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Motivation!
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Motivation

The LHC!

This will probe TeV-scale physics in unprecedented
detail. If supersymmetry exists, it will (probably) be
discovered at the LHC.

Low-energy supersymmetry represents one of the best
possibilities for connecting string theory (or any
high-scale theory) to data.

Understanding supersymmetry breaking and predicting
the pattern of superpartners is one of the most
important tasks of string phenomenology.
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MSSM Basics

The MSSM is specified by its matter content (that of the
supersymmetric Standard Model) plus soft breaking terms.
These are

Soft scalar masses, m2
iφ

2
i

Gaugino masses, Maλ
aλa,

Trilinear scalar A-terms, Aαβγφ
αφβφγ

B-terms, BH1H2.

It is these soft terms that we want to compute from string
compactifications.
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MSSM Basics

The soft terms break supersymmetry explicitly, but do
not reintroduce quadratic divergences into the
Lagrangian.

The LHC will (hopefully) give experimental information
about the soft breaking terms and the sparticle
spectrum.

Our task as theorists is to beat the experimentalists to
this spectrum!
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SUSY Breaking basics

The soft terms are generated by the mechanism of
supersymmetry breaking and how this is transmitted to the
observable sector. Examples are

Gravity mediation - hidden sector supersymmetry
breaking

Gauge mediation - visible sector supersymmetry
breaking

Anomaly mediation - susy breaking through loop effects

These all have characteristic features and scales.
Generally,

Msoft =
M2

susy−breaking

Mtransmission
.
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SUSY Breaking basics

In this talk I will focus on gravity mediation.

This arises naturally in string compactifications, where
the hidden sector can be identified with the
compactification moduli.

The formalism for computing soft terms is also well
established.

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications – p. 9/49



Gravity Mediation I

In gravity-mediation, supersymmetry is
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Gravity Mediation I

In gravity-mediation, supersymmetry is

broken in a hidden sector
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Gravity Mediation I

In gravity-mediation, supersymmetry is

broken in a hidden sector

communicated to the observable sector through
non-renormalisable supergravity contact interactions
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Gravity Mediation I

In gravity-mediation, supersymmetry is

broken in a hidden sector

communicated to the observable sector through
non-renormalisable supergravity contact interactions

which are suppressed by MP .
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Gravity Mediation I

In gravity-mediation, supersymmetry is

broken in a hidden sector

communicated to the observable sector through
non-renormalisable supergravity contact interactions

which are suppressed by MP .

Naively,

msusy ∼ F 2

MP

This requires F ∼ 1011GeV for TeV-scale soft terms.
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Gravity Mediation II

The computation of soft terms starts by expanding the
supergravity K and W in terms of the matter fields Cα,

W = Ŵ (Φ) + µ(Φ)H1H2 +
1

6
Yαβγ(Φ)CαCβCγ + . . . ,

K = K̂(Φ, Φ̄) + K̃αβ̄(Φ, Φ̄)CαC β̄ + [ZH1H2 + h.c.] + . . . ,

fa = fa(Φ).

Given this expansion, the computation of the physical
soft terms is straightforward.

The function K̃αβ̄(Φ) is crucial in computing soft terms,
as it determines the normalisation of the matter fields.
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Gravity Mediation III

Soft scalar masses m2
ij̄

and trilinears Aαβγ are given by

m̃2
αβ̄

= (m2
3/2 + V0)K̃αβ̄

−F̄ m̄Fn
(

∂m̄∂nK̃αβ̄ − (∂m̄K̃αγ̄)K̃ γ̄δ(∂nK̃δβ̄)
)

A′
αβγ = eK̂/2Fm

[

K̂mYαβγ + ∂mYαβγ

−
(

(∂mK̃αρ̄)K̃
ρ̄δYδβγ + (α↔ β) + (α↔ γ)

) ]

.

Any physical prediction for the soft terms requires a
knowledge of K̃αβ̄ for chiral matter fields.

However, K̃αβ̄ is non-holomorphic and thus hard to
compute.
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Gravity Mediation IV

To compute soft terms in string compactifications, one must

choose a particular string compactification.

compute the moduli potential and determine a
susy-breaking minimum.

evaluate the moduli F-terms at this minimum.

use the expansions of K and W to compute the soft
terms.

Note,

Any physical prediction for the soft terms requires a
knowledge of K̃αβ̄ for chiral matter fields.
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Gravity Mediation V

In principle this can be done for all types of string
compactification - heterotic, type II, M-theory.

I focus on type IIB compactifications with D3 and D7
branes.

These are well-studied with regard to the generation of
moduli potentials.

I will mainly discuss techniques to compute the Kähler
potential for bifundamental chiral matter fields.
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What is known?

In Calabi-Yau backgrounds, the Kähler metrics for
(non-chiral) D3 and D7 position moduli and D7 Wilson
line moduli have been computed by dimensional
reduction.

K̃D7 ∼ 1

S + S̄
K̃D3 ∼ 1

T + T̄

Using explicit string scattering computations, matter
metrics for bifundamental D7/D7 matter have been
computed in IIB toroidal backgrounds.

K̃D7iD7j
∼ 1

√

Tk + T̄k
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This talk

I will describe new techniques for computing the matter
metric K̃αβ̄ for chiral matter fields on a Calabi-Yau.

These techniques will apply to chiral bifundamental
D7/D7 matter in IIB compactifications.

I will compute the modular dependence of the matter
metrics from the modular dependence of the (physical)
Yukawa couplings.

I start by reviewing how Yukawa couplings arise in
supergravity.
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Yukawa Couplings in Supergravity

In supergravity, the Yukawa couplings arise from the
Lagrangian terms (Wess & Bagger)

Lkin + Lyukawa = K̃α∂µC
α∂µC̄ᾱ + eK̂/2 ∂β∂γW ψβψγ

= K̃α∂µC
α∂µC̄ᾱ + eK̂/2YαβγC

αψβψγ

(This assumes diagonal matter metrics, but we can relax this)

The matter fields are not canonically normalised.

The physical Yukawa couplings are given by

Ŷαβγ = eK̂/2 Yαβγ

(K̃αK̃βK̃γ)
1

2

.
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Computing K̃αβ̄ (I)

Ŷαβγ = eK̂/2 Yαβγ

(K̃αK̃βK̃γ)
1

2

.

We know the modular dependence of K̂:

K̂ = −2 ln(V) − ln

(

i

∫

Ω ∧ Ω̄

)

− ln(S + S̄)

We compute the modular dependence of K̃α from the
modular dependence of Ŷαβγ. We work in a power
series expansion and determine the leading power λ,

K̃α ∼ (T + T̄ )λkα(φ) + (T + T̄ )λ−1k′α(φ) + . . .

λ is the modular weight of the field T .
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Computing K̃αβ̄ (II)

Ŷαβγ = eK̂/2 Yαβγ

(K̃αK̃βK̃γ)
1

2

.

We are unable to compute Yαβγ. If Yαβγ depends on a
modulus T , knowledge of Ŷαβγ gives no information
about the dependence K̃αβ̄(T ).

Our results will be restricted to those moduli that do not
appear in the superpotential.

The main example will be the T -moduli (Kähler moduli)
in IIB compactifications. In perturbation theory,

∂Ti
Yαβγ ≡ 0.
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Computing K̃αβ̄ (III)

Ŷαβγ = eK̂/2 Yαβγ

(K̃αK̃βK̃γ)
1

2

.

We know K̂(T ).

If we can compute Ŷαβγ(T ), we can then deduce K̃α(T ).

Computing Ŷαβγ(T ) is not as hard as it sounds!

In IIB compactifications, this can be carried out through
wavefunction overlap.

We now describe the computation of Ŷαβγ for bifundamental
chiral matter on a stack of magnetised D7-branes.
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The brane geometry

We consider a stack of (magnetised) branes all
wrapping an identical cycle.

If the branes are magnetised, bifundamental fermions
can stretch between differently magnetised branes.

This is a typical geometry in ‘branes at singularities’
models.
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The brane geometry

BULK

BLOW−UP

Stack 1
Stack 2
Stack 3
Stack 4
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Computing Ŷαβγ

We use a simple computational technique:

Physical Yukawa couplings are determined by the triple
overlap of normalised wavefunctions.

These wavefunctions can be computed (in principle) by
dimensional reduction of the brane action.
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Dimensional reduction

Consider a stack of D7 branes wrapping a 4-cycle Σ in a
Calabi-Yau X. The low-energy limit of the DBI action
reduces to super Yang-Mills,

SSY M =

∫

M4×Σ
dnx

√
g

(

FµνF
µν + λ̄Γi(Ai + ∂i)λ

)

Magnetic flux on the brane gives bifundamental
fermions ψα in the low energy spectrum.

These fermions come from dimensional reduction of the
gaugino λi. They are counted topologically by the
number of solutions of the Dirac equation

ΓiDiψ = 0.
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Comments

The full action to be reduced is the DBI action rather
than that of Super Yang-Mills.

In the limit of large cycle volume, magnetic fluxes are
diluted in the cycle, and the DBI action reduces to that
of super Yang-Mills.

Our results will hold within this large cycle volume,
dilute flux approximation.
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Computing the physical YukawasŶαβγ

Consider the higher-dimensional term

L ∼
∫

M4×Σ
dnx

√
g λ̄Γi(Ai + ∂i)λ

Dimensional reduction of this gives the kinetic terms

ψ̄∂ψ

and the Yukawa couplings

ψ̄φψ

The physical Yukawa couplings are set by the
combination of the above!
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Kinetic Terms

L ∼
∫

M4×Σ
dnx

√
g λ̄Γi(Ai + ∂i)λ

Dimensional reduction gives

λ = ψ4 ⊗ ψ6, Ai = φ4 ⊗ φ6.

and the reduced kinetic terms are
(

∫

Σ
ψ
†
6ψ6

)
∫

M4

ψ̄4Γ
µ(Aµ + ∂µ)ψ4

Canonically normalised kinetic terms require
∫

Σ
ψ
†
6ψ6 = 1.
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Yukawa Couplings

L ∼
∫

M4×Σ
dnx λ̄Γi(Ai + ∂i)λ

Dimensional reduction gives the four-dimensional
interaction

(
∫

Σ
ψ̄6Γ

IφI,6ψ6

)
∫

M4

d4xφ4ψ̄4ψ4.

The physical Yukawa couplings are determined by the
(normalised) overlap integral

Ŷαβγ =

(
∫

Σ
ψ̄6Γ

IφI,6ψ6

)

.
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The Result

∫

Σ
ψ
†
6ψ6 = 1, Ŷαβγ =

(
∫

Σ
ψ̄6Γ

IφI,6ψ6

)

.

For canonical kinetic terms,

ψ6(y) ∼
1

√

Vol(Σ)
, ΓIφI,6 ∼ 1

√

Vol(Σ)
,

and so

Ŷαβγ ∼ Vol(Σ) · 1
√

Vol(Σ)
· 1
√

Vol(Σ)
· 1
√

Vol(Σ)
∼ 1

√

Vol(Σ)

This gives the scaling of Ŷαβγ(T ).
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Comments

Q. Under the cycle rescaling, why should ψ(y) scale
simply as

ψ(y) → ψ(y)
√

Re(T )
?

A. The T -moduli do not appear in Yαβγ and do not see
flavour.

Any more complicated behaviour would alter the form of
the triple overlap integral and Yαβγ - but this would
require altering the complex structure moduli.

The result for the scaling of Ŷαβγ holds in the classical
limit of large cycle volume.
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Application: One-modulus KKLT

We can now compute K̃α(T ). In a 1-modulus KKLT model,
all chiral matter is supported on D7 branes wrapping the
single 4-cycle T . From above,

Ŷαβγ = eK̂/2 Yαβγ

(K̃αK̃βK̃γ)
1

2

∼ 1√
T + T̄

We know the moduli Kähler potential,

K̂ = −3 ln(T + T̄ )

and so the matter Kähler potential must scale as

K̃α ∼ 1

(T + T̄ )2/3
.
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Application: Large-Volume Models

Q
L

Q

eL

U(2)

U(3)

R

U(1)

U(1)

eR

BULK
BLOW−UP
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Application: Large-Volume Models

These arise in IIB flux compactifications once α′

corrections are included.

They require ≥ 2 Kähler moduli, one ‘big’ and one
‘small’.

The α′ and non-perturbative corrections compete and
determine the structure of the scalar potential.

The name is because the overall volume is very large,
V ∼ 1015 l6s , with small cycles τs ∼ 10 l4s .
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Application: Large-Volume Models

For the simplest model P
4
[1,1,1,6,9], the Kähler potential is

K̂ = −2 lnV = −2 ln
(

(Tb + T̄b)
3/2 − (Ts + T̄s)

3/2
)

.

We can interpret the Ts cycle as a local, ‘blow-up’ cycle.

We want K̃α(T ) for chiral matter on branes wrapping
this cycle.

The gauge theory supported on a brane wrapping Ts is
determined by local geometry.
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Application: Large-Volume Models

The physical Yukawa coupling

Ŷαβγ = eK̂/2 Yαβγ

(K̃αK̃βK̃γ)
1

2

is local and thus independent of V.

As K̂ = −2 lnV, we can deduce simply from locality that

K̃α ∼ 1

V2/3
.

As this is for a Calabi-Yau background, this is already
non-trivial!
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Application: Large-Volume Models

We can go further. With all branes wrapping the same
4-cycle,

Ŷαβγ = eK̂/2 Yαβγ

(K̃αK̃βK̃γ)
1

2

∼ 1√
τs
.

We can then deduce that

K̃α ∼ τ
1/3
s

V2/3
.

We also have the dependence on τs!
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Application: Large-Volume Models

The dependence

K̃α ∼ 1

V2/3

follows purely from the requirement that physical
Yukawa couplings are local.

The dependence on τs,

K̃α ∼ τ
1/3
s

V2/3

follows from the specific brane configuration (all D7
branes wrapping the same small cycle).
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Application: Large-Volume Models

If we wrap branes on the large cycle, as for the
one-modulus KKLT model we find

K̃ ∼ 1

(Tb + T̄b)2/3
.

All the above results hold for both diagonal and
non-diagonal matter metrics.

The reason is that the T moduli do not see flavour, and
so the T -dependence is flavour-universal.
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Soft Terms

We can use the above matter metric to compute the
soft terms for the large-volume models.

We get

Mi =
F s

2τs
≡M,

mαβ̄ =
M√

3
K̃αβ̄ ,

Aαβγ = −M Ŷαβγ ,

B = −4M

3
.
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Soft Terms

These soft terms are the same as in the
dilaton-dominated heterotic scenario.

They are also flavour-universal.

This is surprising - there is a naive expectation that
gravity mediation will give non-universal soft terms.

Why? Flavour physics is Planck-scale physics, and in
gravity mediation supersymmetry breaking is also
Planck-scale physics.

Naively, we expect the susy-breaking sector to ‘see’
flavour and thus give non-universal soft terms.
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Soft Terms: Flavour Universality

These expectations are EFT expectations

In string theory, we have Kähler (T ) and complex
structure (U ) moduli.

These are decoupled at leading order.

K = −2 ln (V(T )) − ln

(

i

∫

Ω ∧ Ω̄(U)

)

− ln(S + S̄).

Here, U sources flavour and T breaks supersymmetry.

At leading order, susy-breaking and flavour decouple.

The origin of universality is the decoupling of Kähler
and complex structure moduli.
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Soft Terms: Phenomenology

We run the soft terms to low energy using SoftSUSY
and study the spectrum.

The constraints are given by
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Soft Terms: Phenomenology

Spectrum:
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Neutrino Masses

The theoretical origin of neutrino masses is a mystery.
Experimentally

0.05eV . mH
ν . 0.3eV.

This corresponds to a Majorana mass scale

MνR ∼ 3 × 1014GeV.

Equivalently, this is the suppression scale Λ of the
dimension five Standard Model operator

O =
1

Λ
HHLL.
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Neutrino Masses

In the supergravity MSSM, consider the superpotential
operator

λ

MP
H2H2LL ∈W,

where λ is dimensionless.

This corresponds to the physical coupling

eK̂/2 λ

MP

〈H2H2〉LL
(K̃H2

K̃H2
K̃LK̃L)

1

2

.

Once the Higgs receives a vev, this generates neutrino
masses.
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Neutrino Masses

Using the large-volume result K̃α ∼ τ
1/3

s

V2/3
, this becomes

λV1/3

τ
2/3
s MP

〈H2H2〉LL.

Use V ∼ 1015 (to get m3/2 ∼ 1TeV) and τs ∼ 10:

λ

1014GeV
〈H2H2〉LL

With 〈H2〉 = v√
2

= 174GeV, this gives

mν = λ(0.3 eV).
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Large Volumes are Powerful

In large-volume models, an exponentially large volume
appears naturally (V ∼ e

c
gs ).

A volume V ∼ 1015l6s , required for TeV-scale
supersymmetry, automatically gives the correct scale
for neutrino masses.

This same volume also gives an axion decay constant in the

allowed window (JC, hep-th/0602233),

10
9GeV . fa . 10

12GeV.

This yoking of three distinct scales is very attractive.

The origin of all three hierarchies is the exponentially
large volume.
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Conclusions

Kähler metrics for chiral matter enter crucially in the
computation of MSSM soft terms.

I have described techniques to compute these in IIB
Calabi-Yau string compactifications.

We computed the modular weights both for
one-modulus KKLT models and for the multi-modulus
large-volume models.

The soft terms are flavour-universal, which comes from
the decoupling of Kähler and complex structure moduli.

For the large-volume models, TeV-scale supersymmetry
naturally gives the correct scale for neutrino masses.
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