
Quantum Mechanics MT: Problem Sheet 3 (Christmas Break)

Wave Mechanics

3.1 Consider a free particle in one dimension with Hamiltonian

H =
p̂2

2m
. (1)

Let the wave function of the particle at time t = 0 be a Gaussian wave packet

ψ(x, 0) = ⟨x|ψ(0)⟩ = 1

(2πσ2)
1
4

e−
x2

4σ2 + i
ℏp0x . (2)

Show that in the momentum representation we have

⟨p|ψ(0)⟩ =
∫
dx ⟨p|x⟩⟨x|ψ(0)⟩ =

[
2σ2

πℏ2

] 1
4

e−
σ2

ℏ2 (p−p0)
2

. (3)

Comment on the relation between the forms of the state in the position and momentum representations as a function
of σ. By solving the TDSE show that the probability distribution function at time t can be written in the form

|ψ(x, t)|2 =
σ√

2πℏ2|b(t)|2
e
− σ2

2ℏ2|b(t)|2
(x−p0t/m)2

, (4)

and derive the form of the function b(t). Explain what happens physically to the particle as time evolves.

3.2 Particles move in the potential

V (x) =

{
0 for x < 0

V0 for x > 0
.

Particles of mass m and energy E > V0 are incident from x = −∞. Show that the probability that a particle is
reflected is (

k −K

k +K

)2

,

where k ≡
√
2mE/ℏ and K ≡

√
2m(E − V0)/ℏ. Show directly from the time-independent Schrödinger equation that

the probability of transmission is

4kK

(k +K)2

and check that the flux of particles moving away from the origin is equal to the incident particle flux.

3.3 Show that the energies of bound, odd-parity stationary states of the square potential well

V (x) =

{
0 for |x| < a

V0 > 0 otherwise
,

are governed by

cot(ka) = −

√
W 2

(ka)2
− 1 where W ≡

√
2mV0a2

ℏ2
and k2 = 2mE/ℏ2.

Show that for a bound odd-parity state to exist, we require W > π/2.
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3.4 A free particle of energy E approaches a square, one-dimensional potential well of depth V0 and width 2a.
Show that the probability of being reflected by the well vanishes when Ka = nπ/2, where n is an integer and
K = (2m(E + V0)/ℏ2)1/2. Explain this phenomenon in physical terms.

3.5 Prove the following statements involving the delta-function and its derivative (and explain how these statements
are to be understood):

(a)

δ(cx) =
1

|c|
δ(x), 0 ̸= c ∈ R. (5)

(b)

δ
(
x2 − c2

)
=

1

2|c|
(
δ(x− c) + δ(x+ c)

)
. (6)

(c)

d

dx
θ(x− c) = δ(x− c) , θ(x) =

{
1 if x > 0

0 else
(7)

The function θ(x) is known as the Heaviside theta-function.

(d)

δ(x) =

∫ ∞

−∞

dk

2π
eikx. (8)

(e) ∫
dx f(x)δ′(x− x0) = −f ′(x0) . (9)

(f)* (starred problem for students who have already taken the complex analysis short-option)

How would you show that δ(x) = limϵ→0
1
π

ϵ
x2+ϵ2 ?

3.6 A particle of energy E approaches from x < 0 a barrier in which the potential energy is V (x) = Vδδ(x). Show
that the probability of its passing the barrier is

Ptun =
1

1 + (K/2k)2
where k =

√
2mE

ℏ2
, K =

2mVδ
ℏ2

.

3.7 Given that the wavefunction is ψ = Aei(kz−ωt) + Be−i(kz+ωt), where A and B are constants, show that the
probability current density is

J = v
(
|A|2 − |B|2

)
ẑ,

where v = ℏk/m. Interpret the result physically.

More problems on basic quantum mechanics

3.8 (a) Find the allowed energy values En and the associated normalized eigenfunctions ϕn(x) for a particle of mass
m confined by infinitely high potential barriers to the region 0 ≤ x ≤ a.

(b) For a particle with energy En = ℏ2n2π2/2ma2 calculate ⟨x⟩.
(c) Without working out any integrals, show that

⟨(x− ⟨x⟩)2⟩ = ⟨x2⟩ − a2

4
.
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Hence find ⟨(x− ⟨x⟩)2⟩ using the result that
∫ a

0
x2 sin2(nπx/a) dx = a3(1/6− 1/4n2π2).

(d) A classical analogue of this problem is that of a particle bouncing back and forth between two perfectly elastic
walls, with uniform velocity between bounces. Calculate the classical average values ⟨x⟩c and ⟨(x−⟨x⟩)2⟩c, and show
that for high values of n the quantum and classical results tend to each other.

3.9 A Fermi oscillator has Hamiltonian Ĥ = f̂†f̂ , where f̂ is an operator that satisfies

f̂2 = 0, f̂ f̂† + f̂†f̂ = 1.

Show that Ĥ2 = Ĥ, and thus find the eigenvalues of Ĥ. If the ket |0⟩ satisfies Ĥ|0⟩ = 0 with ⟨0|0⟩ = 1, what are the

kets (a) |a⟩ ≡ f̂ |0⟩, and (b) |b⟩ ≡ f̂†|0⟩?
In quantum field theory the vacuum is pictured as an assembly of oscillators, one for each possible value of the

momentum of each particle type. A boson is an excitation of a harmonic oscillator, while a fermion in an excitation

of a Fermi oscillator. Explain the connection between the spectrum of f̂†f̂ and the Pauli exclusion principle (which
states that zero or one fermion may occupy a particular quantum state).

Compute

3.10 Using your favourite Large Language Model / AI model, develop Mathematica code (or Python or any other
numerical lanaguage of your choice) which computes numerical solutions for the first 20 energy eigenstates |ϕn⟩ and
eigenvalues En of the Hamiltonian

H =
p̂2

2m
+ V (x̂)

where V (x̂) is a infinite square well with the properties V (x) = 0 for x < 0, V (x) = 0 for x > L and V (x) =
sin4 (2πx/L) for 0 ≤ x ≤ L.

Plot a representative sample of these eigenfunctions.

Consider an initial state ψ(x, t = 0) =
√

2
L sin

(
πx
L

)
. Using your favourite LLM/AI model, develop Mathematica

code (or Python or any other numerical language of your choice) that decomposes this wavefunctions into energy
eigenfunctions.

Hence develop code that evolves this wavefunction forward in time, and describe and plot the subsequent time
evolution of the wavefunction.

3.11 Redo question 3.3. Do no computations yourself. All calculations must be done by either posing a problem
directly to an AI/LLM or asking an AI/LLM to construct Mathematica/Python/etc code that can then be run
directly to solve a computation.


