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Two paradigms: inflation...
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Two paradigms: inflation...

Slow-roll inflation homogenises the universe and
generates density perturbations.

η =

(
1

M2
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V ′′
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)

≪ 1, ǫ =
1

2M2
P

(
V ′

V

)2

≪ 1.

ns = 1 + 2η − 6ǫ.

The inflationary energy scale is

Vinf ∼ ǫ1/4(6 × 1016GeV).

Unless ǫ is extremely small, the inflationary energy
scale is high,

Vinf ≫ 1011GeV
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...and TeV supersymmetry

Supersymmetry is a great solution to the gauge hierarchy problem:

�H
t

H

t

∼ Λ2

�H
t̃

H
∼ −Λ2

High Scale Inflation and Low Scale Supersymmetry – p. 5/37



...and TeV supersymmetry
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TeV supersymmetry cancels the quadratic divergences in
the Higgs potential.
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...and TeV supersymmetry
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...and TeV supersymmetry

TeV supersymmetry

stabilises the Higgs mass against radiative corrections

gives a good dark matter candidate

explains gauge symmetry breaking through radiative
electroweak symmetry breaking

is compatible with LEP I precision electroweak data

is the prime candidate for new physics discovered at the
LHC
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Tension

The supergravity scalar potential can be written as

Vsusy =
∑

i

|F i|2 − 3m2
3/2M

2
P .

Gravity-mediation : F i ∼ 1011GeV,m3/2 ∼ 1TeV,

Gauge mediation : F i ≪ 1011GeV,m3/2 ≪ 1TeV.

Vsusy has natural scale F 2 ∼ m2
3/2M

2
P ≪ (1016GeV)4.

Sets scale of barrier height to overshooting

Sets scale of structure in the potential
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Tension

The supergravity scalar potential can be written as

Vsusy =
∑

i

|F i|2 − 3m2
3/2M

2
P .

Gravity-mediation : F i ∼ 1011GeV,m3/2 ∼ 1TeV,

Gauge mediation : F i ≪ 1011GeV,m3/2 ≪ 1TeV.

Vsusy has natural scale F 2 ∼ m2
3/2M

2
P ≪ (1016GeV)4.

Sets scale of barrier height to overshooting

Sets scale of structure in the potential

Most models of high-scale inflation are incompatible with
TeV supersymmetry
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Tension

Supergravity (and string theories) generically have
moduli.

Moduli are light gravitationally coupled scalars whose
vevs determine Yukawa couplings and gauge couplings.

Moduli must be stabilised to avoid generating
unobserved fifth forces.

The supergravity potential breaks supersymmetry and
stabilises the moduli, making them massive.
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Tension

Masses of stabilised moduli are typically m ∼ O(m3/2)

and the barrier to decompactification is ∼ m2
3/2M

2
P .

The presence of large vacuum energy destabilises this
barrier.
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Proposed Solution

1. Inflation at E ∼ 1016GeV with m3/2 ≫ 1TeV

2. Inflation ends with runaway and decompactification.

3. The global minimum has E ≪ 1016GeV and
m3/2 ∼ 1TeV

4. The global minimum lies many Planckian distances
from where inflation occurred.

5. A tracker solution guides the moduli into the global
minimum and avoids overshooting.
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Proposed Evolution
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Inflation with Runaway

Inflation near an inflection point leads to runaway.
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Inflation with Runaway

To get an inflection point:

K = −3 ln(T + T̄ ) +
A

(T + T̄ )3/2
+

B

(T + T̄ )2
+

C

(T + T̄ )5/2
+ . . .

W = W0

A, B and C can emerge from higher α′ corrections,
higher loop corrections ...

Ugly but doable.
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Inflation with Runaway

Potential is

V =
A′|W0|2

(T + T̄ )9/2
+

B′|W0|2
(T + T̄ )5

+
C ′|W0|2

(T + T̄ )11/2
+ . . .

Canonically normalise Φ =
√

6
(T+T̄ )

:

V = A′′e−
√

27/2Φ + B′′e−10Φ/
√

6 + C ′′e−11Φ/
√

6.

Tuning A, B and C gives the simplest model of inflation with
runaway.

A, B and C can be tuned to get ns = 0.95 with the correct
scale and number of efoldings.
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Inflation with Runaway

This model does not work.

Problems:

There is no vacuum and no low-energy supersymmetry.

The fields decompactify to infinity.

Solution: embed into the large-volume models.
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Large Volume Models

These arise in IIB flux compactifications and are
characterised by exponentially large volume and broken
supersymmetry.

K = −2 ln (V + ξ) ,

W = W0 + Ase
−asTs

V = eK
(

Kij̄DiWDj̄W − 3|W |2
)

.

Simplest model (P4
[1,1,1,6,9]):

V =
1

9
√

2

(

τ
3/2
b − τ

3/2
s

)
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Large Volume Models

The supergravity potential is:

V =
8
√

τsa
2
s|As|2e−2asτs

3V − 4as|AsW0|τse
−asτs

V2
︸ ︷︷ ︸

integrate out τs

+
ξ|W0|2

g
3/2
s V3

.

V = −|W0|2 (lnV)3/2

V3
+

ξ|W0|2

g
3/2
s V3

.

A minimum exists at

V ∼ |W0|ec/gs, τs ∼ lnV .

This minimum is non-supersymmetric AdS and at
exponentially large volume.
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Large Volume Models
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Large Volume Models
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Large Volume Models

V = −|W0|2 (lnV)3/2

V3
+

ξ|W0|2

g
3/2
s V3

.

Canonically normalise Φ =
√

3
2 ln(T + T̄ ):

V = (−ǫΦ3/2 + 1)e−
√

27

2
Φ.

To solve gauge hierarchy problem, need V ∼ 1015, with
Φ ∼ 26MP .

Note: single-exponential potential!
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The Model

V =
1

9
√

2

(

τ
3/2
b − τ

3/2
s

)

,

K = −2 ln

(

V + ξ +
C

V1/3
+

D

V2/3

)

,

W = W0 + Ae−asTs ,

V = eK
(

Kij̄DiWDj̄W − 3|W |2
)

.

Parameters:

ξ = 9, C = −18.29059, D = 14,W0 = −0.1, A = 1, as =
2π

4
.

Initial conditions: τb,init = 57.4819, τs,init = 14.
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Moduli Evolution: Initial Behaviour
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Moduli Evolution: Initial Behaviour
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Moduli Evolution: Initial Behaviour

Moduli evolution starts with a phase of slow-roll
inflation.

Parameters and initial conditions can be tuned to get
sixty e-folds.

Inflation occurs on an inflection point and ends with
runaway in the volume direction and oscillations in the
τs direction.

The τs oscillations generate a post-inflationary radiation
background.
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Moduli Evolution: Initial Behaviour

Moduli evolution starts with a phase of slow-roll
inflation.

Parameters and initial conditions can be tuned to get
sixty e-folds.

Inflation occurs on an inflection point and ends with
runaway in the volume direction and oscillations in the
τs direction.

The τs oscillations generate a post-inflationary radiation
background.

Inflation → Runaway + radiation
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Moduli Evolution: Runaway

During runaway, mτb
≪ mτs

. We integrate out τs to get

V = −|W0|2 (lnV)3/2

V3
+

ξ|W0|2

g
3/2
s V3

.

Canonically normalise Φ =
√

3
2 ln(T + T̄ ):

V = (−ǫΦ3/2 + 1)V0e
−
√

27

2
Φ.

During most of the evolution, the effective potential is

V = V0e
−
√

27

2
Φ!
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Moduli Evolution: Runaway

Evolution of field in exponential potential and background
radiation

V = V0e
−
√

27

2
Φ

An attractor scaling solution exists (Copeland, Liddle, Wands):

Ωγ =
19

27
, Ωkin,Φ =

16

81
, ΩV (φ) =

8

81
.

This attractor solution is valid for

7MP . Φ . 26MP .
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Moduli Evolution: Runaway

The full 2-modulus potential

V =

√
τsa

2
s|As|2e−2asτs

V − as|AsW0|τse
−asτs

V2
+

ξ|W0|2

g
3/2
s V3

.

can be shown to have a tracker solution in the presence of
radiation.

Numerically this is found to be an attractor with

Ωγ =
19

27
, Ωkin,Φ =

16

81
, ΩV (φ) =

8

81
.
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Moduli Evolution: Runaway

The full 2-modulus potential

V =

√
τsa

2
s|As|2e−2asτs

V − as|AsW0|τse
−asτs

V2
+

ξ|W0|2

g
3/2
s V3

.

can be shown to have a tracker solution in the presence of
radiation.

Numerically this is found to be an attractor with

Ωγ =
19

27
, Ωkin,Φ =

16

81
, ΩV (φ) =

8

81
.

As expected - we can integrate out τs as

mτs
∼

√
Vmτb

≫ mτb
.
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Moduli Evolution: Final

Full potential is

V = (−ǫΦ3/2 + 1)V0e
−
√

27

2
Φ + ǫ′e−

√
6Φ

︸ ︷︷ ︸

uplift

.

Φ ∼ 25MP : potential deviates from pure exponential.
Φ ∼ 25.7MP : minimum exists
Φ ∼ 26.5MP : barrier to decompactification

Vbarrier ∼ m3
3/2MP ∼ m2

τb
M2

P .

The tracker solution is radiation-dominated and never
overshoots the barrier.
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Moduli Evolution: Final
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Moduli Evolution: Final

To avoid overshooting must locate tracker.

This requires sufficient initial radiation.

We take Φ(t = 0) = 5, Φ̇(t = 0) = 0 and vary Ωγ,0

Note: moduli potential is a single exponential e−Φ rather
than double exponential e− exp Φ.

Avoiding overshooting is much easier.
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Moduli Evolution: Final
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Modulus evolution with Ωγ,0 = 10−7, 10−6, 10−4, 10−2, 10−1.
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Comparison with KKLT
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Φinit-20
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lnWΓ

Large-volume KKLT

(from hep-th/0506045, Barreiro, de Carlos,

Copeland, Nunes)

Overshooting avoided for Ωγ,init ≪ 1!
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Overshooting Problem

Across the whole parameter space only trace initial
amounts of radiation (Ωγ ≪ 1) are required to avoid
overshooting.

The single-exponential potential is much shallower than
double exponential potentials (KKLT, gaugino
condensation).

The large volume models solve the cosmological
overshoot problem.
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Conclusions

Want high-scale inflation with low-scale supersymmetry
breaking.

To achieve this inflation should end with runaway
towards decompactifications.

End of inflation generates trace amounts of radiation.

Radiation gives a tracker solution.

Moduli evolve in the tracker solution to a susy-breaking
minimum at m3/2 ∼ 1TeV.

Tracker solution does not overshoot minimum.
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Conclusion

Runaway first, reheat later!
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