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Introduction and References

These notes represent a quick and dirty introduction to supersymmetry and
accompany the three lectures given as part of the supersymmetry course in
Trinity term 2009. For further reading;:
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Weak Scale Supersymmetry, CUP (2006), by Howard Baer and Xerxes
Tata.

Recommended. The focus of this book is really supersymmetry at the
LHC, and so fits in well with the general structure of the whole course.
If your interest in supersymmetry is primarily the MSSM and its phe-
nomenology, this is the book to buy.

The Soft Supersymmetry Breaking Lagrangian: Theory and Applications,
hep-ph/0312378, Chung et al.

This is a good review of the MSSM and supersymmetry breaking. It’s
phenomenologically minded and is reasonably easy to read and dip in and
out of. Not deep, but a good first reference for TeV supersymmetry and
its phenomenology.

Part III Supersymmetry Course Notes, Fernando Quevedo and Oliver
Schlotterer, http://www.damtp.cam.ac.uk/user/fq201 /susynotes.pdf.

These are the lecture notes for the 24 hour Part III supersymmetry course
at Cambridge given by Fernando Quevedo. This is a full susy course aimed
at theorists at roughly first year graduate level.

Supersymmetry and Supergravity, Princeton University Press (1992), Julius
Wess and Jonathan Bagger.

Commonly known just as Wess and Bagger, this book is a classic but is
not dip-in reading. Dry but correct. Best used as a reference book. Very
good on supergravity and has the 4d N=1 supergravity action in explicit
complete gory detail.

Quantum Theory of Fields, Volume III, CUP(2000), Steven Weinberg.

Everything you ever wanted to know about supersymmetry. The advan-
tage and disadvantage of these books is that Weinberg is one of the great
masters of quantum field theory. You learn a lot, but you have to work
for it.

Motivations for Supersymmetry

Why is supersymmetry even worth considering as a symmetry of nature? We
present three reasons here, starting in the more formal and ending in the more



phenomenological.

2.1 Susy is Special

We know nature likes symmetries. Symmetry principles underlie most of the
dynamics of the Standard Model.

We are familiar with two basic types of symmetry. The particles of the
Standard Model are defined as representations of the SO(3,1) symmetry of
Minkowski space. The Minwoski space metric

ds* = —dt* + da* + dy* + dz? (1)

is invariant under SO(3,1) Lorentz transformations of the coordinates. These
transformations are the Lorentz transformations and are the foundation of
special relativity. For example, under a Lorentz transformation given by an
SO(3,1) matrix M, a vector field A, transforms as

Ane = M, A (2)

Other representations are the spinor representation that describes fermions such
as the quarks and leptons and the (trivial) scalar representation which describes
the Higgs.

A second type of symmetry are internal symmetries. These may be either
global symmetries (such as the approximate SU(2) isospin symmetry of the
strong interactions) or local (gauge) symmetries. An example of these is the
SU(3) gauge symmetry of the strong interactions which transforms quark states
of different colour into one another. Internal symmetries do not change the
Lorentz indices of a particle: an SU(3). rotation changes the colour of a quark,
but not its spin.

It seems like a cute idea to try and combine these two types of symmetries
into one big symmetry group, which would contain spacetime SO(3,1) in one
part and internal symmetries such as SU(3) in another. In fact this was an active
area of research in prehistoric times (the 1960s), when there were attempts to
combine all known symmetries into a single group such as SU(6). However this
program was killed by a series of no-go results, culminating in the Coleman-
Mandula theorem (1967):

Coleman-Mandula Theorem: The most general bosonic symmetry of
scattering amplitudes (i.e. of the S-matriz) is a direct product of the Poincare
and internal symmetries.

G = GPoincare X Gintarnal

In other words, program over. There is no non-trivial way to combine space-
time and internal symmetries.

However, like all good no-go theorems, the Coleman-Mandula theorem has a
loophole. Not knowing better, Coleman and Mandula only considered bosonic
symmetry generators. In the early 1970s supersymmetry began to appear on



the scene, and in 1975 Haag, Lopuskanski and Sohnius extended the Coleman-
Mandula theorem to include the case of fermionic symmetry generators, which
relate particles of different spins.

The result?

Haag, Lopuskanski and Sohnius: The most general symmetry of the
S-matrix is a direct product of super-Poincare and internal symmetries.

G = Gsuper—Poincare X Ginternal

The super-Poincare algebra is the extension of the Poincare group to include
transformations that turn bosons into fermions and fermions into bosons: su-
persymmetry transformations. So Coleman-Mandula were almost right, but not
quite: there is one non-trivial way to extend the spacetime symmetries, and
that is to incorporate supersymmetry.

The upshot of this is that supersymmetry appears in a special way: it is the
unique extension of the Lorentz group as a symmetry of scattering amplitudes.
This represents one reason to take supersymmetry seriously as a possible new
symmetry of nature.

2.2 Strings and Quantum Gravity

Einstein’s theory of general relativity is described, just like other theories, by a
Lagrangian

Lor = 1672 M3 / d*z\/gR.

Unlike the Standard Model, general relativity is a non-renormalisable theory: all
interactions are suppressed by a scale Mp = 2.4 x 10'3GeV = 1.7 x 10" Erxc.
This is somewhat analogous to the Fermi theory of weak interactions, which
is also non-renormalisable, and where interactions are suppressed by 1 /M%V ~
1/(100GeV)?).

At energy scales below Mp, general relativity works just fine. However at
energy scales above Mp, just as for Fermi theory above My, general relativity
loses predictive power. There are an infinite number of counterterms to be
included (R?,R?,...) and no way to determine their coefficients. This is the
problem of quantum gravity.

Theorists rush where experimenters are too sensible to tread, and despite
(or in same cases because of) the absence of data lots of theorists have spent
lots of time thinking about quantum gravity and how to formulate a consistent
theory of it. To make a molehill out a mountain, the most attractive approach
is that of string theory. String theory succeeds, often by surprising ways, in
taming the divergences of quantum gravity and giving finite answers. It turns
out supersymmetry plays a central and essential role in this: in any string
theory, nature always looks supersymmetric at sufficiently high energy scales.

If string theory is telling us something about nature, nature is supersym-
metric at some energy scale, giving us good reason to regard supersymmetry



as a genuine symmetry of nature. The only problem is that it gives us no
reason why this scale should be any smaller than the quantum gravity scale,
Mp = 2.4 x 10'8GeV.

2.3 The Hierarchy Problem

The hierarchy problem is the one really good reason why there is a fair' chance
supersymmetry will show up at the TeV energy scale.

The hierarchy problem is the problem of why the weak scale is so much
smaller than the Planck scale. It is also the most serious theoretical problem of
the Standard Model. To recall, in the Standard Model the electroweak symme-
try is broken by a vacuum expectation value for the Higgs boson, (v) = 246GeV.
The size of this vev determines the masses of the Z and W bosons, my = g\/—%v.
The vev of the Higgs is determined by the parameters p and A in the Higgs
potential,

Vi = —p?lg| + Aol (3)
As in any quantum theory, the parameters in this Lagrangian are subject to
quantum corrections. The actual value of the Higgs vev is determined not by
the classical values of p and A, but by those after quantum corrections. If the
Standard Model is valid up to a scale A (i.e. no new particles appear until we
reach the scale A) then we can estimate the size of quantum corrections to the
term p2. The three largest contributions come from the Higgs self-loop, the W
loop and the top quark loop. Let’s focus on the top quark loop, shown in figure
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Figure 1: Quantum Corrections to the Higgs Mass.

This diagram gives a correction to the mass term in (3). This amplitude
behaves as
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1For pub entertainment, quantify ‘fair’!



If the Standard Model is valid up to the GUT scale (A ~ 1016GeV), the quantum

2
correction to the Higgs mass term of size du? ~ 13;2 A? > m?,. Quantum
corrections to the Higgs potential are then enormous: we would expect the
quantum-corrected Higgs vev to be around the GUT scale, not the weak scale.
However, we know the masses of the W and Z bosons are O(102GeV) and not

0O(10'%)GeV.

This is the hierarchy problem: why is the weak scale so much less than
the Planck scale? There are two options. Either there is an enormous fluky
cancellation going on, or the Standard Model is not valid up to the GUT scale
and new physics comes in at the TeV scale, cancelling the divergent terms in
the Higgs potential.

As we will see, TeV supersymmetry has the attractive feature of automati-
cally taming the Higgs divergence. This finally makes it reasonable that super-
symmetry is not just a symmetry of nature, but a symmetry that could appear
at the next major collider, the LHC.

3 Constructing Supersymmetric Theories

Supersymmetric Lagrangians are in many senses easier to write down and easier
to deal with than ordinary Lagrangians. Supersymmetric field theories are just
special cases of ordinary field theories, but they have many nice properties. It is
useful to know at least something about how to construct them, as it underlies
the really important physics that supersymmetry is responsible for.

In ordinary quantum field theory, the basic unit of a Lagrangian is a field.
A field can be scalar, spinor or vector, depending on which type of particle it
describes. Different elements of a field (i.e. the different polarisation states of the
photon) have essentially the same interactions. Supersymmetry is a symmetry
that relates different particles of different spin, and so we to combine fields
of different spin into one object. The basic object that does this is called a
superfield, and as with fields it comes in different types. The different fields in
this have related couplings.

The most common type of superfield is called a chiral superfield, which we
denote by ® = (¢, ¢, F). ® brings together a complex scalar ¢, a left-handed
fermion 12 and a non-dynamical complex scalar F.3 An example of a superfield
would be right-handed top quark superfield Tr = (tgr,tr, Fyy). The physical
fields this brings together are the top quark and the top squark.

The other main type of superfield is called a vector superfield, denoted by
V = (A,, A, D). This brings together a gauge boson A, a gaugino A and an-
other non-dynamical scalar D. As with F' for chiral superfields, D parametrises
supersymmetry breaking, and the expression ‘D-term supersymmetry breaking’
corresponds to this D. An example of a vector superfield is the gluon superfield
G = (9,7, Dy), that brings together the gluon and the gluino.

2often called a Weyl fermion

3F is non-dynamical and so in principal doesn’t need to be present. However it makes the
equations look much nicer and also encodes the form of supersymmetry breaking. If a theorist
talks about F-term breaking, it is this F' they are referring to.



3.1 Theories with Chiral Superfields

We will focus on chiral superfields. This will include most of the interactions
present in the MSSM. We suppose we have a bunch of chiral superfields ®;. To
specify the Lagrangian, we now only need to specify one function, called the
superpotential, written W (®;).* W (®) has to be holomorphic - this just means
there is no complex conjugation, so ®2 is OK but ®®* is not. The nice thing
about the superpotential is that it completely specifies the theory, and all the
interactions.

Some examples of superpotentials for a theory of two holomorphic superfields
(1)1 and (1)21
W = m®; 0y + \O?

W = a®?®, + 30, D3

An inadmissible superpotential (not holomorphic) would be
W = m®, &} + yd3.

Lets now write down without proof the general expression for the Lagrangian
for chiral superfields. Equations (5) and (6) are here for completeness. The
F field plays an important role in the more formal aspects of supersymmetric
theories, but here it seems unmotivated: why introduce a field to integrate it
out? Feel free to skip to equation (7).

L = Z [‘%@3“@ - % ZJ)LJ(%/JLJ + FF;

oW oW .
- ((Gaeer) + (Gaplecs))
1 *W
2 ZJ: 00D ;

What we see here are kinetic terms for the scalar and fermion in the superfields,
and then a specific set of interactions. As F' is non-dynamical, we can solve for
its equations of motions to get

YL +ec|. (5)

i—Pi

oL o (ow
oF, 0 — F = 0,

Di=¢;
oL ow*

Si=¢;

Integrating out F' we therefore obtain the general supersymmetric Lagrangian

4In general, we also need a non-holomorphic object called the Kdhler potential K (®;, <i>j),
but this is only for non canonically-normalised fields.



for a theory of chiral superfields:

L = Z l@ugbfa“(bi - %ZU;LZ(WJLZ]

2
1 O*W
S 2 z} OB;0P;

_|ow
00,

Yrir,; +cc . (7)
Pi=¢ ®i=¢;

Let’s use this. Consider a theory with two superfields H; and Hs and lets
consider a superpotential
W = pH H». (8)

(This theory of course has absolutely nothing to do with the Higgs sector of
the MSSM, and any resemblance is entirely coincidental!) This superpotential
looks a bit like a mass term as it couples two superfields. The Lagrangian is

1= - 1= .
L= (%LHikaﬂHl + 8#H§8#H2 — §H1(?H1 — EHQaHQ
— 1| Hy | — p?|Ho|* — p(H Hy + c.c) 9)

The superpotential is indeed revealed to be a mass term. We have a theory with
identical masses (u) for both the scalar fields H; and Hs and their fermionic
partners H; and H,. This is absolutely typical of supersymmetry: in an exactly
supersymmetric theory, all components of a superfield have the same mass: the
masses of particles and their superpartners are identical.

Now consider a slightly more complicated example. This time we take three
superfields, H,, = (hy,hy), Tt = (tr,tr) and Tr = (tr,tr). Again, this is a
simplified version of the top quark sector of the MSSM. The superpotential is

W=y HT.Tgr (10)
The kinetic terms are all standard. The interaction terms of the Lagrangian are
Line = —y;(ely)(Erly) — yi ((oly) (huhiy) — vi (ErlR) (R ha)

—yt< (huELtR + fihaty + ERﬁutL) + c.c) (11)

Note that we have two types of interaction: quartic scalar interactions and cubic
Yukawa couplings. Looking at the Yukawa couplings, we can see among them
the familar top quark Yukawa coupling of the Standard Model. Remember, this
is the interaction that gave the hierarchy problem. But as well as this we also
see quartic scalar interactions that couple the Higgs boson to the top squarks.
Furthermore, the strength of this quartic coupling (y2) is precisely the square
of the strength of the cubic Yukawa coupling.

This is really the single most important point about supersymmetry. Why?
It is this feature that leads to the cancellation of quadratic divergences and the
taming of the hierarchy problem.



3.2 Formal Information about Susy Field Theories

Supersymmetric quantum field theories have several nice properties that make
means theorists spend a lot of time studying them.

For reference let us enumerate some of these

e The potential energy is always positive, V' > 0. This follows from
ow
Ve=> |+ 12
=3l (12)

Supersymmetry is exact for vanishing potential energy, and is broken for
any positive value of the vacuum energy.’

e Supersymmetric theories only undergo wavefunction renormalisation. A
solution that is supersymmetric at tree level remains supersymmetric to
all orders in perturbation theory.

e (more advanced) The best way to state the previous point is that the
superpotential is not renormalised in perturbation theory. In contrast, the
Kahler potential does get renormalised at all orders in pertubation theory.
These non-renormalisation results allow for powerful results regarding susy
theories and their behaviour at strong coupling.

4 The MSSM

The MSSM (Minimal Supersymmetric Standard Model) is the reason this course
exists. As experimenters, the MSSM in one of its various incarnations is what
many of you will spend your PhDs looking for. However, MSSM is really a bad
name because all of the interest in the MSSM lies in the fact that the MSSM is
not supersymmetric. Before we get to the MSSM, we ought to start with a the-
ory that really is supersymmetric, which we will call the SSM (supersymmetric
standard model).

The SSM is a fully supersymmetric theory and is constructed according
to the rules we learn above. The SSM consists of three vector superfields,
corresponding to the gauge bosons for the SU(3)., SU(2), and U(1)y forces.
There are also a bunch of chiral superfields which also carry gauge charges.
These are shown in table 1. The field content of the Supersymmetric Standard
Model should be recognisable as the same as that of the Standard Model, with
one exception. As with the Standard Model there are three generations of quarks
and leptons, extended of course to include the scalar partners, the squarks and
the sleptons. However, whereas in the Standard Model there is only one Higgs
doublet, in the SSM we see that there are two sets of Higgs doublets.

5At first sight this appears to rule out supersymmetry as a symmetry of nature, as the
measured vacuum energy (1073eV)? is so close to zero and much lower than the susy breaking
scale. However gravity saves the day: when you incorporate gravitational effects, the vacuum
energy in exactly supersymmetric theories can be negative. A supersymmetry-breaking theory
can then have vanishing cosmological constant without an inconsistency arising.



Table 1: Field content of the SSM/MSSM

Field SUB) [ SU@w [ Uy
QrLi=1,23 3 2 1/3
URr,i=1,2,3 3 1 -4/3
Dpi=1,23 3 1 2/3
Li:17273 1 2 -1
Eri=1,23 1 1 2

T
H, = ( i ) 1 2 1
=
H; = . 1 2 -1
= (i)

We will see in a moment why this is required in a supersymmetric theory.
However, this immediately tells us one way in which the MSSM differs from
the Standard Model: the MSSM has more physical Higgs fields. Electroweak
symmetry breaking causes the three SU(2) gauge bosons to acquire a mass, in
the process eating three of the scalar Higgs degrees of freedom. The number of
physical Higgs particles left over in the MSSM is then 8 — 3 = 5 compared to
the 4 — 3 = 1 Higgs particle left in the Standard Model.

The superpotential of the SSM is

Wassm = ,MHqu-l-Z (Yu); HuQL,iUR,j+Z Yd)ij(Hd)(QL)iDR,j+Z (YL),; HyL;Ep
ij ij ij
(13)
Y., Yy and Y7, are the respective Yukawa couplings for the up-type quarks,
the down-type quarks and the leptons. At first it seems odd that the superfields
are F'r and Ug - why don’t we just use Er and Ur? However this is necessary
in order to have a supersymmetric theory. A supersymmetric Lagrangian must
be holomorphic in the superfields, and Wisssas is holomorphic in Er but not
in Er (as complex conjugation breaks holomorphy properties).b

We can now see why the SSM requires two Higgs doublets: its necessary for
holomorphy purposes. Let’s write the superpotential we would need if we only
had one Higgs doublet:

Warssm = ,LLHuHZ+Z (Yu); HuQL,iUR,j+Z Yd)ij(H;)(QL)iDR,j‘i‘Z (Y1);; HyL:ER j
ij ij ij
(14)
This isn’t holomorphic in H,, as we have both H, and H; present in the su-
perpotential. So the only way to incorporate all the Yukawa couplings in a su-
persymmetric theory is to have two Higgs doublet rather than the single Higgs
doublet of the Standard Model.

There is a second reason why we need two Higgs doublets in a supersym-
metric theory. The whole point of supersymmetry is that bosons come with

6 An alternative way to say this is that chiral superfields by convention involve left-handed
fermions. The right-handed electron is not left-handed, but its physically equivalent antipar-
ticle (egr) is.



fermionic partners and fermions come with bosonic partners. Now, in the pres-
ence of chiral fermions it is possible for gauge theories to be anomalous. If a
gauge symmetry is anomalous, it means it is not preserved at the quantum level.
However, the gauge symmetry was the principle we used to build the theory in
the first place. So a theory with an anomalous gauge symmetry is actually
deeply sick, and is in fact inconsistent. In principle the Standard Model could
have been anomalous: but when you work out the anomalies coming from the
Standard Model fermions you find that they all cancel - which is good because
we know the Standard Model describes nature.”

The Higgs of the Standard Model is a scalar field, and does not contribute to
anomalies. However in a susy theory the Higgs has fermionic Higgsino partners,
which do contribute to anomalies and would make the theory inconsistent. Su-
persymmetrising the Higgs doublet of the Standard Model actually leads to an
inconsistent theory! However if we have two Higgs doublets, then the anomaly
from one Higgsino can be cancelled by that of the other, keeping the theory
quantum mechanically consistent.

4.1 R Parity

Astute observers such as yourselves will have noticed that the MSSM super-
potential (14) is not the most general superpotential of the MSSM fields that
is consistent with all the gauge symmetries. There are several other operators
that can be added to the MSSM. For example consider the following extension
of the superpotential (14).

W = Wunssm + aUrDrDr + fQrLDg (15)

Why have we focused on these operators? It is because these operators are liter-
ally fatal: the proton becomes unstable to the decay p — mget. To see how this
comes about, remember that we derive fermion-fermion-scalar couplings from
a superpotential by differentiating twice: (0?W/0®;0®;)|a, g, %it;. The su-
perpotential (15) therefore gives the interactions (suppressing spinor and colour
indices) 3 }

L = aurdrd, + Bqerdr (16)
These two vertices can be combined to generate the decay p — mge™. The
lifetime of this decay can be estimated from dimensional analysis to be

5
m= m s 5
2722 dr dr -10
~J ~J _— 10 .
T (lTeV) N

My
This suggests that we do not want the operators (15) in the superpotential.
R-parity is the standard way to forbid the operators (15). It is not the only

such way, but it is the most common approach. R Parity is the imposition of a

discrete Zo symmetry
(_1)3(B—L)+2S

7 Anomalies are the reason the top quark had to exist - it was only ever a question of what
its mass was. The Standard Model without the top quark is an anomalous theory and not
consistent at a quantum level. So after the bottom quark was discovered, the top also had to
exist, it was just a question of what its mass was. In due course the top was indeed discovered
at the TeVatron in 1995.
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on the MSSM. Here B is baryon number (1/3 for quarks, -1/3 for antiquarks), L
is lepton number and S is the spin of the field. Only interactions with R = +1
are kept. Note that Standard Model fields and their superpartners have different
charges under R parity.®

It can now be verified (exercise!) that the only operators allowed in the
superpotential are those already in Wisssar: R parity ditches the junk that
leads to phenomena such as proton decay and keeps the good stuff. For example,
the interaction urdrdp that proved dangerous for proton decay has R-parity
—1. The easiest way to remember the R-charge of each field is to remember
that R = +1 for Standard Model fields and R = —1 for all superpartners.

This last comment gives another important phenomenological implication of
R-parity: the lightest superpartner is stable, as it has R-charge —1 and there
are no lighter fields for it to decay into. This fact is important both for collider
searches for supersymmetry (LSP does not decay and escapes the detector) and
for cosmology (LSP can be stable on cosmological timescales).

4.2 The MSSM and Soft Breaking

The SSM was the supersymmetrisation of the Standard Model. As an exactly
supersymmetric theory, this means that all superpartners have the same masses
as their ordinary counterparts. For example, the slepton would have a mass of
0.5 MeV. No superpartners have yet been seen, so this theory clearly does not
describe nature.

The MSSM (Minimal Supersymmetric Standard Model) is the extension of
the SSM to include supersymmetry breaking (this is why MSSM is a misleading
name). In fact, all of the interest in the MSSM lies in the terms, called soft terms,
that break supersymmetry. The expression soft has a particular meaning. We
originally said that supersymmetry is attractive because it cancels quadratic
divergences. A general non-supersymmetric theory does not cancel quadratic
divergences. Soft terms are those particular non-supersymmetric terms that can
be added to a supersymmetric Lagrangian while preserving the property that
all quadratic divergences cancel.”

The full set of soft terms were classified by Girardello and Grisaru back in
1982. The soft terms consist of
e Scalar masses: m?q;Gr,, m*H} H,
These are mass terms for squarks, sleptons and Higgs fields.

e Gaugino masses: MA*)\,

These are masses for the the gluino, the wino, the zino and the bino.

8In supersymmetric field theories, any symmetries under which the different-spin compo-
nents of a supermultiplet have different charges is called an R symmetry. This is the origin of
the R in R parity.

9The appearance of soft terms are not ad hoc. They are generated when you have a funda-
mental theory that is supersymmetric, but in which supersymmetry is spontaneously broken
at low energies. The underlying supersymmetry implies that the only non-supersymmetric
terms that arise are the soft terms.
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e Trilinear scalar A-terms Aaﬁ7¢a¢ﬁ @7

e B term BH, Hj,.

This term only exists for the Higgs doublets, as it is a holomorphic mass
term.

Although it is not a soft term (as it is present in the supersymmetric theory),
it is helpful to regard the p term pH; Hs in a similar way, as its value in the
MSSM is not specified by knowledge of the Standard Model.

The MSSM (Minimal Supersymmetric Standard Model) is just the super-
symmetric Standard Model extended by the soft terms. The phenomenology of
the MSSM is completely determined by the value of the soft terms and p term.

4.2.1 MSUGRA

One canonical choice of soft terms is given by mSUGRA (short for minimal su-
pergravity, also called the CMSSM (constrained MSSM)). Tt is unlikely (but not
impossible) that nature is described by mSUGRA. However mSUGRA provides
the straw man against which other theories can be compared, and also provides
a benchmark for experiments to use.

mSUGRA is defined by the following choice of soft terms:'©

1. Universal scalar masses m?b =m?

2. Universal gaugino masses M, = M/,
3. Universal A-terms Angy = AYoa,

4. B-term B and p term p.

The universality conditions are defined at the GUT scale Mgy = 2 x 10'5GeV,
as they are assumed to be generated by string/GUT scale physics. The actual
physical Lagrangian is obtained by using the renormalisation group to evolve
these soft terms down to the TeV scale. There are several programs that do
this evolution; one of the best known is SoftSUSY by Ben Allanach. A typical
evolution of soft terms is shown in figure 2.

The physical mass spectrum is determined by the details of the renormal-
isation group flow. Many of the typical properties of supersymmetric spectra
follow from these renormalisation group equations. For example, it is the RGEs
that imply the colored particles are typically much heavier than the sleptons,
that the stau is the lightest slepton and so on.

After electroweak symmetry breaking, several of the MSSM particles are neu-
tral under the vacuum SU(3) X U(1)em gauge symmetry. The neutral fermions
are called the neutralinos. The neutralinos, normally denoted x1, x2, X3, X4 are
the physical mass states formed from the photino, the Zino and two Higgsinos.
That is, the superpartners of the hypercharge gauge boson, the neutral SU(2)

101t is not obvious that universality for the A terms should mean a universal constant
multiplied by the Yukawa couplings. Please accept this!
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Figure 2: The evolution of the soft parameters in the MSSM. Note how the
coloured particles (M5 and @, rapidly grow in mass whereas the wino (Mz) and
bino (M;) decreases slightly. Also note that crucially the up-type Higgs mass
becomes negative at small energies, inducing radiative electroweak symmetry
breaking.
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gauge boson and the two neutral Higgses are all neutral and mix to create the
physical neutralino states.

X1 My Myz Miz Mg B
X2 | _ | M2 My Moz My Z (17)
X3 M1 Mszz Mszz Mz H,
X4 My My Myz My H,

Across a large area of MSUGRA parameter space the lightest neutralino is
both mostly Bino and also the lightest supersymmetric particle. This lightest
neutralino is a WIMP and a good candidate for cold dark matter.

The parameters B and u relate to the Higgs potential. At low energy the
Higgs potential determines the mass of the Z boson and also the way the physical
Higgs field is made up of the up-type Higgs and down-type Higgs that are present
in the MSSM. It is customary to trade the parameters B and p for Mz (which
has been measured) and the ratio

(P
(ha)

tan § is the ratio of the up-type Higgs vev and down-type Higgs vev, and de-
scribes the composition of the physical Higgs (large tan 8 implies the physical
Higgs is mostly up-type Higgs). In practice the parameters of mSUGRA are
therefore

<

tan g =

1. Universal scalar masses mi =m3

2. Universal gaugino masses M, = M,

3. Universal A-terms Angy = AYop,

0
4. tanf = EZ}S:;

5. sgn(p), the sign of the p term.

Various groups have scanned over the parameter space of MSUGRA, study-
ing the spectrum generated at each point and the phenomenological constraints
on the parameter space. Various experimental constraints - for example BR(b —
s7)/ or the LEP constraints on the Higgs mass - constrain the data. The (strong)
assumption that the dark matter consists of the lightest supersymmetric parti-
cle as a thermal WIMP further restricts the parameter space, and the allowed
allowed regions in this parameter space go by the name of 'focus point region’,
‘stau coannihilation region’ and so forth.

Let us end on an important note: MSUGRA is a toy model. The world is
not MSUGRA, even if supersymmetry is realised in nature. Be prepared!
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