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1 Some Mathematical Background

(Note: this section should be largely revision. It serves to recall the key ideas that we will
need to develop the path integral formulation of quantum mechanics and quantum field theory.)

Functional Methods form a central part of modern theoretical physics. In the following we
recall the notion of functionals and how to manipulate them.

1.1 Functionals

What is a functional? You all know that a real function can be viewed as a map from e.g. an
interval [a, b] to the real numbers

f : [a, b]→ R , x→ f(x). (1.1)

A functional is similar to a function in that it maps all elements in a certain domain to real
numbers, however, the nature of its domain is very different. Instead of acting on all points
of an interval or some other subset of the real numbers, the domain of functionals consists of
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(suitably chosen) classes of functions. In other words, given some class {f} of functions, a
functional F is a map

F : {f} → R , f → F [f ]. (1.2)

Examples of functionals are the distance between two points or the action functional,

1. The distance between two points. A very simple functional F consists of the map which
assigns to all paths between two fixed points the length of the path. To write this
functional explicitly, let us consider a simple two-dimensional situation in the (x, y)
plane and choose two points (x1, y1) and (x2, y2). We consider the set of paths that do
not turn back, i.e. paths along which x increases monotonically as we go from (x1, y1)
to (x2, y2). These can be described by the set of functions {f} on the interval [x1, x2]
satisfying f(x1) = y1 and f(x2) = y2. The length of a path is then given by the well-
known expression

F [f(x)] =

∫ x2

x1

dx′
√

1 + f ′(x′)2 . (1.3)

2. Action Functionals. These are very important in Physics. Let us recall their def-
inition in the context of classical mechanics. Start with n generalised coordinates
q(t) = (q1(t), . . . , qn(t)) and a Lagrangian L = L(q, q̇). Then, the action functional
S[q] is defined by

S[q] =

∫ t2

t1

dt L(q(t), q̇(t)) . (1.4)

It depends on classical paths q(t) between times t1 and t2 satisfying the boundary
conditions q(t1) = q1 and q(t2) = q2.

1.2 Functional differentiation

In both the examples given above a very natural question to ask is what function extremizes the
functional. In the first example this corresponds to wanting to know the path that minimizes
the distance between two points. In the second example the extremum of the action functional
gives the solutions to the classical equations of motion. This is known as Hamilton’s principle.
In order to figure out what function extremizes the functional it is very useful to generalize
the notion of a derivative. For our purposes we define the functional derivative by

δF [f(x)]

δf(y)
= lim

ε→0

F [f(x) + εδ(x− y)]− F [f(x)]

ε
. (1.5)

Here, as usual, we should think of the δ-function as being defined as the limit of a test function,
e.g.

δ(x) = lim
a→0

1√
πa
e−x

2/a2 , (1.6)

and take the limit a→ 0 only in the end (after commuting the limit with all other operations
such as the limε→0 in 1.5). Importantly, the derivative defined in this way is a linear operation
which satisfies the product and chain rules of ordinary differentiation and commutes with
ordinary integrals and derivatives. Let us see how functional differentiation works for our two
examples.
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1. The distance between two points. In analogy with finding stationary points of functions
we want to extremize 1.3 by setting its functional derivative equal to zero

0 =
δF [f(x)]

δf(y)
. (1.7)

We first do the calculation by using the definition 1.5.

δF [f(x)]

δf(y)
= lim

ε→0

∫ x2

x1

dx′

√
1 + [f ′(x′) + εδ′(x′ − y)]2 −

√
1 + [f ′(x′)]2

ε
. (1.8)

The Taylor expansion of the square root is
√

1 + 2ε = 1 + ε+ . . ., which gives√
1 + [f ′(x′) + εδ′(x′ − y)]2 =

√
1 + [f ′(x′)]2 +

εf ′(x′)δ′(x′ − y)√
1 + [f ′(x′)]2

+O(ε2) , (1.9)

where δ′(x) is the derivative of the delta-function and O(ε2) denote terms proportional
to ε2. Substituting this back into 1.8 we have 1

δF [f(x)]

δf(y)
=

∫ x2

x1

dx′
δ′(x′ − y)f ′(x′)√

1 + [f ′(x′)]2
= − d

dy

f ′(y)√
1 + [f ′(y)]2

. (1.11)

The solution to 1.7 is thus
f ′(y) = const, (1.12)

which describes a straight line. In practice we don’t really go back to the definition of
the functional derivative any more than we use the definition of an ordinary derivative
to work it out, but proceed as follows.

• We first interchange the functional derivative and the integration

δF [f(x)]

δf(y)
=

∫ x2

x1

dx′
δ

δf(y)

√
1 + [f ′(x′)]2. (1.13)

• Next we use the chain rule

δ
√

1 + f ′(x′)2

δf(y)
=

1

2
√

1 + f ′(x′)2

δ(1 + f ′(x′)2)

δf(y)
=

f ′(x′)√
1 + f ′(x′)2

δf ′(x′)

δf(y)
. (1.14)

• Finally we interchange the functional and the ordinary derivative

δf ′(x′)

δf(y)
=

d

dx′
δf(x′)

δf(y)
=

d

dx′
δ(x′ − y) . (1.15)

The last identity follows from our definition 1.5.

1In the last step we have used ∫ b

a

dx′δ′(x′ − y)g(x′) = −g′(y) , (1.10)

which can be proved by “integration by parts”.
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Now we can put everything together and arrive at the same answer 1.11.

2. Next we want to try out these ideas on our second example and extremize the classical
action 1.4 in order to obtain the classical equations of motion. We first interchange
functional derivative and integration and then use the chain rule to obtain

δS[q]

δqi(t)
=

δ

δqi(t)

∫ t2

t1

dt̃ L(q(t̃), q̇(t̃)) (1.16)

=

∫ t2

t1

dt̃

[
∂L

∂qj
(q, q̇)

δqj(t̃)

δqi(t)
+
∂L

∂q̇j
(q, q̇)

δq̇j(t̃)

δqi(t)

]
(1.17)

(1.18)

We now use that
δq̇j(t̃)

δqi(t)
= d

dt̃

δqj(t̃)

δqi(t)
and integrate by parts with respect to t̃

δS[q]

δqi(t)
=

∫ t2

t1

dt̃

[
∂L

∂qj
(q, q̇)− d

dt̃

∂L

∂q̇j
(q, q̇)

]
δqj(t̃)

δqi(t)
(1.19)

=

∫ t2

t1

dt̃

[
∂L

∂qj
(q, q̇)− d

dt̃

∂L

∂q̇j
(q, q̇)

]
δijδ(t̃− t) =

∂L

∂qi
(q, q̇)− d

dt

∂L

∂q̇i
(q, q̇) .(1.20)

In the second last step we have used

δqj(t̃)

δqi(t)
= δijδ(t̃− t) , (1.21)

which follows straightforwardly from our general definition 1.5. Thus we conclude that
the extrema of the classical action are given by paths that fulfil the equations of motion

∂L

∂qi
(q, q̇)− d

dt

∂L

∂q̇i
(q, q̇) = 0. (1.22)

1.3 Multidimensional Gaussian Integrals

As a reminder, we start with a simple one-dimensional Gaussian integral over a single variable
y. It is given by

I(z) ≡
∫ ∞
−∞

dy exp(−1

2
zy2) =

√
2π

z
, (1.23)

where z is a complex number with Re(z) > 0. The standard proof of this relation involves writ-
ing I(z)2 as a two-dimensional integral over y1 and y2 and then introducing two-dimensional
polar coordinates r =

√
y2

1 + y2
2 and ϕ. Explicitly,

I(z)2 =

∫ ∞
−∞

dy1 exp(−1

2
zy2

1)

∫ ∞
−∞

dy2 exp(−1

2
zy2

2) =

∫ ∞
−∞

dy1

∫ ∞
−∞

dy2 exp(−1

2
z(y2

1 + y2
2))(1.24)
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=

∫ 2π

0

dϕ

∫ ∞
0

dr r exp(−1

2
zr2) =

2π

z
. (1.25)

Next we consider n-dimensional Gaussian integrals

W0(A) ≡
∫
dny exp

(
−1

2
yTAy

)
, (1.26)

over variables y = (y1, . . . , yn), where A is a symmetric, positive definite matrix (all its
eigenvalues are positive). This integral can be reduced to a product of one-dimensional Gaus-
sian integrals by diagonalising the matrix A. Consider an orthogonal rotation O such that
A = ODOT with a diagonal matrix D = diag(a1, . . . , an). The eigenvalues ai are strictly pos-
itive since we have assumed that A is positive definite. Introducing new coordinates ỹ = OTy
we can write

yTAy = ỹTDỹ =
n∑
i=1

aiỹ
2
i , (1.27)

where the property OTO = 1 of orthogonal matrices has been used. Note further that the
Jacobian of the coordinate change y→ ỹ is one, since |det(O)| = 1. Hence, using Eqs. (1.23)
and (1.27) we find for the integral (1.26)

W0(A) =
n∏
i=1

∫
dỹi exp(−1

2
aiỹ

2
i ) = (2π)n/2(a1a2 . . . an)−1/2 = (2π)n/2(detA)−1/2 . (1.28)

To summarise, we have found for the multidimensional Gaussian integral (1.26) that

W0(A) = (2π)n/2(detA)−1/2 , (1.29)

a result which will be of some importance in the following. We note that if we multiply the
matrix A by a complex number z with Re(z) > 0 and then follow through exactly the same
steps, we find

W0(zA) =

(
2π

z

)n/2
(detA)−1/2 . (1.30)

One obvious generalisation of the integral (1.26) involves adding a term linear in y in the
exponent, that is

W0(A,J) ≡
∫
dny exp

(
−1

2
yTAy + JTy

)
. (1.31)

Here J = (J1, . . . , Jn) is an n-dimensional vector. Changing variables y→ ỹ, where

y = A−1J + ỹ (1.32)

this integral can be written as

W0(A,J) = exp

(
1

2
JTA−1J

)∫
dnỹ exp

(
−1

2
ỹTAỹ

)
. (1.33)

The remaining integral is Gaussian without a linear term, so can be easily carried out using
the above results. Hence, one finds

W0(A,J) = (2π)n/2(detA)−1/2 exp

(
1

2
JTA−1J

)
. (1.34)
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2 Path Integrals in Quantum Mechanics

So far you have encountered two ways of doing QM:

1. Following Schrödinger, we can solve the Schrödinger equation for the wave function →
Fun with PDEs...

2. Following Heisenberg, we can work with operators, commutation relations, eigenstates
→ Fun with Linear Algebra...

Historically it took some time to realize that these were in fact equivalent (this was one of
Dirac’s contributions). In their own words: I knew of Heisenberg’s theory, of course, but I
felt discouraged, not to say repelled, by the methods of transcendental algebra, which appeared
difficult to me, and by the lack of visualizability. (Schrödinger in 1926)

The more I think about the physical portion of Schrödinger’s theory, the more repulsive I
find it. What Schrödinger writes about the visualizability of his theory is probably not quite
right, in other words it’s crap. (Heisenberg, writing to Pauli in 1926)

There is a third approach to QM - also equivalent - due to Feynman. He developed it first
as a graduate student, inspired by a mysterious remark in a paper by Dirac. Those were the
days! Feynman’s approach is particularly useful for QFTs and many-particle QM problems,
as it makes certain calculations much easier.

In particular, we have seen in the previous field theory parts of the lectures the role of the
propagator - the amplitude to propagate from a certain initial configuration to a certain final
configuration. This propagator is crucial for scattering questions. We first work out what this
is using the Heisenberg/Schrödinger formulation and then formulate QM à la Feynman.

2.1 The Propagator

Our starting point is the time-dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉. (2.35)

We recall that the wave function is given by

ψ(~x, t) = 〈~x|ψ(t)〉. (2.36)

Eqn 2.35 can be integrated to give

|ψ(t)〉 = e−
i
~Ht|ψ(0)〉 (2.37)

The time-evolution operator in QM is thus (assuming that H is time-independent)

U(t; t0) = e−
i
~H(t−t0). (2.38)

A central object in Feynman’s approach is the propagator

〈~x′|U(t; t0)|~x〉, (2.39)
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where |~x〉 are the simultaneous eigenstates of the position operators x̂, ŷ and ẑ. The propagator
is the probability amplitude for finding our QM particle at position ~x′ at time t, if it started
at position ~x at time t0. To keep notations simple, we now consider a particle moving in one
dimension with time-independent Hamiltonian

H = T̂ + V̂ =
p̂2

2m
+ V (x̂). (2.40)

We want to calculate the propagator

〈xN |U(t; 0)|x0〉. (2.41)

It is useful to introduce small time steps

tn = nε , n = 0, . . . , N, (2.42)

where ε = t/N . Then we have by construction

U(t; 0) =
(
e−

i
~Hε
)N

. (2.43)

The propagator is

〈xN |U(t; 0)|x0〉 = 〈xN |e−
i
~Hε · · · e− i

~Hε|x0〉

=

∫
dxN−1 . . .

∫
dx1 〈xN |e−

i
~Hε|xN−1〉〈xN−1|e−

i
~Hε|xN−2〉 . . . 〈x1|e−

i
~Hε|x0〉,(2.44)

where we have inserted N − 1 resolutions of the identity in terms of position eigenstates

1 =

∫
dx |x〉〈x| . (2.45)

This expression now has a very nice and intuitive interpretation, see Fig. 2.1: The propagator,
i.e. the probabilty amplitude for finding the particle at position xN and time t given that it
was at position x0 at time 0 is given by the sum over all “paths” going from x0 to xN (as
x1,. . . , xN−1 are integrated over).

In the next step we determine the “infinitesimal propagator”

〈xn+1|e−
i
~Hε|xn〉. (2.46)

Importantly we have [T̂ , V̂ ] 6= 0 and concomitantly

eα(T̂+V̂ ) 6= eαT̂ eαV̂ . (2.47)

However, using that ε is infinitesimal, we have

e−
i
~ ε(T̂+V̂ ) = 1− i

~
ε(T̂ + V̂ ) +O(ε2) ,
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Figure 2.1: Propagator as sum over paths.

e−
i
~ εT̂ e−

i
~ εV̂ = 1− i

~
ε(T̂ + V̂ ) +O(ε2). (2.48)

So up to terms of order ε2 we have

〈xn+1|e−
i
~Hε|xn〉 ' 〈xn+1|e−

i
~ T̂ εe−

i
~ V̂ ε|xn〉 = 〈xn+1|e−

i
~ T̂ ε|xn〉e−

i
~V (xn)ε, (2.49)

where we have used that V̂ |x〉 = V (x)|x〉. As T̂ = p̂2/2m it is useful to insert a complete set
of momentum eigenstates 2 to calculate

〈xn+1|e−
i
~ T̂ ε|xn〉 =

∫
dp

2π~
〈xn+1|e−

ip̂2ε
2m~ |p〉〈p|xn〉 =

∫
dp

2π~
e−

ip2ε
2m~−i

p
~ (xn−xn+1)

=

√
m

2πi~ε
e
im
2~ε (xn−xn+1)2 . (2.50)

In the second step we have used that p̂|p〉 = p|p〉 and that

〈x|p〉 = e
ipx
~ . (2.51)

The integral over p is performed by changing variables to p′ = p+ m
ε

(xn− xn+1) (and giving ε
a very small imaginary part in order to make the integral convergent). Substituting 2.50 and
2.49 back into our expression 2.44 for the propagator gives

〈xN |U(t; 0)|x0〉 = lim
N→∞

[ m

2πi~ε

]N
2

∫
dx1 . . . dxN−1 exp

(
iε

~

N−1∑
n=0

m

2

(
xn+1 − xn

ε

)2

− V (xn)

)
.(2.52)

Note that in this expression there are no operators left.

2We use a normalization 〈p|k〉 = 2π~δ(p− k), so that 1 =
∫

dp
2π~ |p〉〈p|.
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2.1.1 Propagator as a “Functional Integral”

The way to think about 2.52 is as a sum over trajectories:

• x0, . . . , xN constitute a discretization of a path x(t′), where we set xn ≡ x(tn).

• We then have
xn+1 − xn

ε
=
x(tn+1)− x(tn)

tn+1 − tn
' ẋ(tn), (2.53)

and

ε
N−1∑
n=0

m

2

(
xn+1 − xn

ε

)2

− V (xn) '
∫ t

0

dt′
[m

2
ẋ2(t′)− V (x)

]
≡
∫ t

0

dt′L[ẋ, x], (2.54)

where L is the Lagrangian of the system. In classical mechanics the time-integral of the
Lagrangian is known as the action

S =

∫ t

0

dt′L. (2.55)

• The integral over x1, . . . xN−1 becomes a functional integral, also known as a path integral,
over all paths x(t′) that start at x0 at time t′ = 0 and end at xN at time t′ = t.

• The prefactor in 2.52 gives rise to an overall (infinite) normalization and we will denote
it by N .

These considerations lead us to express the propagator as the following formal expression

〈xN |U(t; 0)|x0〉 = N
∫
Dx(t′)e

i
~S[x(t′)]. (2.56)

What is in fact meant by 2.56 is the limit of the discretized expression 2.52. The ultimate
utility of 2.56 is that it provides a compact notation, that on the one hand will allow us to
manipulate functional integrals, and on the other hand provides a nice, intuitive interpretation.

2.2 Quantum Mechanics à la Feynman

Feynman’s formulation of Quantum Mechanics is based on the single postulate that the prob-
ability amplitude for propagation from a position x0 to a position xN is obtained by summing
over all possible paths connecting x0 and xN , where each path is weighted by a phase factor
exp

(
i
~S
)
, where S is the classical action of the path. This provides a new way of thinking

about QM!
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2.3 Classical Limit and Stationary Phase Approximation

An important feature of 2.56 is that it gives us a nice way of thinking about the classical limit
“~→ 0” (more precisely in the limit when the dimensions, masses, times etc are so large that
the action is huge compared to ~). To see what happens in this limit let us first consider the
simpler case of an ordinary integral

g(a) =

∫ ∞
−∞

dt h1(t)eiah2(t), (2.57)

when we take the real parameter a to infinity. In this case the integrand will oscillate wildly as
a function of t because the phase of exp

(
iah2(t)

)
will vary rapidly. The dominant contribution

will arise from the points where the phase changes slowly, which are the stationary points

h′2(t) = 0. (2.58)

The integral can then be approximated by expanding around the stationary points. Assuming
that there is a single stationary point at t0

g(a� 1) ≈
∫ ∞
−∞

dt [h1(t0) + (t− t0)h′1(t0) + . . .] eiah2(t0)+i
ah′′2 (t0)

2
(t−t0)2 , (2.59)

Changing integration variables to t′ = t− t0 (and giving a a small imaginary part to make the
integral converge at infinity) as obtain a Gaussian integral that we can take using 1.23

g(a� 1) ≈
√

2πi

ah′′2(t0)
h1(t0)eiah2(t0) . (2.60)

Subleading contributions can be evaluated by taking higher order contributions in the Taylor
expansions into account. If we have several stationary points we sum over their contributions.
The method we have just discussed is known as stationary phase approximation.

The generalization to path integrals is now clear: in the limit ~ → 0 the path integral is
dominated by the vicinity of the stationary points of the action S

δS

δx(t′)
= 0. (2.61)

The condition 2.61 precisely defines the classical trajectories x(t′)!

2.4 The Propagator for Free Particles

We now wish to calculate the functional integral 2.56 for a free particle, i.e.

V (x) = 0. (2.62)

Going back to the explicit expression 2.52 we have

〈xN |U(t; 0)|x0〉 = lim
N→∞

[ m

2πi~ε

]N
2

∫
dx1 . . . dxN−1 exp

(
iε

~

N−1∑
n=0

m

2

(
xn+1 − xn

ε

)2
)

.(2.63)
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It is useful to change integration variables to

yj = xj − xN , j = 1, . . . , N − 1, (2.64)

which leads to an expression

〈xN |U(t; 0)|x0〉 = lim
N→∞

[ m

2πi~ε

]N
2

∫
dy exp

(
−1

2
yTAy + JT · y

)
e
im
2~ε (x0−xN )2 . (2.65)

Here

JT =
(im
~ε

(xN − x0), 0, . . . , 0
)
, (2.66)

and A is a (N − 1)× (N − 1) matrix with elements

Ajk =
−im
ε~

[2δj,k − δj,k+1 − δj,k−1] . (2.67)

For a given N 2.65 is a multidimensional Gaussian integral and can be carried out using 1.34

〈xN |U(t; 0)|x0〉 = lim
N→∞

[ m

2πi~ε

]N
2

(2π)
N−1

2 [det(A)]−
1
2 exp

(
1

2
JTA−1J

)
e
im
2~ε (x0−xN )2 .(2.68)

The matrix A is related to the one dimensional lattice Laplacian, see below. Given the
eigenvalues and eigenvectors worked out below we can calculate the determinant and inverse
of A (homework problem). Substituting the results into 2.68 gives

〈xN |U(t; 0)|x0〉 =

√
m

2πi~t
e
im
2~t (x0−xN )2 . (2.69)

For a free particle we can evaluate the propagator directly in a much simpler way.

〈xN |U(t; 0)|x0〉 =

∫ ∞
−∞

dp

2π~
〈xN |e−i

p̂2t
2m~ |p〉〈p|x0〉 =

∫ ∞
−∞

dp

2π~
e−i

p2t
2m~−i

p(x0−xN )

~

=

√
m

2πi~t
e
im
2~t (x0−xN )2 . (2.70)

The matrix A is related to the one dimensional Lattice Laplacian. Consider functions of a
variable z0 ≤ z ≤ zN with “hard-wall boundary conditions”

f(z0) = f(zN) = 0. (2.71)

The Laplace operator D acts on these functions as

Df ≡ d2f(z)

dz2
. (2.72)

Discretizing the variable z by introducing N − 1 points

zn = z0 + na0 , n = 1, . . . , N − 1 (2.73)
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where a0 = (zN − z0)/N is a “lattice spacing”, maps the function f(z) to a N − 1 dimensional
vector

f(z)→ f = (f(z1), . . . , f(zN−1)). (2.74)

Recalling that
d2f

dz2
(z) = lim

a0→0

f(z + a0) + f(z − a0)− 2f(z)

a2
0

, (2.75)

we conclude that the Lapacian is discretized as follows

Df → a−2
0 ∆f , (2.76)

where
∆jk = δj,k+1 + δj,k−1 − 2δj,k. (2.77)

Our matrix A is equal to im
ε~ ∆. The eigenvalue equation

∆an = λnan, n = 1, . . . , N − 1 (2.78)

gives rise to a recurrence relation for the components an,j of an

an,j+1 + an,j−1 − (2 + λn)an,j = 0. (2.79)

The boundary conditions an,N = an,0 = 0 suggest the ansatz

an,j = Cn sin
(πnj
N

)
. (2.80)

Substituting this in to 2.79 gives

λn = 2 cos
(πn
N

)
− 2 , n = 1, . . . , N − 1. (2.81)

The normalized eigenvectors of ∆ are

an =
1√∑N−1

j=1 sin2
(
πnj
N

)


sin
(
πn
N

)
sin
(

2πn
N

)
...

sin
(π(N−1)n

N

)
.

 =

√
2

N


sin
(
πn
N

)
sin
(

2πn
N

)
...

sin
(π(N−1)n

N

)
.

 (2.82)

3 Path Integrals in Quantum Field Theory

We now want to discuss path integrals within quantum field theory.
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3.1 QM Flashback

It has already been explained how QM can be formulated in terms of path integrals. One
important finding was that the matrix element between two position eigenstates is given by

〈x, t|x′, t′〉 = 〈x|e−iH(t−t′)|x′〉 ∝
∫
Dx exp

(
i

∫ t

t′
dt′′L(x, ẋ)

)
. (3.1)

Notice that here |x, t〉 = eiHt |x〉S and |x′, t′〉 = eiHt
′ |x′〉S are Heisenberg picture states.

We also learned in the lectures on interacting quantum fields that the central objects
to compute in quantum field theory (QFT) are vacuum expectation values (VEVs) of time-
ordered field-operator products such as the Feynman propagator

DF (x− y) = 〈0 |T φ(x)φ(y)| 0〉 . (3.2)

In QM the analog of (3.2) is simply3

〈xf , tf |T x̂(t1)x̂(t2)|xi, ti〉 . (3.3)

Focusing on the case t1 > t2 and inserting complete sets of states we can write the latter
expression as

〈xf , tf |x̂(t1)x̂(t2)|xi, ti〉 = 〈xf
∣∣e−iH(tf−t1) x̂S e

−iH(t1−t2) x̂S e
−iH(t2−ti)

∣∣xi〉
=

∫
dx1dx2 〈xf

∣∣e−iH(tf−t1) |x1〉〈x1|x̂S e−iH(t1−t2)|x2〉〈x2|x̂S e−iH(t2−ti)
∣∣xi〉 . (3.4)

Using now that x̂|x〉 = x|x〉, replacing all three expectation values by (3.1) and combining
the three path integrals with the integrations over x1 and x2 into a single path integral the
result (3.4) simplifies further. One finds that

〈xf , tf |T x̂(t1)x̂(t2)|xi, ti〉 ∝
∫
Dx x(t1)x(t2) exp

(
i

∫ tf

ti

dtL(x, ẋ)

)
. (3.5)

For t2 > t1 the same result holds, because time ordering is automatic in the path-integral
formulation. It should also be clear that results similar to (3.5) apply for a product of an
arbitrary number of operators x̂. Furthermore, it can be shown that

lim
ti,f→∓∞

〈xf , tf |T (x̂(t1) . . . x̂(tn))|xi, ti〉 ∝ 〈0 |T (x̂(t1) . . . x̂(tn))| 0〉 . (3.6)

Therefore one arrives at

〈0 |T (x̂(t1) . . . x̂(tn))| 0〉 ∝
∫
Dx x(t1) . . . x(tn) eiS[x] , (3.7)

with S[x] the action functional.

3In this part of the lecture, we will use hats to distinguish operators from their classical counterparts which
appear in the path integral.
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3.2 Basics of QFT Path Integrals

In order to keep the following discussion as simple as possible we will focus on the real scalar
field φ. An extension to more complicated theories would however be straightforward. As we
saw the Green’s functions of the form

G(n)(x1, . . . , xn) =
〈
0
∣∣T (φ̂(x1) . . . φ̂(xn)

)∣∣0〉 , (3.8)

play an important role in QFT. In analogy to (3.7) these objects can be written as

G(n)(x1, . . . , xn) = N
∫
Dφφ(t1) . . . φ(tn) eiS[x] , (3.9)

where N is a normalization constant.
Like in QM, we introduce the generating functional

W [J ] = N
∫
Dφ exp

{
i

∫
d4x
[
L(φ, ∂µφ) + J(x)φ(x)

]}
, (3.10)

for the Green’s functions such that

G(n)(x1, . . . , xn) =
i−n δnW [J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (3.11)

The value of N is fixed by requiring that

W [J ]
∣∣
J=0

= W [0] = 〈0|0〉 = 1 . (3.12)

Recalling that in QM a second generating functional called Z[J ] has been introduced, we
also define

Z[J ] = −i lnW [J ] . (3.13)

By apply n functional differentiations to Z[J ] we get another type of Green’s functions4

G(n)(x1, . . . , xn) =
i1−n δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

, (3.14)

which correspond to connected Feynman diagrams, so that it makes sense to call Z[J ] the
generating functional for connected Green’s functions. Notice that all information on the
QFT is now encoded in the generating functionals, which are hence the primary objects to
calculate. We will do this below for the simplest case of a free real scalar field.

4Realize that these Green’s functions are the ones we meet already in (1.65) and (1.66) of the script
“Interacting Quantum Fields”.
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3.3 Generating Functionals For Free Real Scalar

For the purpose of explicit calculations it turns out to be useful to introduce a Euclidean
or Wick-rotated version WE[J ] of the generating functional. To do this we define Euclidean
4-vectors x̄ = (x̄0, x̄) = (ix0,x), associated derivatives ∂̄µ = ∂/∂x̄µ, and an Euclidean version
of the Lagrangian, LE = LE(φ, ∂̄µφ). To give an example,

L =
1

2
(∂µφ)2 − 1

2
m2φ2 → LE = −1

2
(∂̄µφ)2 − 1

2
m2φ2 . (3.15)

Starting from (3.10) it is easy to see that the Euclidean version of W [J ] is

WE[J ] = N
∫
Dφ exp

{
i

∫
d4x̄
[
LE(φ, ∂̄µφ) + J(x̄)φ(x̄)

]}
. (3.16)

The corresponding Euclidean Green’s function are then obtained by

G(n)
E (x̄1, . . . , x̄n) =

i−n δnWE[J ]

δJ(x̄1) . . . δJ(x̄n)

∣∣∣∣
J=0

. (3.17)

We now want to derive W [J ] for the real Klein-Gordon theory. We start by writing∫
d4x̄ (∂̄µφ(x̄))(∂̄µφ(x̄)) =

∫
d4x̄ d4ȳ φ(ȳ)

(
∂̄yµ∂̄

µ
x δ

(4)(x̄− ȳ)φ(x̄)
)
. (3.18)

It follows that

WE[J ] = N
∫
Dφ exp

{
−1

2

∫
d4x̄d4ȳ φ(ȳ)A(ȳ, x̄)φ(x̄) +

∫
d4x̄ J(x̄)φ(x̄)

}
, (3.19)

with
A(ȳ, x̄) =

(
∂̄yµ∂̄

µ
x +m2

)
δ(4)(x̄− ȳ) . (3.20)

This is a Gaussian path integral with a source J of precisely the type you have discussed in
the QM context in the solid-state part of this lecture.

Given this analogy we perform a variable transformation to find an explicit expression
for (3.19). Skipping over the details of the actual calculation, one obtains

WE[J ] = N̄ exp

{
1

2

∫
d4x̄ d4ȳ J(ȳ)DE

F (ȳ − x̄)J(x̄)

}
, (3.21)

with
DE
F (ȳ − x̄) = A−1(ȳ − x̄) , (3.22)

and N̄ an appropriate normalization.
Fine, but how do we calculate the inverse of the operator A? The idea is to use Fourier

transformations and then to go back to Minkowski space. We first recall that

δ(4)(x̄− ȳ) =

∫
d4p̄

(2π)4
eip̄(x̄−ȳ) , (3.23)
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which we use to write

A(ȳ, x̄) =
(
∂̄yµ∂̄

µ
x +m2

)
δ(4)(x̄− ȳ) =

∫
d4p̄

(2π)4

(
p̄2 +m2

)
eip̄(x̄−ȳ) . (3.24)

Now we invert A by taking the inverse inside the Fourier transformation, i.e.,5

A−1(ȳ − x̄) = DE
F (ȳ − x̄) =

∫
d4p̄

(2π)4

1

p̄2 +m2
eip̄(x̄−ȳ) . (3.26)

To go to Minkowski space we introduce p = (p0,p) = (ip̄0, p̄). Putting things together one
finds for the generating functional in Minkowski space

W [J ] = exp

{
−1

2

∫
d4xd4y J(y)DF (y − x)J(x)

}
, (3.27)

where

DF (x− y) =

∫
d4p

(2π)4

i

p2 −m2 + iε
e−ip(x−y) , (3.28)

is our Feynman propagator. Notice that we have chosen N̄ = 1 so that (3.12) holds.
From (3.27) we can now derive Green’s functions effortless. E.g., for the 2-point function

we get from (3.11)

G(2)(x, y) = − δ2W [J ]

δJ(x)δJ(y)

∣∣∣∣
J=0

= DF (x− y) , (3.29)

which agrees with the result that we got using canonical quantization.
From (3.13) and (3.27) we also find

Z[J ] =
i

2

∫
d4xd4y J(y)DF (y − x)J(x) , (3.30)

for the generating functional Z[J ] of connected Green’s functions. It is important to bear in
mind that the results (3.27) and (3.30) hold for the free field theory only.

3.4 Effective Action

Path integrals also provide an intuitive picture for the transition between classical and quantum
physics. In order to illustrate this property we define the classical field φc by

φc(x) =
δZ[J ]

δJ(x)
. (3.31)

5To see that this works, note that we want∫
d4yA(x, y)A−1(y, z) = δ4(x− z), (3.25)

and that this is precisely how the quoted expression for the inverse behaves.
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We have

φc(x) =
δ

δJ(x)
(−i lnW [J ]) = − i

W [J ]

δW [J ]

δJ(x)
=
〈0|φ̂(x)|0〉J
〈0|0〉J

. (3.32)

Here we have defined VEVs in the presence of J as follows

〈0|0〉J = W [J ] , 〈0|φ̂(x)|0〉J = −i δW [J ]

δJ(x)
. (3.33)

The final result for φc shows that the classical field is the suitably normalized VEV of the field
operator φ̂, which from a physical standpoint sounds quite reasonable. Recall also that W [J ] =
exp (iZ[J ]) which suggest that the generating functional of connected Green’s functions is
something like the action in our path integrals

∫
Dφ . . . eiS[φ]. This suggest that Z[J ] is some

sort of effective action.
To remove the effect of the source term that is present in Z[J ] we use a Legendre transform.

We define the effective action as

Γ[φc] = Z[J ]−
∫
d4x J(x)φc(x) . (3.34)

In fact, with this definition one has

δΓ[φc]

δJ(y)
=
δZ[J ]

δJ(y)
−
∫
d4x

δJ(x)

δJ(y)
φc(x) = φc(y)−

∫
d4x δ(4)(x− y)φc(x) = 0 , (3.35)

so Γ[φc] is independent of the source J .
To further see that the definition (3.34) is meaningful, let us discuss the free field case. We

begin by deriving an explicit expression for the classic field:

φc(x) =
δ

δJ(x)

i

2

∫
d4yd4z J(y)DF (y − z)J(z)

=
i

2

{∫
d4yd4z

[
δ(4)(x− y)DF (y − z)J(z) + δ(4)(x− z)DF (y − z)J(y)

]}

= i

∫
d4y DF (x− y)J(y) .

(3.36)

Since (
�x +m2

)
DF (x− y) = −iδ(4)(x− y) , (3.37)

we arrive at (
�x +m2

)
φc(x) = J(x) , (3.38)

which means that φc(x) is a solution to the Klein-Gordon equation with source J(x). This is
exactly what one would expect for a classical field coupled to J . Furthermore, inserting (3.30)
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and (3.36) into the effective action (3.34) it follows that

Γ[φc] =
i

2

∫
d4xd4y J(x)DF (x− y)J(y)−

∫
d4x J(x)φc(x)

= −1

2

∫
d4xφc(x)J(x) = −1

2

∫
d4xφc(x)

(
�x +m2

)
φc(x)

=

∫
d4x

[
1

2
(∂µφc(x))2 − 1

2
m2φ2

c(x)

]
,

(3.39)

where in the last step we have used integration by parts. In the free field case the effective
action hence coincides with the classic action of the real scalar field.

For interacting theories, the generating functional can typically not be calculated exactly.
Yet, one can evaluate the path integral (3.10) in the saddle point approximation. The solu-
tion φ0 to the classical equations of motions (EOMs) is determined from

δS[φ]

δφ(x)

∣∣∣∣
φ=φ0

=
δS

δφ(x)
[φ0] = −J(x) . (3.40)

Then to leading order in the saddle point approximation one has

W [J ] = N exp

[
iS[φ0] + i

∫
d4x J(x)φ0(x)

]
,

Z[J ] = S[φ0] +

∫
d4x J(x)φ0(x) .

(3.41)

Comparing these results to (3.31) and (3.34) it is readily seen that

φc(x) = φ0(x) , Γ[φc] = S[φ0] . (3.42)

Hence to lowest order the effective action Γ[φc] is simply the classic action S[φ0]. Beyond the
leading order the effective action will however receive quantum corrections and as a result one
has generically Γ[φc] 6= S[φ0].

Let me add that the above formalism allows one to shed some light on a point that we
glossed over in our discussion of spontaneous symmetry breaking in the script “Classical
Field Theory”. In this discussion we only talked about classic theories. However, one should
ask whether the same or similar results would be obtained in the corresponding quantum
theories. In fact, as it turns out spontaneous symmetry breaking should be analyzed with the
effective action Γ[φc] (or more precisely the effective potential) rather than the classic action
S[φ0]. If this is done, one can convince oneself that our discussion based on the classic theory
makes sense even in the quantum theory. Yet, the classical analysis has to be viewed as a
leading-order approximation. Since in weakly-coupled theory quantum corrections are always
suppressed, the classic analysis of spontaneous symmetry breaking is therefore typically a good
approximation to the full story.
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3.5 Feynman Integrals from Path Integrals

In order to develop perturbation theory the path integral formalism, we split the Lagrangian
as

L = L0 + Lint , (3.43)

where L0 is the Lagrangian of the free theory, while Lint contains all interactions. E.g., in
the case of φ4 theory one has Lint = −λ/4!φ4. The generating functional associated to L0 is
called W0[J ], while we will denote the full generating functional by W [J ]. Explicitly, one has

W0[J ] = N0

∫
Dφ exp

[
i

∫
d4x

(
L0 + J(x)φ(x)

)]
,

W [J ] = N
∫
Dφ exp

[
i

∫
d4x

(
L0 + Lint + J(x)φ(x)

)]
.

(3.44)

It follows that we can write W [J ] as

W [J ] = N exp

[
i

∫
d4xLint

(
−i δ

δJ(x)

)]
W0[J ]

= N
[

1 +
∞∑
n=1

in

n!

∫
d4x1 . . . d

4xn Lint

(
−i δ

δJ(x1)

)
. . .Lint

(
−i δ

δJ(xn)

)]
W0[J ] .

(3.45)

Here

N−1 = exp

[
i

∫
d4xLint

(
−i δ

δJ(x)

)]
W0[J ]

∣∣∣∣
J=0

, (3.46)

to ensure that (3.12) is satisfied. The result (3.45) shows that W [J ] is a perturbative series in
terms of W0[J ]. But from (3.27) we know that

W0[J ] = exp

{
−1

2

∫
d4xd4y J(y)DF (y − x)J(x)

}
, (3.47)

so in fact all functional derivatives can be carried out explicitly and lead to Feynman diagrams.
It is straightforward to see that the Green’s functions (3.11) can be written as

G(n)(x1, . . . , xn) = N δ

δJ(x1)
. . .

δ

δJ(xn)

[
1 +

∞∑
m=1

im

m!

∫
d4y1 . . . d

4ym

×Lint

(
−i δ

δJ(y1)

)
. . .Lint

(
−i δ

δJ(ym)

)]
W0[J ]

∣∣∣∣∣
J=0

.

(3.48)

While this result looks kind of horrible it can in fact be worked out order by order in pertur-
bation theory using Wick’s theorem. This results in a sum over products of propagators DF

(suitably integrated) and each term can be associated to a Feynman graph. This is exactly
what we have obtained before using canonical quantization, so the two approaches give at the
end the same result. The path integral formalism is however more elegant.
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3.6 A Simple Application

To become more familiar with the path integral formalism in QFT it seems worthwhile to
consider a simple but educated example. In the following we will study a theory with a
massless real scalar field described by the classic Lagrangian

L =
1

2
(∂µφ)2 − λ

3!
φ3 . (3.49)

Remember that the dimension of the coupling λ is [λ] = 1.
In this case, W0[J ] is given by (3.47) employing the massless Feynman propagator of a

scalar field. The full generating functional takes the following form

W [J ] = N exp

[
−i
∫
d4x

λ

3!

(
−i δ

δJ(x)

)3
]
W0[J ]

= N


∞∑
V=0

1

V !

[
−iλ

3!

∫
d4x

(
−i δ

δJ(x)

)3
]V

×
{
∞∑
P=0

1

P !

[
−1

2

∫
d4yd4z J(y)DF (y − z)J(z)

]P}
,

(3.50)

where V and P count the number of vertices and propagators.
In order to evaluate this expression we can use the tools of Feynman diagrams. First, we

determine the number of surviving sources which is equal to the number of external legs L of
the graph. Since each propagator connects two points (external or internal) and our scalar
theory (3.49) has only 3-point vertices, the number of external legs is given in terms of V and
P by the simple formula

L = 2P − 3V . (3.51)

So instead of using V and P to order the perturbative series, we can also use V and L, and
this is what we will do below.

For instance, let us consider V = L = 1. In this case we have

x y
= −λ

2

∫
d4xd4y J(x)DF (x− y)DF (y − y) , (3.52)

where the dot in the diagram denotes a vertex while the cross indicates a source. The factor
of 2 appearing in the denominator is the symmetry factor of the diagram (the ends of the line
meeting at y can be interchanged without altering the result).

In the case of V = 2 and L = 0, we get on the other hand

x y
=

λ2

12

∫
d4xd4y D3

F (x− y) , (3.53)
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and

x y

=
λ2

8

∫
d4xd4y DF (x− x)DF (x− y)DF (y − y) . (3.54)

The value of the symmetry factor is in the first case S = 2 ·3! = 12, where the factor of 2 arises
from the exchange of x with y and the factor 3! stems from the possible ways to interchange
the lines joining x and y. In the second case similar arguments lead to S = 2 · 2 · 2 = 8.

Dropping the multiplicative overall factors it is also easy to give a pictorial representation
of the generating functional Z[J ] as defined in (3.13). One has

Z[J ] = + . . .

+ + . . .

. . .

O(λ0)

O(λ)

O(λ2)+ + + . . .

(3.55)

Notice that I have ordered the individual diagrams in the perturbative series of Z[J ] corre-
sponding to their number of external legs and powers of λ (or equivalent number of vertices).

Let us now try to calculate the classic field φc as defined in (3.31). Up to and including
terms of order λ2, we get

φc(x) = i

∫
d4y DF (x− y)J(y) +

λ2

4

∫
d4yd4zd4uDF (x− y)D2

F (y − z)DF (z − u)J(u)

(3.56)

=

x y x y

+

z u

,

where the black square indicates the position x of the classic field φc(x). The factor of 1/4 in
the O(λ2) term arises again from the symmetry factor of the associated graph.
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We now compute �φc(x). Recalling that DF fulfils the Klein-Gordon equation (3.37), we
obtain

�φc(x) = J(x)− iλ2

4

∫
d4yd4zD2

F (x− y)DF (y − z)J(z) , (3.57)

meaning that

J(x) = �φc(x) +
iλ2

4

∫
d4yd4zD2

F (x− y)DF (y − z)J(z) . (3.58)

We solve this equation recursively by making the ansatz

J(x) = J0(x) + J2(x)λ2 . (3.59)

We get
J0(x) = �φc(x) , (3.60)

and

J2(x) =
i

4

∫
d4yd4z D2

F (x− y)DF (y − z)�zφc(z)

=
i

4

∫
d4yd4z D2

F (x− y)
(
�zDF (y − z)

)
φc(z)

=
1

4

∫
d4y D2

F (x− y)φc(y) .

(3.61)

To obtain the final result we have employed integration by parts twice, then used that DF

satisfies the Klein-Gordon equation with delta function source, which in turn allowed us to
integrate over z. Combining (3.60) and (3.61), it follows that

J(x) = �φc(x) +
λ2

4

∫
d4y D2

F (x− y)φc(y) . (3.62)

We now move our attention to the effective action (3.34). At O(λ0) one finds in terms of
J0(x) = �φc(x) the following expression

Γ0[φc] =
i

2

∫
d4xd4y�φc(x)DF (x− y)�φc(y)−

∫
d4x (�φc(x))φc(x)

=

∫
d4x

1

2
(∂µφc(x))2 .

(3.63)

Here I have again used integration by parts and the fact that DF is a Green’s function of the
Klein-Gordon equation. This result looks quite familiar. In fact, we have already derived it
in (3.39). It is the kinetic term of the classic action. There is of course no mass term, because
we have set m = 0 by hand in the classic theory (3.49).

By inserting (3.62) into the definition (3.34), one can also show that the O(λ) part of the
effective action takes the form

Γ1[φc] =

∫
d4x

[
− λ

3!
φ3
c(x)− λ

2
DF (0)φc(x)

]
. (3.64)
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The term −λ/3!φ3
c is again part of the classic action or Lagrangian (3.49). But the term

− λ

2
DF (0)φc(x) = , (3.65)

is a new contribution that arises from quantum corrections. These so-called tadpole contri-
butions can be removed (by a proper renormalization) and therefore do not affect physical
processes. So let’s forget about them and press on.

At O(λ2) one gets a contribution to Γ[φc] from the graph

, (3.66)

i.e., the third diagram in the second line of Z[J ] as given in (3.55) as well as a similar
contribution from −

∫
d4x J(x)φc(x). Using the expansion (3.62) of the source J , one finds

after some algebra

Γ2[φc] =

∫
d4x

[
−λ

2

4
φc(x)

∫
d4y D2

F (x− y)φc(y)

]
= . (3.67)

This is an interesting result. Since (3.67) is bilinear in φc the O(λ2) term of the effective
action corresponds to a loop-induced mass term for the classic field. So our scalar field will
get a mass from radiative corrections even if we start with m = 0.

The general lesson to learn here is that if there is no symmetry that forbids a specific term
in the Lagrangian, one better includes it in the theory. If one does not do this, one will always
get it back in the quantum theory.
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