{+7.6}_{-8.9}$
Perseus	XMM-PN	< 18 (90 %)
Coma + Centaurus + Ophiuchus	XMM-MOS	$18.2^{+4.4}_{-5.9}$
Coma + Centaurus + Ophiuchus	XMM-PN	< 11(90%)
Perseus	Chandra ACIS-I	$28.3^{+11.8}_{-12.1}$
Perseus	Chandra ACIS-S	$40.1^{+14.5}_{-13.7}$
M31 on-centre	XMM-Newton	2–20
Stacked galaxies	XMM-Newton	< 2.5 (99%)
Stacked galaxies	Chandra	< 5 (99%)
Stacked dwarves	XMM-Newton	< 4 (95%)

Sterile Neutrino?

Models of form $\mathrm{DM} \to \gamma + X$ do not seem to fit the data.

Challenges for BSM explanations:

- ► Clusters are special: signal stronger in clusters than in galaxies
- ► Nearby / cool-core clusters are special: signal is stronger than in distant stacked sample
- Among galaxies, M31 is special
- Milky Way centre: dark matter or atomic physics?

Focus here on the ${\rm DM}\to a\to\gamma$ explanation (1403.2370 Cicoli, JC, Marsh, Rummel) that can explain all these features.

Model is $\mathrm{DM} \to a + X$ followed by $a \to \gamma$ in transverse magnetic field

$\mathrm{DM} o a o \gamma$

Proposal: DM decays to a monoenergetic 3.5 keV ALP, which converts to a 3.5 keV photon in astrophysical magnetic field.

Signal traces both magnetic field and the dark matter distribution

- Clusters are special because magnetic field extends over 1 Mpc compared to 30 kpc for galaxies.
- 2. Nearby clusters are special because field of view covers central region with largest B fields.
- 3. Cool-core clusters are special because they have large central B fields.
- 4. M31 is special because it is an edge-on spiral galaxy with an unusually coherent regular magnetic field.
- 5. MW centre may/may not give observable signal

$\mathrm{DM} \to a \to \gamma$ pre-dictions

From 1403.2370: Cicoli, JC, Marsh, Rummel

'In environments with high dark matter densities but low magnetic fields, such as dwarf galaxies, the line should be suppressed.....'

From 1404.7741 JC, Day

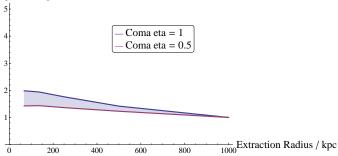
'We note that - within the ${\rm DM}\to a\to\gamma$ scenario - the above points make M31 an unusually favourable galaxy for observing a 3.55 keV line. For general galaxies in this scenario, the signal strength of the 3.55 keV would be much lower than for galaxy clusters, and the fact that for M31 these can be comparable is rather uncommon.'

$\mathrm{DM} o a o \gamma$

Among clusters, Perseus is a nearby cool core cluster:

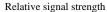
- Stronger magnetic field in the centre of the cluster
- ► Nearby cluster, so only central region of cluster fits in telescope field of view

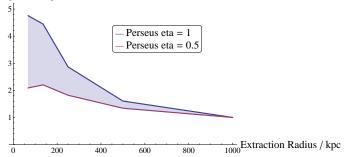
Ophiuchus (cool core), Centaurus (cool core), Coma (non-cool-core) also nearby, and XMM-Newton FoV only covers central region


We also expect stronger signals for these

We can quantify differences between cool-core and non-cool-core clusters JC, Powell

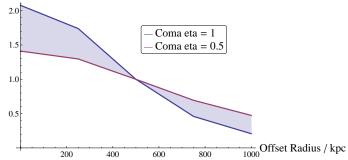
Non-Cool-Core Clusters - 'Coma'





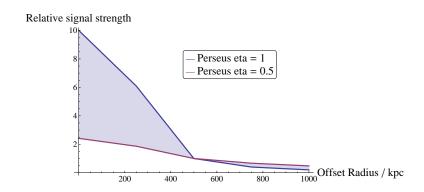
Relative signal strength as function of extraction radius

Cool Core Clusters - 'Perseus'



Relative signal strength as function of extraction radius

Non-Cool-Core Clusters - 'Coma'



Relative signal strength as function of offset radius (250kpc extraction radius)

Cool Core Clusters - 'Perseus'

Relative signal strength as function of offset radius (250kpc extraction radius)

The Future of the 3.5 KeV Line

The Future of the 3.5 KeV Line

Japanese satellite ASTRO-H was launched less than one month ago

Now renamed Hitomi following the successful launch

It has unprecendented spectroscopic resolution (7eV compared to 100eV for traditional CCD technology)

This will determine definitively whether 3.5 keV line exists and whether it corresponds to dark matter decay

IV APPLICATIONS II:

DISTORTIONS OF THERMAL BREMSSTRAHLUNG

Thermal Bremsstrahlung

As we have seen, it is long understood that the dominant X-ray emission from galaxy clusters is from thermal bremsstrahlung.

Emission comes not from the galaxies but from the intra-cluster gas.

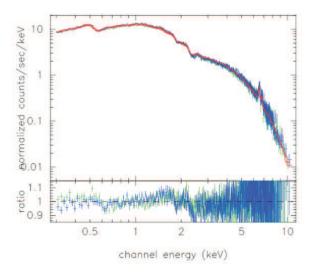
This intracluster medium is heated to temperatures of 2-10 keV; the ICM is an ionised plasma and emits a continuum thermal emission supplemented by X-ray atomic lines.

The structure of this emission can be used to determine the temperature, metallicity, electron density, and many other properties of the ICM.

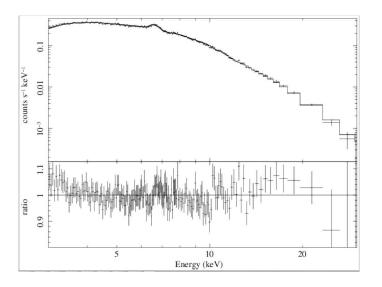
We focus mostly here on the Coma cluster, which is a hot nearby cluster with temperatures around $T\sim 8 {\rm keV}$.

Thermal Bremsstrahlung

Continuum emission of thermal bremsstrahlung is approximately described by


$$I(\nu) = AZ^2 N_{ion} N_e \frac{g(\nu, T) \exp\left(-\frac{h\nu}{k_B T}\right)}{\sqrt{k_B T}},$$

with A constant, $g(\nu, T)$ the Gaunt factor, h Planck's constant, k_B Boltzmann constant.


There is also X-ray atomic line emission: full spectrum calculated by codes such as *apec*, *mekal*.

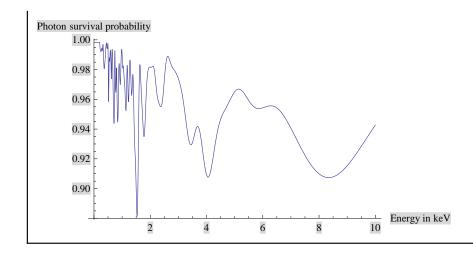
Thermal bremsstrahlung is excellent fit to Coma spectrum

Thermal bremsstrahlung is excellent fit to Coma spectrum

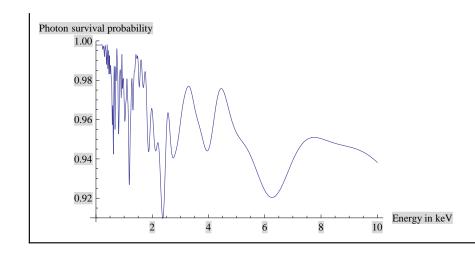
What can happen if ALPs exist?

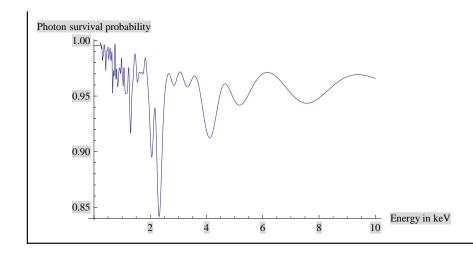
If ALPs exists, X-ray photons can oscillate into ALPs and disappear from the spectrum.

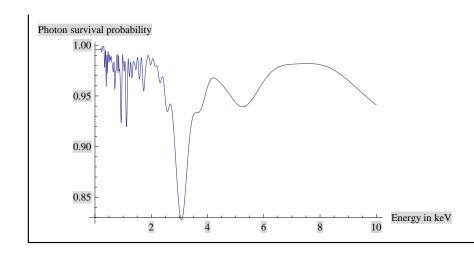
Along any given line of sight, photons experience a single realisation of the turbulent, tangled magnetic field of the cluster.

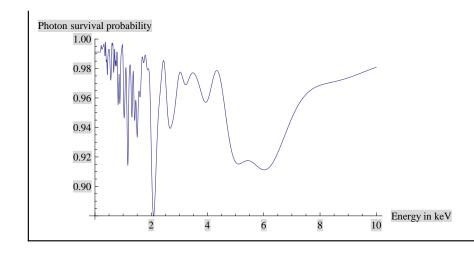

Passing through this, they have a finite, energy-dependent chance of converting into an ALP.

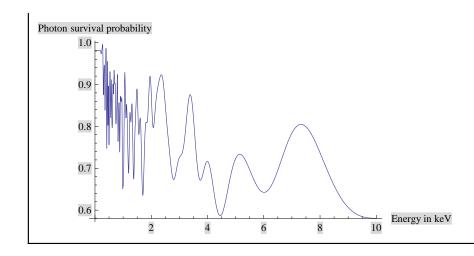
Survival probability is quasi-sinusoidal with varying frequency.

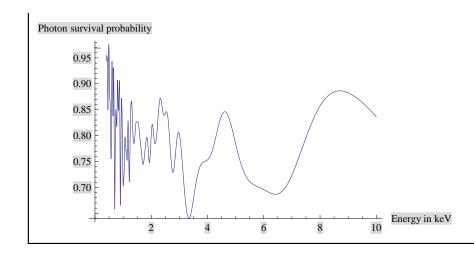

Easiest to illustrate through examples:

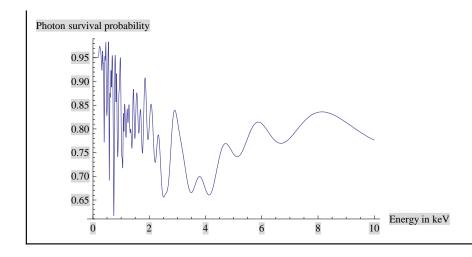

Distortion along line of sight I, $M=10^{12} { m GeV}$

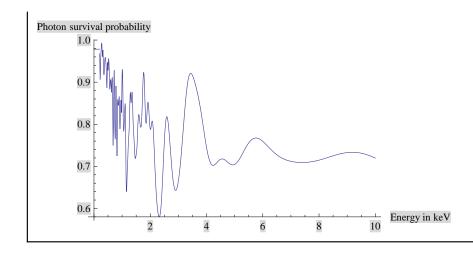

Distortion along line of sight II, $M=10^{12}{ m GeV}$

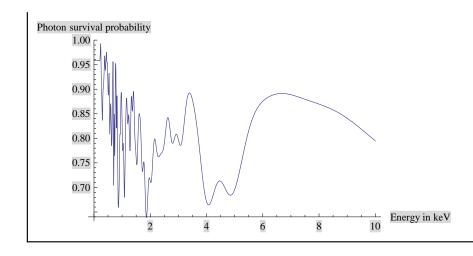

Distortion along line of sight III, $M=10^{12}{ m GeV}$


Distortion along line of sight IV, $M=10^{12} {\rm GeV}$


Distortion along line of sight V, $M=10^{12}{ m GeV}$

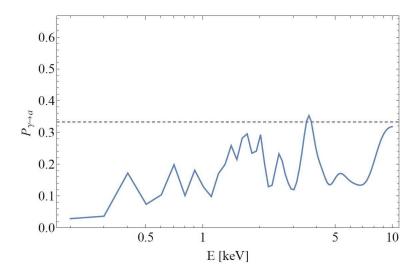

Distortion along line of sight I, $M = 3 \cdot 10^{11} \text{GeV}$


Distortion along line of sight II, $M=3\cdot 10^{11}{\rm GeV}$


Distortion along line of sight III, $M=3\cdot 10^{11}{ m GeV}$

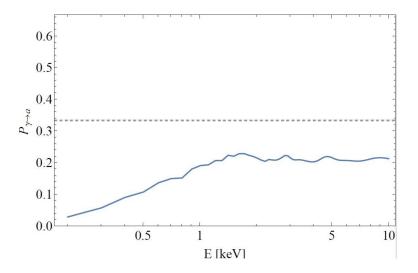
Distortion along line of sight IV, $M = 3 \cdot 10^{11} \text{GeV}$

Distortion along line of sight V, $M = 3 \cdot 10^{11} \text{GeV}$


Properties of distorted spectra

These previous plots have showed the characteristic behaviour of ALP-photon conversion:

- ► For allowed values of *M*, the photon-ALP conversion rate is large.
- The photon-ALP conversion rate increases with energy
- There are quasi-sinusoidal oscillations whose frequency decreases with energy
- ► The actual structure of conversion differs with each realisation of the magnetic field
- It is easiest to observe these characteristic oscillations on small physical scales


Distortion on 5kpc field of view, $M=4\cdot 10^{11} {\rm GeV}$

from 1509.06748, JC, D. Marsh, A. Powell

Distortion on 100kpc field of view, $M=4\cdot 10^{11}{\rm GeV}$

from 1509.06748, JC, D. Marsh, A. Powell

Searching for / Improving bounds on ALPs

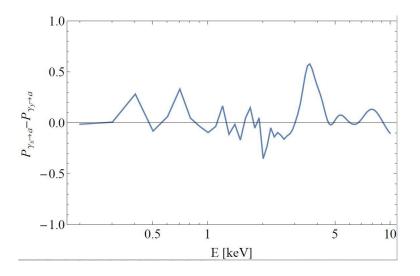
Effects are most pronounced on small scales, but average out on large scales.

As current bounds on ALPs restrict $M>2\cdot 10^{11}{\rm GeV}$, it should be possible to improve this significantly through analysing the small-scale X-ray spectrum from galaxy clusters.

Huge quantities of archival data available of cluster X-ray observations.

For this purpose, <u>Chandra</u> is the optimal X-ray telescope - it has the highest (arcsecond) angular resolution and so the best ability to resolve the smallest physical scales.

This is current work in progress using archival 500ks Chandra observations of Coma cluster.

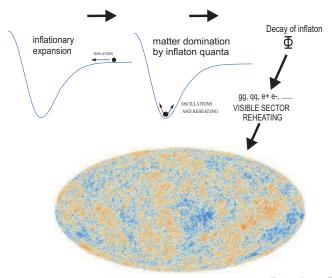

Polarised X-ray emission

Only one photon polarisation converts into ALPs within a single domain.

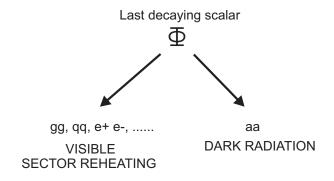
The result is that the same physics that leads to spectral distortions also makes the X-ray emission polarised.

If ALP-photon conversion is significant, the thermal ICM X-ray spectrum could also be highly polarised.

Polarised X-ray emission: single line of sight

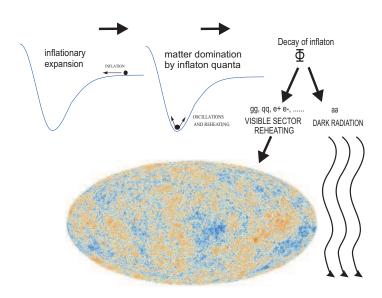

from 1509.06748, JC, D. Marsh, A. Powell

APPLICATIONS III: DARK RADIATION AND THE CLUSTER SOFT **EXCESS**


The Standard Cosmology

The Standard Cosmology:

The Cosmological Moduli Opportunity


In any string model we expect reheating to be driven by the late-time decays of massive Planck-coupled particles.

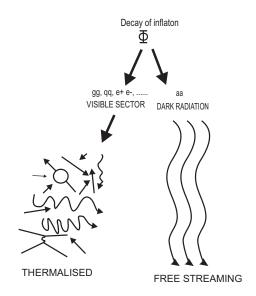
Hidden sector decays of moduli give rise to dark radiation.

The Cosmological Moduli Opportunity

The Cosmological Moduli Opportunity

As gravitationally coupled particles, moduli generally couple to everything with M_P^{-1} couplings and there is no reason to expect vanishing couplings to hidden sectors.

Visible sector :
$$\frac{\Phi}{4M_P}F_{\mu\nu}^{color}F^{color,\mu\nu}$$
, $\frac{\partial_{\mu}\partial^{\mu}\Phi}{M_P}H_uH_d$,...


Hidden sector :
$$\frac{\Phi}{2M_P}\partial_\mu a\partial^\mu a$$
, $\frac{\Phi}{4M_P}F^{hidden}_{\mu\nu}F^{hidden,\mu\nu}$...

This is supported by explicit studies of string effective field theories In particular, axionic decay modes naturally arise with ${\sf BR}(\Phi\to aa)\sim 0.01\to 1.$

1208.3562 Cicoli JC Quevedo, 1208.3563 Higaki Takahashi, 1304.7987 Higaki Nakayama Takahashi

A Cosmic ALP Background

A Cosmic ALP Background

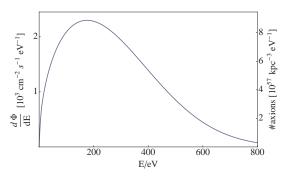
$$\Phi o gg,\dots$$
: Decays thermalise $T_{\gamma} \sim T_{reheat} \sim rac{m_{\Phi}^{3/2}}{M_P^{1\over 2}}$ $\Phi o aa$: ALPs never thermalise $E_a = rac{m_{\Phi}}{2}$

Thermal bath cools into the CMB while ALPs never thermalise and freestream to the present day:

Ratio of ALP energy to photon temperature is

$$rac{E_a}{T_\gamma} \sim \left(rac{M_P}{m_\Phi}
ight)^{rac{1}{2}} \sim 10^6 \left(rac{10^6 {
m GeV}}{m_\Phi}
ight)^{rac{1}{2}}$$

Retained through cosmic history!



A Cosmic ALP Background

ALPs originate at $z\sim 10^{12}(t\sim 10^{-6}~{\rm s})$ and freestream to today.

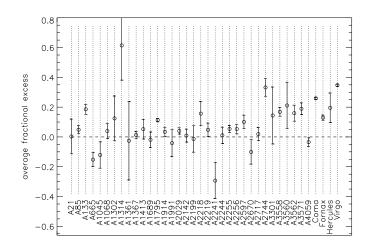
PREDICTION: Cosmic ALP Background

Energy: $E \sim 0.1 \div 1 \text{keV}$ Flux: $\sim \left(\frac{\Delta \textit{N}_{eff}}{0.57}\right) 10^6 \text{cm}^{-2} \text{s}^{-1}$.

The Cluster Soft Excess

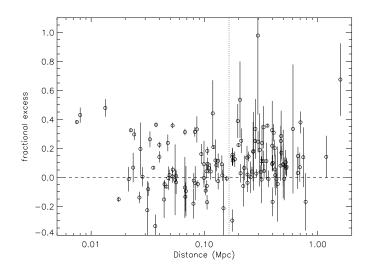
In fact there exists a long-standing (since 1996) EUV/soft x-ray excess from galaxy clusters (Lieu 1996, review Durret 2008). E.g Coma has

$$\mathcal{L}_{excess} \sim 10^{43} erg \ s^{-1}$$

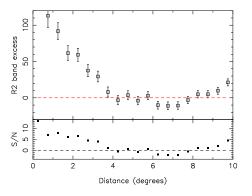

Observed by different satellites - principally EUVE and soft bands of ROSAT.

Has been studied for a large number (\sim 40) of clusters, present in \sim 15.

Difficulties with astrophysical explanations - see backup slides.


The Cluster Soft Excess

from Bonamente et al 2002, fractional soft excess in ROSAT 0.14 0.28 keV R2 band


The Cluster Soft Excess

from Bonamente et al 2002, fractional soft excess with radius,

The Cluster Soft Excess: Coma

Soft excess extends well beyond hot gas and cluster virial radius:

from 0903.3067 Bonamente et al, ROSAT R2 band (0.14-0.28keV) observations of Coma

The Cluster Soft Excess and a CAB

Proposal: cluster soft excess generated by a $\to \gamma$ conversion in cluster magnetic field.

Basic predictions:

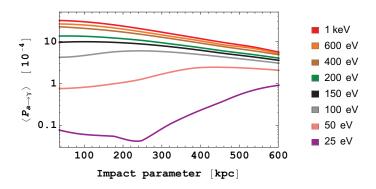
- Magnitude and morphology of soft excess fully determined by cluster magnetic field and electron density
- Spatial extent of excess conterminous with magnetic field
- No thermal emission lines (e.g. O_{VII}) associated to excess
- ▶ Energy of excess is constant across clusters, varying with redshift as $E_a \sim (1 + z)$.

Test by propagating ALPs through simulated cluster magnetic fields

A Cosmic ALP Background

 $a
ightarrow \gamma$ conversion generates a soft X-ray luminosity

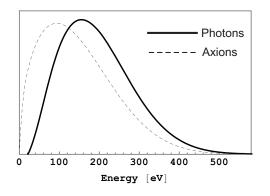
$$\begin{array}{rcl} \mathcal{L}_{\mathit{Mpc}^3} & = & 3.6 \cdot 10^{41} \ \mathrm{erg} \ \mathrm{Mpc}^{-3} \mathrm{s}^{-1} \times \\ & \times & \left(\frac{\Delta \mathit{N}_{\mathit{eff}}}{0.57} \right) \left(\frac{\mathit{B}}{\sqrt{2} \ \mu \mathrm{G}} \frac{10^{13} \ \mathrm{GeV}}{\mathit{M}} \right)^2 \left(\frac{\mathit{L}}{1 \ \mathrm{kpc}} \right) \, , \end{array}$$


Extremely luminous - for $\Delta N_{eff}\sim 0.5$ and $M\sim 10^{11} {\rm GeV}$, $a\to \gamma$ luminosity outshines entire cluster!

Counterpart - for $M\sim 10^{11} {
m GeV}$ observable signal can remain even with $\Delta N_{\it eff}\sim 10^{-4}.$

ALPs that are everywhere are much easier to detect than ALPs that must be first produced in stars or supernovae.

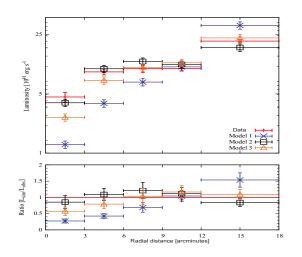
ALP Propagation through Centre of Coma


 $a o \gamma$ conversion probabilities for different ALP energies as a function of radius from the centre of Coma

Note the high suppression for $E_a < 100 eV$

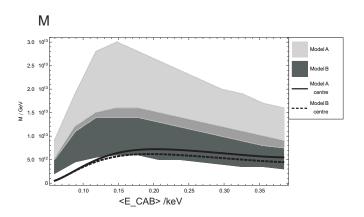
Angus JC Marsh Powell Witkowski 1312.3947

ALP Propagation through Centre of Coma



Comparison of original ALP spectrum and spectrum of converted photons

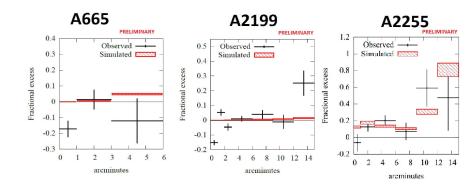
Photon spectrum falls off rapidly at both low and high energies


ALP Propagation through Centre of Coma

Morphology fits reasonably well for $M\sim7 imes10^{12}{
m GeV}$

ALP Propagation through Outskirts of Coma

Fit to the outskirts gives a compatible value of $M \sim 10^{13} {\rm GeV}$.


Kraljic, Rummel, JC 1406.5188

ALP Propagation through Other Clusters

(Plots assume the Coma best fit value of $M\sim7\times10^{12} {\rm GeV})$

Powell, to appear

Cluster Soft Excess: Astrophysical Explanations

Two main proposals for astrophysical explanations:

- 1. A warm thermal gas with $T\sim 0.2 {\rm keV}$. Interpret soft excess as thermal bremmstrahlung emission from this warm gas.
- 2. A large non-thermal relativistic electron population with $E\sim 200-300$ MeV.

Interpret soft excess as inverse Compton scattering of electrons on CMB.

Both have problems (in back-up slides).

Astrophysics: $T \sim 0.2 \text{keV}$ warm gas

The original proposal. However:

- Such a gas is pressure unstable against the hot ICM gas.
 It rapidly cools away on a timescale much shorter than cluster timescales.
- 2. A thermal $T\sim$ 0.2keV gas would also have thermal emission lines particularly OVII at 560 eV.
 - No such lines have been observed some early claimed detections have gone away.

Astrophysics: non-thermal $E\sim 150$ MeV electrons

A more promising propsal: a large population of non-thermal electrons scattering off the CMB. However:

- 1. If this population continues to $E\sim 2{\rm GeV}$, its synchrotron radio emission is above level of Coma radio halo.
 - This necessitates a sharp spectral cutoff between \sim 200MeV and \sim 2GeV.
- 2. This population necessarily produces gamma rays through non-thermal bremmstrahlung.

It was predicted that these gamma rays would be easily observable by Fermi ($Atoyan + Volk\ 2000$)

But - Fermi does not see any clusters:

$$\mathcal{F}_{>100~\text{MeV}}^{\textit{Coma}} < 1.1 \times 10^{-9} \text{ph cm}^{-2} \text{ s}^{-1}$$

Astrophysics: non-thermal $E \sim 150$ MeV electrons

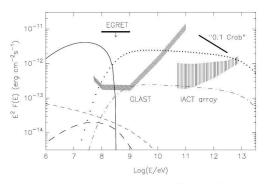


Fig. 6.—Expected γ -ray fluxes expected from the Coma Cluster. The

from Atoyan + Volk, 2000

Conclusions

- ▶ Galaxy clusters are highly efficient converters of axion-like particles ($m \lesssim 10^{-12} {\rm eV}$) to photons that nature has provided for free
- ▶ $a \rightarrow \gamma$ conversion probabilities are $\mathcal{O}(1)$ for $M \sim 10^{11} \mathrm{GeV}$, and primary ALP signals turn into an easily visible photon signal correlated with cluster magnetic field
- ▶ By searching for and bounding small-scale distortions from the cluster thermal bremsstrahlung spectrum, it should be possible to improve bounds on *M* by an order of magnitude.