Hyperweak Gauge Groups in LARGE Volume Models

Joseph P. Conlon (Cavendish Laboratory & DAMTP, Cambridge)

Brainstorming and Calculationshop, DESY, Hamburg, 2008

This talk is particularly based on the paper

0805.4037 (hep-th), C. P. Burgess, J. P. Conlon, L-H. Hung, C. Kom, A. Maharana, F. Quevedo

Talk Structure

- 1. LARGE Volume Models
- 2. Hyper-Weak Gauge Groups

- Semi-realistic string compactifications require four dimensions and compactification on a Calabi-Yau.
- The size and shape of the Calabi-Yau appear in four dimensions as scalar particles (moduli).
- The moduli control all couplings and are naively massless with gravitational-strength interactions. This is bad: the moduli must be given masses and

stabilised.

The LARGE volume models are an attractive method of moduli stabilisation.

These models arise in flux compactifications of IIB string theory.

Moduli Stabilisation: Fluxes

- Fluxes carry an energy density which generates a potential for the cycle moduli.
- In IIB compactifications, 3-form fluxes generate a superpotential

$$K = -2\ln(\mathcal{V}) - \ln\left(i\int\Omega\wedge\bar{\Omega}\right) - \ln(S+\bar{S})$$
$$W = \int (F_3 + iSH_3)\wedge\Omega \equiv \int G_3\wedge\Omega.$$

This stabilises the dilaton and complex structure moduli.

$$D_S W = D_U W = 0.$$

$$W = \int G_3 \wedge \Omega = W_0$$

Moduli Stabilisation: Fluxes

$$\hat{K} = -2\ln\left(\mathcal{V}(T_i + \bar{T}_i)\right),$$

$$W = W_0.$$

$$V = e^{\hat{K}}\left(\sum_T \hat{K}^{i\bar{j}} D_i W D_{\bar{j}} \bar{W} - 3|W|^2\right)$$

$$= 0$$

No-scale model :

- vanishing vacuum energy
- broken susy
- T unstabilised

No-scale is broken perturbatively and non-pertubatively.

Moduli Stabilisation: KKLT

$$\hat{K} = -2\ln(\mathcal{V}),$$

$$W = W_0 + \sum_i A_i e^{-a_i T_i}.$$

- Non-perturbative ADS superpotential.
- The *T*-moduli are stabilised by solving $D_T W = 0$.
- An uplift is included to generate susy breaking.

Moduli Stabilisation: LARGE Volume

$$\hat{K} = -2\ln\left(\mathcal{V} + \frac{\xi}{2g_s^{3/2}}\right), \qquad \left(\xi = \frac{\chi(\mathcal{M})\zeta(3)}{2(2\pi)^3 g_s^{3/2}}\right)$$
$$W = W_0 + \sum_i A_i e^{-a_i T_i}.$$

- Include perturbative α' corrections as well as non-perturbative corrections to the scalar potential.
- This leads to dramatic changes in the large-volume vacuum structure.

Moduli Stabilisation: LARGE Volume

The simplest model $\mathbb{P}^4_{[1,1,1,6,9]}$ has two Kähler moduli.

$$\mathcal{V} = \left(\frac{T_b + \bar{T}_b}{2}\right)^{3/2} - \left(\frac{T_s + \bar{T}_s}{2}\right)^{3/2} \equiv \left(\tau_b^{3/2} - \tau_s^{3/2}\right).$$

If we compute the scalar potential, we get for $\mathcal{V} \gg 1$,

$$V = \frac{\sqrt{\tau_s} a_s^2 |A_s|^2 e^{-2a_s \tau_s}}{\mathcal{V}} - \frac{a_s |A_s W_0| \tau_s e^{-a_s \tau_s}}{\mathcal{V}^2} + \frac{\xi |W_0|^2}{g_s^{3/2} \mathcal{V}^3}.$$

A minimum exists at exponentially LARGE volume

$$\mathcal{V} \sim |W_0| e^{a_s \tau_s}, \qquad \tau_s \sim \frac{\xi^{2/3}}{q_s}.$$

- The stabilised volume is exponentially large.
- The large volume lowers the string scale and gravitino mass through

$$m_s = \frac{M_P}{\sqrt{\mathcal{V}}}, \qquad m_{3/2} = \frac{M_P}{\mathcal{V}}$$

- To solve the gauge hierarchy problem, need $\mathcal{V} \sim 10^{15}$.
- D7-branes wrapped on small cycle carry the Standard Model: need $T_s \sim 20(2\pi\sqrt{\alpha'})^4$.
- The vacuum is pseudo no-scale and breaks susy...

The mass scales present are:

Planck scale: String scale: KK scale Gravitino mass Small modulus m_{τ_s} Complex structure moduli Soft terms Volume modulus

 $M_P = 2.4 \times 10^{18} \text{GeV}.$ $M_S \sim \frac{M_P}{\sqrt{\mathcal{V}}} \sim 10^{11} \text{GeV}.$ $M_{KK} \sim \frac{M_P}{V^{2/3}} \sim 10^9 \text{GeV}.$ $m_{3/2} \sim \frac{M_P}{\mathcal{V}} \sim 30$ TeV. $m_{\tau_s} \sim m_{3/2} \ln \left(\frac{M_P}{m_{3/2}} \right) \sim 1000 \text{TeV}.$ $m_U \sim m_{3/2} \sim 30 \text{TeV}.$ $m_{susy} \sim \frac{m_{3/2}}{\ln(M_P/m_{3/2})} \sim 1$ TeV. $m_{\tau_b} \sim \frac{M_P}{\mathcal{V}^{3/2}} \sim 1 \text{MeV}.$

- The LARGE volume dynamically generates the $\frac{M_{weak}}{M_{Planck}}$ hierarchy through low-scale supersymmetry.
- The volume also gives axion and neutrino mass scales at the correct order

$$f_a \sim \frac{M_{Planck}}{\sqrt{\mathcal{V}}} \sim 10^{11} \text{GeV}.$$
 (JC, 2006)

$$m_{\nu} \sim \frac{M_{weak}^2 \mathcal{V}^{1/3}}{M_{Planck}} \sim \mathcal{O}(0.4 \text{eV}) \qquad \text{(JC, Cremades 2006)}$$

Here I discuss a different application of the LARGE volume models.

- In LARGE volume models, the Standard Model is a local construction and branes only wrap small cycles.
- There are also bulk cycles associated to the overall volume. These have cycle size

$$\tau_b \sim \mathcal{V}^{2/3} \sim 10^{10}.$$

- There is no reason not to have D7 branes wrapping these cycles!
- The gauge coupling for such branes is

$$\frac{4\pi}{q^2} = \tau_b$$

with
$$g \sim 10^{-4}$$

No reason for such branes not to exist!

In LARGE volume models it is a generic expectation that there will exist additional gauge groups with very weak coupling

 $\alpha^{-1} \sim 10^9.$

Two phenomenological questions to ask:

- 1. How heavy is the hyper-weak Z' gauge boson?
- 2. Does it mix with the photon?
- 3. How does Standard Model matter couple to the hyper-weak force?

If bulk D7 intersects Standard Model branes, SM matter can couple directly to bulk D7.

SM matter may be charged directly under the new hyper-weak gauge group.

Gauge group may couple directly to electrons or quarks, but with

$$g_e \sim 10^{-4}, \qquad g_e^2 \sim 10^{-8}.$$

This motivates a new (relatively) light very weakly coupled gauge boson.

Hyper-weak Z' may get a mass by a Higgs mechanism in either visible or hidden sectors.

If hyperweak gauge group is broken by weak-scale vevs of H_1, H_2 ,

 $M_{Z'} \sim gv \sim 10^{-4} \times 10 \rightarrow 100 \text{GeV} \sim 1 \rightarrow 10 \text{MeV}.$

If hyperweak gauge group is broken by chiral condensate $\langle \bar{q}q \rangle \sim \Lambda_{QCD}^3$,

$$M_{Z'} \sim gv \sim 10^{-4} \times 100 \text{MeV} \sim 10 \text{keV}.$$

If hyperweak gauge group is broken by hidden sector physics $\langle \phi_{hid} \rangle \sim v$, $M_{Z'} \sim gv \sim 10^{-4} \times v$.

Hyper-weak Z' may also get a mass by anomalies (Ignatios's talk)

$$M_{Z'} \sim \xi g_{Z'} M_s \sim 10^5 \rightarrow 10^6 \text{GeV}$$

Too heavy to be relevant here.

A motivation for a super-LHC....?

- There may also be kinetic mixing between the new gauge boson and the photon.
- If the new gauge boson is light, the mixing allows the new boson to couple to electromagnetic currents:

$$\mathcal{L}_{int} = \frac{(\bar{\psi}\gamma^{\mu}\psi)A_{\mu}}{\sqrt{1-\lambda^2}} - \frac{(\bar{\psi}\gamma^{\mu}\psi)\lambda Z'_{\mu}}{\sqrt{1-\lambda^2}}$$

where λ is the mixing parameter.

• This can give SM matter milli-charged under the new gauge boson Z', and exotic matter milli-charged under the photon.

Bounds on an MeV-scale gauge boson: axial and vector couplings $g_V(\bar{\psi}\gamma^\mu\psi)Z'_\mu$ or $g_A(\bar{\psi}\gamma^5\gamma^\mu\psi)Z'_\mu$.

Coupling	Bound	Experimental measurement
g_e^V	$10^{-4}m_U$	$g_e - 2$
g_e^A	$5 10^{-5} m_U$	$g_e - 2$
g^V_μ	10^{-3}	$g_{\mu}-2$
g^A_μ	$510^{-6}m_U$	$g_{\mu}-2$
$ g_e g_ u $	$10^{-11}m_U^2$	$\nu - e$ scattering
$g^A_{c(b)}$	$10^{-6}m_U$	$B(\psi(\Upsilon) \rightarrow \gamma + \text{invisible})$
$ g_e^A g_q^V $	$10^{-14}m_U^2$	atomic parity violation

Conclusions

- LARGE volume models are an attractive method of moduli stabilisastion and generating TeV supersymmetry.
- They motivate the existence of new hyper-weak gauge groups with $g^2 \sim 10^{-9} \sim \left(\frac{M_W}{M_P}\right)^{2/3}$.
- Such hyper-weak gauge groups can naturally be light with $M_{Z'} \lesssim 10 \text{MeV}$.