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1 Interacting Quantum Fields

We now develop the formalism that will allow us to understand the basic features of pertur-
batively interacting quantum field theories (QFTs). The main goal is to derive the Feynman
rules for bosonic field theories and to show how to calculate matrix elements and cross sections
for simple scattering processes. More formal aspects of interacting QFTs (such as exponen-
tiation of vacuum diagrams or the Lehmann-Symanzik-Zimmermann reduction formula) are
only mentioned in passing.

1.1 Toy Models

In what follows we will deal with weakly coupled QFTs, i.e., theories that can be truly
considered as small perturbations of the free field theory at all energies.

For most of the Standard Model, at most energies, this property holds. The main exception
is the strong force at low energies, when it becomes intrinsically strongly coupled and cannot
be viewed as a perturbation on a free theory. However, at higher energies (due to asymptotic
freedom) even the strong force is a perturbative theory and can be solved order by order in
the interaction strength.

We look in more detail at two specific examples that serve the purpose of toy models.
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The first example of a weakly coupled QFT we will study is the φ4 theory,

L =
1

2
(∂µφ)

2 − 1

2
m2φ2 − λ

4!
φ4 , (1.1)

where φ is the real scalar field we have studied previously. For (1.1) to be weakly-coupled we
have to require λ � 1. We can get a hint for what the effects of the additional φ4 term will
be. Expanding it in terms of ladder operators, we find terms like

a†(p)a†(p)a†(p)a†(p) , a†(p)a†(p)a†(p)a(p) , (1.2)

etc., which create and destroy particles. This signals that the φ4 Lagrangian (1.1) describes a
theory in which particle number is not conserved. In fact, it is not too difficult to check that
the number operator N does not commute with the Hamiltonian, i.e., [N,H] 6= 0.

The second example we will look at is scalar Yukawa theory. Its Lagrangian is given by

L = (∂µϕ
∗)(∂µϕ) +

1

2
(∂µφ)

2 −M2ϕ∗ϕ− 1

2
m2φ2 − g ϕ∗ϕφ , (1.3)

with g � M,m. This theory couples a complex scalar ϕ to a real scalar φ. In this theory
the individual particle numbers for ϕ and φ are not conserved. However the Lagrangian (1.3)
is invariant under global phase rotations of ϕ, which ensures that there will be a conserved
charge Q obeying [Q,H] = 0. In fact, we have met this charge already in our discussion of
the quantization of the complex Klein-Gordon field (in the “Canonical Quantization” notes).
In consequence, in the scalar Yukawa theory the number of ϕ particles minus the number of
ϕ anti-particles is conserved. Notice also that the potential in (1.3) has a stable minimum at
ϕ = φ = 0, but it is unbounded from below, once −gφ becomes too large. This means that
we should not try and explore the scalar Yukawa theory too far from φ = ϕ = 0, as it needs
to be embedded in a deeper theory for consistency.

1.2 Interaction Picture

In quantum mechanics (QM), there is a useful viewpoint called the interaction picture, which
allows one to deal with small perturbations to a well-understood Hamiltonian. Let me briefly
recall how this works. In the Schrödinger picture, the states evolve as id/dt|ψ〉S = H |ψ〉S,
while the operators OS are time independent. In contrast, in the Heisenberg picture the states
do not evolve with time, but the operators change with time, with |ψ〉H = eiHt |ψ〉S and
OH = eiHt OS e

−iHt. The interaction picture is a hybrid of the two. We split the Hamiltonian
as follows

H = H0 +Hint , (1.4)

where in the interaction picture the time dependence of operators OI is governed by H0, while
the time dependence of the states |ψ〉I is governed by Hint. While this split is arbitrary, things
are easiest if one is able to solve the Hamiltonian H0 - for example, if H0 is the Hamiltonian
of a free theory. It then follows that

|ψ〉I = eiH0t |ψ〉S , OI = eiH0t OS e
−iH0t . (1.5)
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Since the Hamiltonian is itself an operator, the latter equation also applies to the interaction
Hamiltonian Hint. In consequence, one has

HI = (Hint)I = eiH0tHint e
−iH0t . (1.6)

The Schrödinger equation in the interaction picture is readily derived starting from the
Schrödinger picture,

i
d

dt
|ψ〉S = H |ψ〉S , =⇒ i

d

dt

(
e−iH0t |ψ〉I

)
= (H0 +Hint) e

−iH0t |ψ〉I ,

=⇒ i
d

dt
|ψ〉I = eiH0tHint e

−iH0t|ψ〉I ,

=⇒ i
d

dt
|ψ〉I = HI |ψ〉I .

(1.7)

Dyson’s Formula

In order to solve the system described by the Hamiltonian (1.4), we have to find a way to
obtain a solution to the Schrödinger equation in the interaction basis (1.7). Let us write the
solution as

|ψ(t)〉I = U(t, t0)|ψ(t0)〉I , (1.8)

where U(t, t0) is an unitary time-evolution operator satisfying U(t, t) = 1, U(t1, t2)U(t2, t3) =

U(t1, t3), and U(t1, t3)
[
U(t2, t3)

]†
= U(t1, t2). Inserting (1.8) into the last line of (1.7), we find

i
d

dt
U(t, t0) = HI(t)U(t, t0) . (1.9)

If HI would be a function, the solution to the differential equation (1.9) would read

U(t, t0)
?
= exp

(
−i
∫ t

t0

dt′HI(t
′)

)
. (1.10)

However, HI is not a function but an operator, and so this causes ordering issues. Let’s have
a closer look at the exponential to understand where the trouble comes from. The exponential
is defined through its power expansion,

exp

(
−i
∫ t

t0

dt′HI(t
′)

)
= 1− i

∫ t

t0

dt′HI(t
′) +

(−i)2

2

(∫ t

t0

dt′HI(t
′)

)2

+ . . . . (1.11)

When we differentiate this with respect to t, the third term on the right-hand side gives

− 1

2

(∫ t

t0

dt′HI(t
′)

)
HI(t)−

1

2
HI(t)

(∫ t

t0

dt′HI(t
′)

)
. (1.12)

The second term of this expression looks good since it is part of HI(t)U(t, t0) appearing on
the right-hand side of (1.9), but the first term is no good, because the HI(t) sits on the wrong
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side of the integral, and we cannot commute it through, given that [HI(t
′), HI(t)] 6= 0 when

t 6= t′. So what is the correct expression for U(t, t0) then?
The correct answer is provided by Dyson’s formula, which reads

U(t, t0) = T exp

(
−i
∫ t

t0

dt′HI(t
′)

)
. (1.13)

Here T denotes time ordering as defined in the “Canonical Quantization” notes. It is easy to
prove the latter statement. We start by expanding out (1.13), which leads to

U(t, t0) = 1− i

∫ t

t0

dt′HI(t
′)

+
(−i)2

2

[∫ t

t0

dt′
∫ t

t′
dt′′HI(t

′′)HI(t
′) +

∫ t

t0

dt′
∫ t′

t0

dt′′HI(t
′)HI(t

′′)

]
+ . . . .

(1.14)

In fact, the terms in the last line are actually the same, since∫ t

t0

dt′
∫ t

t′
dt′′HI(t

′′)HI(t
′) =

∫ t

t0

dt′′
∫ t′′

t0

dt′HI(t
′′)HI(t

′)

=

∫ t

t0

dt′
∫ t′

t0

dt′′HI(t
′)HI(t

′′) ,

(1.15)

where the range of integration in the first expression is over t′′ ≥ t′, while in the second
expression one integrates over t′ ≤ t′′, which is, of course, the same thing. The final expression
is simply obtained by relabelling t′ and t′′. In fact, it is not too difficult to show that one has∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtnHI(t1) . . . HI(tn) =
1

n!

∫ t

t0

dt1 . . . dtn T (HI(t1) . . . HI(tn)) . (1.16)

Putting things together this means that the power expansion of (1.12) takes the form

U(t, t0) = 1− i

∫ t

t0

dt′HI(t
′) + (−i)2

∫ t

t0

dt′
∫ t′

t0

dt′′HI(t
′)HI(t

′′) + . . . . (1.17)

The proof of Dyson’s formula is straightforward. First, observe that under the T operation,
all operators commute, since their order is already fixed by time ordering. Thus,

i
d

dt
U(t, t0) = i

d

dt

[
T exp

(
−i
∫ t

t0

dt′HI(t
′)

)]
= T

[
HI(t) exp

(
−i
∫ t

t0

dt′HI(t
′)

)]
= HI(t)T exp

(
−i
∫ t

t0

dt′HI(t
′)

)
= HI(t)U(t, t0) .

(1.18)

Notice that since t, being the upper limit of the integral, is the latest time so that the factor
HI(t) can be pulled out to the left.

Dyson’s formula is rather formal. In practice, it turns out to be very difficult to compute
the time-ordered exponential in (1.13). The power of (1.13) comes from the expansion (1.17)
which is valid when HI is a small perturbation to H0.
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Anatomy of Scattering Processes

Let us now try to apply the interaction picture to QFT, starting with an easy example, namely
the interaction Hamiltonian of the Yukawa theory,

Hint = g

∫
d3xϕ∗ϕφ . (1.19)

Unlike the free scalar theories discussed before, this interaction does not conserve the
particle number of the individual fields, and so allows particles of one type to morph into
others. In order to see why this is the case, we look at the evolution of the state, i.e.,
|ψ(t)〉 = U(t, t0) |ψ(t0)〉, in the interaction picture. If g � M,m, where M and m are the
masses of ϕ and φ, respectively, the perturbation (1.19) is small and we can approximate
the full time-evolution operator U(t, t0) in (1.13) by (1.17). Notice that (1.17) is, in fact, an
expansion in powers of Hint. The interaction Hamiltonian Hint contains ladder operators for
each type of particle. In particular, the φ field contains the operators a† and a that create
or destroy φ particles.1 Let’s call this particle mesons (M). On the other hand, from earlier
discussions it follows that the field ϕ contains the operators a†+ and a−, which implies that
it creates ϕ anti-particles and destroys ϕ particle. We will call these particles nucleons (N).2

Finally, the action of ϕ† is to create nucleons through a†− and to destroy anti-nucleons via a+.
While the individual particle number is not conserved, it is important to emphasize that

Q = N+ − N− is conserved not only in the free theory, but also in the presence of Hint. At
first order in Hint, one will have terms of the form a†+a

†
−a which destroys a meson and creates

a nucleon-antinucleon pair, M → NN̄ . At second order in Hint, we have more complicated
processes. E.g., the combination of ladder operators (a†+a

†
−a)(a+a−a

†) gives rise to the scat-
tering process NN̄ →M → NN̄ . The rest of this section is devoted to calculate the quantum
amplitudes for such processes to occur.

In order to calculate the amplitude, we have to make an important - but non-obvious
and apparently questionable - assumption. We require that the initial state |i〉 at t → −∞
(final state |f〉 at t → ∞) is an eigenstate of the free theory described by the Hamiltonian
H0. At some level, this sounds like a reasonable approximation. If at t → ∓∞ the particles
are well separated they do not feel the effects of each other. The intuition here is that of
particle colliders, which collide asymptotically separated particles - if electrons and positrons
are collided, we can reasonably think of the interaction as occurring in a small and localised
region.

Moreover, we intuitively expect that the states |i〉 and |f〉 are eigenstates of the individual
number operators N and N±. These operators commute with H0, but not with Hint. As the
particles approach each other, they interact briefly, before departing again, each going on its
own way. The amplitude to go from |i〉 to |f〉 is given by

lim
t∓→∓∞

〈f |U(t+, t−)|i〉 = 〈f |S|i〉 , (1.20)

where the unitary operator S is known as the scattering or simply S-matrix.

1The argument p of the ladder operators a† and a etc. is dropped hereafter in the text.
2Of course, in reality nucleons are spin-1/2 particles, and do not arise from the quantization of a scalar

field. Our scalar Yukawa theory is therefore only a toy model for nucleons interacting with mesons.
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There are a number of reason why the assumption of non-interacting initial and final states
|i〉 and |f〉 is shaky. First, one cannot describe bound states. E.g., naively this formalism can-
not deal with the scattering of an electron (e−) and proton (p) which collide, bind, and leave
as a hydrogen atom. Second, and more importantly, a single particle, a long way from its
neighbors, is never alone in field theory. This is true even in classical electrodynamics, where
the electron sources the electromagnetic field from which it can never escape. In quantum
electrodynamics (QED), a related fact is that there is a cloud of virtual photons surrounding
the electron. This line of thought gets us into the issues of renormalization. Although both
problems can be circumvent, let me, for the time being, simply use the assumption of non-
interacting asymptotic states. After developing the basics of scattering theory, we will briefly
revisit the latter problem.

1.3 Wick’s Theorem

Using Dyson’s formulas (1.13) and (1.17), we can now in principle calculate all matrix elements
of the form

〈f |T
(
HI(x1) . . . HI(xn)

)
|i〉 , (1.21)

where |i〉 and |f〉 are assumed to be asymptotically free states. The ordering of the operators
HI is fixed by time ordering. However, since the interaction Hamiltonian contains certain
creation and annihilation operators, it would be convenient if we could start to move all
annihilation operators to the right, where they can start eliminating particles in |i〉 (recall that
this is the definition of normal ordering). Wick’s theorem tells us how to go from time-ordered
to normal-ordered products. Before stating Wick’s theorem in its full generality, let’s keep it
simple and try to rederive something that we have seen already before. This is always a very
good idea.

Case of Two Fields

The most simple matrix element of the form (1.21) is

〈0|T (φI(x)φI(y))|0〉 . (1.22)

We already calculated this object in Chapter 1.4 of the script “Canonical Qunatization” and
gave it the name Feynman propagator. What we want to do now is to rewrite it in such a way
that it is easy to evaluate and to generalize the obtained result to the case with more than
two fields. We start by decomposing the real scalar field in the interaction picture as

φI(x) = φ+
I (x) + φ−

I (x) , (1.23)

with3

φ+
I (x) =

∫
d3p̃ a(p) e−ipx , φ−

I (x) =

∫
d3p̃ a†(p) eipx . (1.24)

3The superscripts “±” do not make much sense, but I just follow Pauli and Heisenberg here. If you have
to, complain with them.
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This decomposition can be done for any free field. It is useful since

φ+
I (x)|0〉 = 0 , 〈0|φ−

I (x) = 0 . (1.25)

Now we consider the case x0 > y0 and compute the time-order product of the two scalar fields,

T (φI(x)φI(y)) = φI(x)φI(y) =
(
φ+
I (x) + φ−

I (x)
)(
φ+
I (y) + φ−

I (y)
)

= φ+
I (x)φ

+
I (y) + φ−

I (x)φ
+
I (y) + φ−

I (y)φ
+
I (x) + φ−

I (x)φ
−
I (y)

+
[
φ+
I (x), φ

−
I (y)

]
= :φI(x)φI(y) : +

[
φ+
I (x), φ

−
I (y)

]
,

(1.26)

where we have normal ordered the last line, i.e., brought all φ+
I ’s to the right. To get rid of

the φ+
I (x)φ

−
I (y) term, we have added the commutator

[
φ+
I (x), φ

−
I (y)

]
in the second line. In

the case y0 > x0, we find, repeating the above exercise,

T (φI(x)φI(y)) = :φI(x)φI(y) : +
[
φ+
I (y), φ

−
I (x)

]
. (1.27)

In order to combine the results (1.26) and (1.27) into one equation, we define the contraction
of two fields,

φI(x)φI(y) =


[
φ+
I (x), φ

−
I (y)

]
, x0 > y0 ,[

φ+
I (y), φ

−
I (x)

]
, y0 > x0 .

(1.28)

This definition implies that the contraction of two φI fields is nothing but the Feynman
propagator:

φI(x)φI(y) = DF (x− y) . (1.29)

For a string of field operators φI , the contraction of a pair of fields means replacing the
contracted operators with the Feynman propagator, leaving all other operators untouched.
Equipped with the definition (1.28), the relation between time-ordered and normal-ordered
products of two fields can now be simply written as

T (φI(x)φI(y)) = :φI(x)φI(y) : +φI(x)φI(y) . (1.30)

Let me emphasize that while both T (φI(x)φI(y)) and : φI(x)φI(y) : are operators, their dif-
ference is a complex function, namely the Feynman propagator or the contraction of two φI

fields.
The formalism of contractions is also straightforwardly extended to our complex scalar

field ϕI . One has

T (ϕI(x)ϕ
†
I(y)) = :ϕI(x)ϕ

†
I(y) : +ϕI(x)ϕ

†
I(y) , (1.31)

prompting us to define the contraction in this case as

ϕI(x)ϕ
†
I(y) = DF (x− y) . ϕI(x)ϕI(y) = ϕ†

I(x)ϕ
†
I(y) = 0 . (1.32)

For convenience and brevity, I will from here on often drop the subscript I, whenever I
calculate matrix elements of the form (1.21). There is however little room for confusion, since
contractions will always involve interaction-picture fields.
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Strings of Fields

With all this new notation at hand, the generalization to arbitrarily many fields is also easy
to write down:

T
(
φ(x1) . . . φ(xn)

)
= :
(
φ(x1) . . . φ(xn) + all possible contractions

)
: . (1.33)

This identity is known as the Wick’s theorem. Notice that for n = 2 the latter equation is
equivalent to (1.31). Before proving Wick’s theorem, let me tell you what the phrase “all
possible contractions” means by giving an simple example.

For n = 4 we have, writing φi instead of φ(xi) for brevity,

T
(
φ1φ2φ3φ4

)
= :
(
φ1φ2φ3φ4 + φ1φ2φ3φ4 + φ1φ2φ3φ4 + φ1φ2φ3φ4

+ φ1φ2φ3φ4 + φ1φ2φ3φ4 + φ1φ2φ3φ4

+ φ1φ2φ3φ4 + φ1φ2φ3φ4 + φ1φ2φ3φ4

)
: .

(1.34)

When the contracted field operator are not adjacent, we still define it to give Feynman prop-
agator. E.g.,

:φ1φ2φ3φ4 : = DF (x2 − x4) :φ1φ3 : . (1.35)

Since the vacuum expectation value (VEV) of any normal-ordered operator vanishes, i.e.,
〈0| :O : |0〉 = 0, sandwiching any term of (1.34) in which there remain uncontracted field
operators between |0〉 gives zero. This means that only the three fully contracted terms in the
last line of that equation survive and they are all complex functions. We thus have

〈0|T
(
φ1φ2φ3φ4

)
|0〉 = DF (x1 − x2)DF (x3 − x4)

+DF (x1 − x3)DF (x2 − x4)

+DF (x1 − x4)DF (x2 − x3) ,

(1.36)

which is a rather simple result and has, as we will see in the next section, a nice pictorial
interpretation.

Proof of Wick’s Theorem

We would still like to prove Wick’s theorem. Naturally this is done by induction. We have
already proved the case n = 2. So let’s assume that (1.33) is valid for n− 1 and try to show
that the latter equation also holds for n field operators. With out loss of generality we can
assume that x01 > . . . > x0n, since if this is not the case we simply relabel the points in an
appropriate way. Such a relabeling leaves both sides of (1.33) unchanged. Then applying
Wick’s theorem to the string φ2 . . . φn , we arrive at

T
(
φ1 . . . φn

)
= φ1 . . . φn =

= φ1 : (φ2 . . . φn + all contraction not involving φ1) :

= (φ+
1 + φ−

1 ) : (φ2 . . . φn + all contraction not involving φ1) : .

(1.37)
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We now want to move the φ±
1 ’s into the :

(
. . .
)
: . For φ−

1 this is easy, since moving it in, it is
already on the left-hand side and thus the resulting term is normal ordered. The term with
φ+
1 is more complicated because we have to bring it into normal order by commuting φ+

1 to
the right. E.g., consider the term without contractions,

φ+
1 :φ2 . . . φn : = :φ2 . . . φn : φ

+
1 + [φ+

1 , :φ2 . . . φn :]

= :φ+
1 φ2 . . . φn : + :

(
[φ+

1 , φ
−
2 ]φ3 . . . φn + φ2[φ

+
1 , φ

−
3 ]φ4 . . . φn + . . .

)
:

= :
(
φ+
1 φ2 . . . φn + φ1φ2φ3 . . . φn + φ1φ2φ3φ4 . . . φn + . . .

)
: .

(1.38)

Here we first used the fact that the commutator of a single operator and a string of operators
can be written as a sum of all possible strings of operators with two adjacent operators put
into a commutator. The simplest relation of this type reads [φ1, φ2φ3] = [φ1, φ2]φ3 +φ2[φ1, φ3]
and is easy to prove. In the last step we then realized that under the assumption x01 > . . . > x0n
all commutator of two operators are equivalent to a contraction of the relevant fields.

The first term in the last line of (1.38) combines with the φ−
1 term of (1.37) to give

: φ1 . . . φn : , meaning that we have derived the first term on the right-hand side of Wick’s
theorem as well as all terms involving only one contraction of φ1 with another field in (1.33).
It is not too difficult to understand that repeating the above exercise (1.38) with all the
remaining terms in (1.37) will then give all possible contractions of all the fields, including
those of φ1. Hence the induction step is complete and Wick’s theorem is proved.

Application of Wick’s Theorem

In order to see the real power of Wick’s theorem let’s put it to work and try to calculate
NN → NN scattering in the Yukawa theory (1.19). We first write down the expressions for
the initial and final states,

|i〉 = a†+(p1)a
†
+(p2)|0〉 = |p1, p2〉 ,

|f〉 = a†+(q1)a
†
+(q2)|0〉 = |q1, q2〉 .

(1.39)

We now look at the expansion of 〈f |S|i〉 in powers of the coupling constant g. In order to
isolate the interesting part of the S-matrix, i.e., the part due to interactions, we define the
T -matrix by

S = 1 + iT , (1.40)

where the 1 describes the situation where nothing happens. The leading contribution to iT
occurs at second order in the interaction (1.19). We find

(−ig)2

2

∫
d4xd4y T

(
ϕ†(x)ϕ(x)φ(x)ϕ†(y)ϕ(y)φ(y)

)
. (1.41)

Applying Wick’s theorem to the time-order production entering this expression, we get (besides
others) a term

DF (x− y) :ϕ†(x)ϕ(x)ϕ†(y)ϕ(y) : , (1.42)
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which features a contraction of the two φ fields. This term will contribute to the scattering,
because the operator : ϕ†(x)ϕ(x)ϕ†(y)ϕ(y) : destroys the two nucleons in the initial state
and generates those appearing in the final state. In fact, (1.42) is the only contribution to
the process NN → NN , since any other ordering of the field operators would lead to a
vanishing matrix element. The matrix element of the normal-ordered operator in (1.42) is
readily computed:

〈q1, q2| :ϕ†(x)ϕ(x)ϕ†(y)ϕ(y) : |p1, p2〉 = 〈q1, q2|ϕ†(x)ϕ†(y)|0〉〈0|ϕ(x)ϕ(y)|p1, p2〉

=
(
ei(q1x+q2y) + ei(q1y+q2x)

) (
e−i(p1x+p2y) + e−i(p1y+p2x)

)
= ei [(q1−p1)x+(q2−p2)y] + ei [(q2−p1)x+(q1−p2)y] + (x↔ y) ,

(1.43)

where, in going to the third line, we have used the fact that

〈0|ϕ(x)|p〉 = 〈0|
∫
d3q̃

(
a+(q)e

−iqx + a†−(q)e
iqx
)
a†+(p)|0〉 = 〈0|

∫
d3q̃ [a+(q), a

†
+(p)]e

−iqx |0〉

= 〈0|
∫

d3q

(2π)3
1

2ωq

(2π)3 2ωp δ
(3)(p− q)e−iqx |0〉 = e−ipx .

(1.44)

Putting things together, the matrix element (1.41) takes the form

(−ig)2

2

∫
d4xd4y d4k

(2π)4

[
ei [(q1−p1)x+(q2−p2)y] + ei [(q2−p1)x+(q1−p2)y] + (x↔ y)

] ieik(x−y)

k2 −m2 + iε
, (1.45)

where the term in curly brackets arises from (1.43), while the final factor stems from the
expression for the Feynman propagator of the φ field. The (x↔ y) terms double up with the
others to cancel the factor of 1/2 in the prefactor (−ig)2/2, while the x and y integrals give
delta functions. One arrives at

(−ig)2
∫

d4k

(2π)4
i(2π)8

k2 −m2 + iε

[
δ(4)(q1 − p1 + k)δ(4)(q2 − p2 − k)

+ δ(4)(q2 − p1 + k)δ(4)(q1 − p2 − k)
]
.

(1.46)

Finally, we perform the k integration using the delta functions. We obtain

i(−ig)2
[

1

(p1 − q1)2 −m2 + iε
+

1

(p1 − q2)2 −m2 + iε

]
(2π)4δ(4)(p1 + p2 − q1 − q2) , (1.47)

where the delta function imposes momentum conservation.
Notice that the above calculation is also relevant for the scatterings N̄N̄ → N̄N̄ and

NN̄ → NN̄ . Both reactions arise from the term (1.43) in Wick’s theorem. However, we will
never find a term that contributes to NN → N̄N̄ or N̄N̄ → NN , because these transitions
would violate the conservation of the charge Q = N+ − N− that is associated to the global
U(1) symmetry of ϕ.
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1.4 Feynman Diagrams

As the above example demonstrates, to actually compute scattering amplitudes using Wick’s
theorem is (still) rather tedious. There’s a much better way, which starts by drawing pretty
pictures. This pictures represent the expansion of 〈f |S|i〉 and we will learn how to associate
mathematical expressions with those pictures. The pictures, you probably already guessed
it, are the famous Feynman diagrams. The Feynman-diagram approach turns out to be a
powerful tool to calculate QFT amplitudes (or as Schwinger said: “Like the silicon chips of
more recent years, the Feynman diagram was bringing computation to the masses.”).

We again start simple and consider the case of four fields, all at different space-time points,
which we have already worked out in (1.36). Let us present each of the points x1 to x4 by a
point and the propagators DF (x1 − x2) etc. by a line joining the relevant points. Then the
right-hand side of (1.36) can be represented as a sum of three Feynman diagrams,

〈0|T
(
φ1φ2φ3φ4

)
|0〉 = .

1 2

3 4
+

1

3

2

4

+

1

3

2

4

(1.48)

While this matrix element is not a measurable quantity, the pictures suggest a physical in-
terpretation. Two particles are generated at two points and then each propagators to one of
the other points, where they are both annihilated. This can happen in three possible ways
corresponding to the three shown graphs. The total amplitude for this process is the sum of
the three Feynman diagrams.

Things get more interesting, if one considers expressions like (1.48) that contain field
operators evaluated at the same space-time point. So let us have a look at the expansion of
the propagator (1.22) of the real scalar field,

〈0|T
{
φ(x)φ(y) + φ(x)φ(y)

[
−i
∫
dtHI(t)

]
+ . . .

}
|0〉 , (1.49)

in the presence of the interaction term HI = −λ/(4!)φ4 of the φ4 theory (1.1). The first term
gives the free-field result, 〈0|T (φ(x)φ(y))|0〉 = DF (x − y), while the second term takes the
form

〈0|T
{
φ(x)φ(y) (−i)

∫
dt

∫
d3z

λ

4!
φ4(z)

}
|0〉

= 〈0|T
{
φ(x)φ(y)

−iλ
4!

∫
d4z φ(z)φ(z)φ(z)φ(z)

}
|0〉 .

(1.50)

Now let’s apply Wick’s theorem (1.33) to (1.50). We get one term for each possible way to
contract the six different φ’s with each other in pairs. There are 15 such possibilities, but
fortunately only two of these possibilities are really different. If we contract φ(x) and φ(y),
there are 3 possible ways to contract the remaining φ(z)’s. The other possibility is to contract
φ(x) with φ(z) (four choices) and φ(y) with φ(z) (three choices), and φ(z) with φ(z) (one
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choice). There are 12 possible ways to do this, all giving the same result. In consequence, we
have

〈0|T
{
φ(x)φ(y) (−i)

∫
dt

∫
d3z

λ

4!
φ4(z)

}
|0〉

= 3
−iλ
4!

DF (x− y)

∫
d4z DF (z − z)DF (z − z)

+ 12
−iλ
4!

∫
d4z DF (x− z)DF (y − z)DF (z − z) .

(1.51)

We can understand the latter expression better if we represent each term as a Feynman
graph. Again we draw each propagator as a line and each point as a dot. This time we have
however to distinguish between the external points x and y and the internal point z, which
is associated with a factor

∫
d4z (−iλ/(4!)). Neglecting the overall factors, we see that the

expression (1.51) is equal to the sum of the following two diagrams

.
x y

z +
x z y

(1.52)

We refer to the lines in these diagrams as propagators, since they represent the propagation
amplitudes DF (x − y) etc. Internal points where four lines meet are called vertices. Since
DF (x − y) is the amplitude for a free Klein-Gordon particle to propagate between x and y,
the diagrams actually interpret the analytic formula as a process of creation, propagation, and
annihilation which takes place in space-time.

Momentum-Space Feynman Rules

We are now ready to summarize the rules necessary to find the analytic expression for each
piece of a given Feynman diagram in the φ4 theory. In fact, it turns out that in actual
calculation it is more convenient to work in momentum-space rather than position-space by
introducing the Fourier transformation of the Feynman propagator. To such a propagator one
has to assign a 4-momentum p, indicating in general the direction of the momentum with an
arrow (since DF (x− y) = DF (y− x) the direction of p is arbitrary). The z-dependent factors
of the vertices in a diagram are then given by

⇐⇒
∫
d4z e−i(p1+p2+p3−p4)·z = (2π)4 δ(4)(p1 + p2 + p3 − p4) .

p1

p2

p4

p3
(1.53)

In other words momentum is conserved at each vertex. The delta functions from the vertices
can now be used to perform some of the momentum integrals from the propagators. We are
left with the following momentum-space Feynman rules:
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1. For each propagator one has =
i

p2 −m2 + iε
.

p

2. For each vertex one has = −iλ .

3. For each external point one has = e−ipx .x
p

4. Impose momentum conservation at each vertex.

5. Integrate over each undetermined momentum

∫
d4l

(2π)4
.

6. Divide by the symmetry factor.

To obtain the amplitude corresponding to an individual Feynman diagram one has to multiply
all propagators and vertices and then one adds all possible amplitudes for a given process (as
quantum mechanics sums amplitudes not probabilities). In fact, one can think of the vertex
Feynman rule −iλ as the amplitude for the emission and/or absorption of particles at a vertex,
while the exponential factor for an external point is just the amplitude for a particle at that
point to have the needed momentum. The momentum integral

∫
d4l/(2π)4, on the other hand,

is nothing but the superposition principle of QM and tells us that we have to ”sum” over all
possible momenta for which the process can occur.

Symmetry Factors

In practical applications one always draws the Feynman graphs first. E.g., in the case of
the propagator (or two-point function) of the φ4 theory, one can draw the following “cactus”
diagram

x z w

u

y
,

(1.54)

at O(λ3) using it as a mnemonic device to write down the analytic expression. If this is done,
one still has to figure out the multiplicative overall factor. The easiest way to find this factor
consists in determining the so-called symmetry factor of the diagram. In the case of (1.54)
the symmetry factor reads S = 2 · 2 · 2 = 8. Two factors of 2 come from lines that start and
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end on the same vertex, since the diagram is symmetric under the interchange of the ends
of such lines (z and u in our case). The other factor of 2 comes from the two propagators
connecting w and u, since the graph is symmetric under the interchange of these two lines. A
third type of symmetry (not arising in the case at hand) is the equivalence of two vertices. In
order to arrive at the correct overall factor, one has to divide by the symmetry factor, which
is in general the number of possibilities to change parts of the diagrams without changing the
result of the Feynman graph.

Most people never need to evaluate Feynman graphs with a symmetry factor larger than 2,
so there is no need to worry too much about these technicalities. But for completeness let me
give some examples of non-trivial symmetry factors. Here they are (dropping the labels x and
y at the external points):

S = 2 , S = 2 · 2 · 2 = 8 ,

S = 3! = 6 , S = 3! · 2 = 12 .

(1.55)

Clearly, if you are in doubt about the symmetry factor you can always determine it by brute
force, i.e., counting equivalent contractions.

1.5 Scattering Processes

Let us now apply the things that we have learned to the case of NN → NN scattering. At
order g2 we have to consider the two diagrams shown in Figure 1.1. Employing the relevant
momentum-space Feynman rules, it is readily seen that the analytic expression for the sum of
the displayed graphs agrees with the final result (1.47) of the calculation that we performed
earlier in Section 1.3. In fact, there is a nice physical interpretation of the graphs. We talk,
rather loosely, of the nucleons exchanging a meson which, in the first diagram, has momentum
k = p1−q1 = p2−q2. This meson does not satisfy the usual energy dispersion relation, because
k2 6= m2, where m is the mass of the meson. The meson is called a virtual particle and is said
to be off-shell (or, sometimes, off mass-shell). Heuristically, it can’t live long enough for its
energy to be measured to great accuracy. In contrast, the momentum on the external, nucleon
legs satisfy p21 = p22 = q21 = q22 = M2, which means that the nucleons, having mass M , are
on-shell. Similar considerations apply to the second diagram. It is important to notice that
the appearance of the two diagrams above ensures that the particles satisfy Bose statistics.

The diagrams describing the scattering of a nucleon and an anti-nucleon, NN̄ → NN̄ , are
a little bit different than the ones for NN → NN . At lowest order, the corresponding graphs

14



+

N

N

N

N

M

p1

p2

q1

q2

N

N

N

N

M

p1

p2

q1

q2

Figure 1.1: Feynman diagrams contributing to NN → NN scattering at order g2.

are shown in Figure 1.2. Using the relevant Feynman rules, one finds the expression

i(−ig)2
[

1

(p1 + p2)2 −m2 + iε
+

1

(p1 − q1)2 −m2 + iε

]
(2π)4δ(4)(p1 + p2 − q1 − q2) . (1.56)

Notice that the delta function follows from the conservation of 4-momentum which, in turn,
follows from space-time translational invariance. It is common to all S-matrix elements. We
therefore define the amplitude A(f → i) corresponding to a scattering process i→ f as follows

〈f |S − 1| i〉 = i 〈f |T | i〉 = i (2π)4 δ(4)(pf − pi)A(i→ f) , (1.57)

where pf (pi) is the sum of the final (initial) 4-momenta, and the factor of i out front is a
convention which is there to match non-relativistic QM.

We see that the amplitudes (1.47) and (1.56) (and in general all processes that include
the exchange of just a single particle) depend on the same combinations of momenta in the
denominators. There are standard names for various sums and differences of momenta that
are known as Mandelstam variables. They are

s = (p1 + p2)
2 = (q1 + q2)

2 ,

t = (p1 − q1)
2 = (p2 − q2)

2 ,

u = (p1 − q2)
2 = (p2 − q1)

2 ,

(1.58)

where, as in the explicit examples above, p1 and p2 are the momenta of the two initial-state
particles, and q1 and q2 are the momenta of the two final-state particles. In order to get a
feel for what these variables mean, let us assume (for simplicity) that all four particles are the
same. In the CM frame, the initial two particles have the following 4-momenta

p1 = (E, 0, 0, p) , p2 = (E, 0, 0,−p) , (1.59)

The particles then scatter at some angle θ and leave with momenta

q1 = (E, 0, p sin θ, p cos θ) , q2 = (E, 0,−p sin θ,−p cos θ) . (1.60)

Then from the definitions (1.58), we have that

s = 4E2 , t = −2p2 (1− cos θ) , u = −2p2 (1 + cos θ) . (1.61)
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Figure 1.2: Feynman diagrams contributing to NN̄ → NN̄ scattering at order g2.

We see that the variable s measures the total CM energy of the collision, while the variables t
and u are measures of the energy exchanged between particles (they are basically equivalent,
just with the outgoing particles swapped around). Now the amplitudes that involve exchange
of a single particle can be written simply in terms of the Mandelstam variables. E.g., for
nucleon-nucleon scattering, the amplitude (1.47) is proportional to4

A(NN → NN) ∝ 1

t−m2
+

1

u−m2
, (1.62)

while in the case of nucleon-anti-nucleon scattering one finds

A(NN̄ → NN̄) ∝ 1

s−m2
+

1

t−m2
. (1.63)

We say that the first case involves t- and u-channel diagrams. On the other hand, the nucleon-
anti-nucleon scattering is said to involve s- and t-channel exchange.

Note finally that there is a relationship between the Mandelstam variables. In the cases
of NN → NN and NN̄ → NN̄ scattering, which involves external particles with the same
mass, one has

s+ t+ u = 4M2 . (1.64)

When the masses of the external particles are different this becomes s + t + u =
∑4

i=1m
2
i ,

where mi denotes the individual masses of the initial- and final-state particles.

1.6 Connected and Amputated Feynman Diagrams

I have explained in some detail how to compute scattering amplitudes by drawing all Feynman
graphs and writing down the corresponding analytic expression for them using Feynman rules.
In fact, there are a couple of caveats about what graphs one should draw and calculate. Both
of these caveats are related to the assumption that the initial and final states are eigenstates
of the free theory which, as we have mentioned before, is not correct.

The two caveats are as follows. First, we consider only connected graphs, where every part
of the diagram is connected to at least one external point. This is related to the fact that the
vacuum |0〉 of the free theory is not the true vacuum |Ω〉 of the interacting theory. An example

4Here and in the following we simply drop all iε terms.
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Figure 1.3: Example of a disconnected (left-hand side) and an unamputated (right-
hand side) Feynman diagram in φ4 theory.

of a disconnected diagram is shown on the left-hand side in Figure 1.3. Second, we do not
consider diagrams with loops on external lines so-called unamputated graphs. An example of
such a diagram is depicted on the right-hand side of the latter figure. This omission is related
to the fact that the one-particle states of the free and the interacting theory are not the same.
We will refer to diagrams in which all loops on external legs have been removed as amputated.

Green’s Functions in Interacting Theory

In order to keep the following discussion5 as simple as possible, we will work in the real
Klein-Gordon theory. We start by defining the n-point correlation (or Green’s) function

G(n)(x1, . . . , xn) = 〈Ω|T (φH(x1) . . . φH(xn)) |Ω〉 , (1.65)

where φH denotes the φ field in the Heisenberg picture of the full theory, rather than the
interaction picture that we have been dealing with so far. The first question that one can ask,
is how to compute G(n) in terms of matrix elements evaluated on |0〉, the vacuum of the free
theory. I only state the result here. It reads

G(n)(x1, . . . , xn) = lim
t→∞

〈0|T
{
φI(x1) . . . φI(xn) exp

[
−i
∫ t

−t

dt′HI(t
′)

]}
|0〉

〈0|T
{
exp

[
−i
∫ t

−t

dt′HI(t
′)

]}
|0〉

. (1.66)

Notice that both the numerator and denominator appearing on the right-hand side of the
latter equation can be calculated using the methods developed for S-matrix elements, namely
Feynman diagrams (or alternatively Dyson’s formula and Wick’s theorem) after expanding
the exponentials into a Taylor series.

Exponentiation of Bubble Diagrams

By means of the above equality we can now calculate any n-point correlation function. Before
you now start doing this using brute force, let me tell you that there is a theorem with the
fancy name linked-cluster theorem that allows you to save a lot of time. This theorem states
that the contributions to G(n) from disconnected diagrams exponentiate. I do not prove this

5In this subsection we state some important QFT results without proof.
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theorem here, but let me illustrate the meaning of exponentiation (and its consequences) for
the simplest case, i.e., the two-point correlation function G(2).

The exponentiation of disconnected diagrams is relevant both for the denominator and
numerator of the right-hand side of (1.66). Employing the linked-cluster theorem to the
denominator leads to the following pictorial identity

lim
t→∞

〈0|T exp

[
−i
∫ t

−t

dt′HI(t
′)

]
|0〉

= 1 + + . . .

= exp

 + . . .

 .
(1.67)

+


+ +

+ +

The disconnected Feynman diagrams appearing in this relation are called vacuum bubbles. In
the case of G(2), the numerator of (1.66) takes the form

lim
t→∞

〈0|T
{
φI(x)φI(y) exp

[
−i
∫ t

−t

dt′HI(t
′)

]}
|0〉 =

 + . . .



× exp

 + . . .

 .
(1.68)

+ +

+ +

x y x y x y

Combining now (1.67) and (1.68), it follows that the exponentials involving the sum of
disconnected diagrams cancel between the numerator and denominator in the formula for the
correlation functions. In the case of the two-point function, the final form of (1.66) is thus

G(2)(x, y) = + . . . . (1.69)+ + +
x y x y x y x y

The generalization to higher correlation function is straightforward and reads

G(n)(x1, . . . , xn) = 〈Ω|T (φH(x1) . . . φH(xn)) |Ω〉 =

(
sum of all connected graphs

with n external points

)
. (1.70)
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The disconnected diagrams exponentiate, factor, and cancel as before. It is important to
remember that by “disconnected” we mean “disconnected from all external points”. In higher
correlations functions, diagrams can also be disconnected in another sense. Consider, e.g., the
four-point function

G(4)(x1, x2, x3, x4) =

(1.71)

+ + + + + . . .

+ + + + . . .

+ + . . . + + . . . .

In many of the displayed diagrams, external points are disconnected from each other. Such
diagrams do neither exponentiate nor factor, they contribute to the amplitude just as do the
fully connected diagrams in which any point can be reached from any other by traveling along
the lines.

One-Particle States in Interacting Theory

We now have an extremely beautiful formula (1.70) for computing an extremely abstract
quantity the n-point correlation function. Our next task is to relate these objects back to
S-matrix elements (1.20)

(
or equivalent T -matrix elements (1.40)

)
, which will allow us to

compute quantities that can actually be measured, namely decay rates and cross sections.
In order to achieve this goal, we still have to learn how to deal with diagrams involving

loops on the external lines. Let us first try to understand the problem with such graphs,
looking at a specific example. We consider the following Feynman diagram

=
1

2

∫
d4p3

i

p23 −m2

∫
d4l

i

l2 −m2

× (−iλ) (2π)4δ(4)(p2 + p3 − q1 − q2)

× (−iλ) (2π)4δ(4)(p1 − p3) ,

(1.72)

l

p1

p2

p3
q1

q2

appearing in φ4 theory. We can integrate over p3 using the second delta function. It tells us
to evaluate

1

p23 −m2

∣∣∣∣
p3=p1

=
1

p21 −m2
=

1

0
. (1.73)
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We get an infinity, since p1, being the momentum of an external particle, is on-shell, i.e.,
p21 = m2. This is not good! Clearly, diagrams like (1.73) should not contribute to the S-matrix
elements. In fact, this is physically reasonable, since the external leg corrections,

+ . . . , (1.74)+ + +

represent the evolution of one-particle state of the free theory into the one-particle state of the
interacting theory, in the same way that the vacuum-bubble diagrams represent the evolution
of |0〉 into |Ω〉. Since these corrections have nothing to do with the scattering process itself, it
is somehow clear that one should exclude them from the calculation of the S-matrix.

This procedure goes by the name of amputation. For a generic Feynman diagram with
external legs, we define amputation in the following way. Starting from the tip of each external
leg, find the last point at which the diagram can be cut by removing a single propagator, such
that this operation separates the leg from the rest of the diagram. Cut there. Let me give an
non-trivial example of a diagram that appears at O(λ10), if one wants to compute φφ → φφ
scattering in φ4 theory. Here it is:

=⇒
amputation

(1.75)

From Correlation Functions to Scattering Matrix Elements

We have argued that the problem with external-leg corrections is that they become singular
for on-shell external states as implied by (1.73). In fact, it turns out that the structure of
singularities of Feynman diagrams viewed as analytic functions of their external momenta (i.e.,
Fourier-transformed correlation functions) plays a crucial role in the derivation of a general
relation between Green’s functions and S-matrix elements. This relation has first been derived
by Harry Lehmann, Kurt Symanzik, and Wolfhart Zimmermann and is today known as the
LSZ reduction formula. Combining the LSZ reduction formula with our Feynman rules for
computing correlation functions will then lead to a master formula for S-matrix elements
in terms of Feynman diagrams. In the following, I will simply state this relation without
derivation for the case of the (n+ 2)-point correlator in φ4 theory.
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For the process φ(pA)φ(pB) → φ(q1) . . . φ(qn) the relation between the S-matrix element
and the Feynman graphs reads6

〈q1, . . . , qn|S|pA, pB〉 =
(√

Z
)n+2

, (1.76)

pB

pA

qn

q1

...

where Z is called the field-strength renormalization factor, while the light gray blob represents
the sum of fully connected, amputated (n + 2)-point Feynman diagrams in momentum space
with on-shell external momenta. With this master formula at hand you can now in principle
calculate any S-matrix element!

In physical terms, the field-strength renormalization factor corresponds to the probability
to create a one-particle state out of the vacuum |Ω〉. It is a universal factor and can be
calculated in perturbation theory. At leading order, i.e., to O(λ0) in the φ4 theory, one has
Z = 1 which implies that the factors Z1/2 in (1.76) are irrelevant for the tree-level calculations
that we are dealing with in this lecture.

The Fourier-transform G̃
(n+2)
amp. of the fully connected, amputated (n + 2)-point on-shell

correlation function represented by the light gray blob on the right-hand side in (1.76) is, on
the other hand, process dependent. E.g., in the case of 2 → 2 scattering in the φ4 theory, it
has the following perturbative expansion

= + . . . . (1.77)+ + +

The discussion in this subsection looks all quite terrible, but at the end it is not, if one
restricts oneself to the leading quantum effects. E.g., the order λ contribution to G̃

(4)
amp. as

described by the first Feynman diagram on the right-hand side of (1.77) is easy to write down.

6If the external particles are of different species, each has its own renormalization factor Z1/2. Furthermore,
if the particles have spin, there will be additional polarization factors on the right-hand side of the equation.
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Dropping disconnected graphs, (1.70) leads to

G(4)(x1, x2, x3, x4) = −iλ
4!

∫
d4z
〈
0
∣∣T (φ(x1)φ(x2)φ(x3)φ(x4)φ4(z)

)∣∣ 0〉
= −iλ

∫
d4z DF (x1 − z)DF (x2 − z)DF (x3 − z)DF (x4 − z)

= −iλ
∫

d4p1
(2π)4

. . .
d4p4
(2π)4

∫
d4z eiz(p1+...+p4) e−i(p1x1+...+p4x4)

× D̃F (p1)D̃F (p2)D̃F (p3)D̃F (p4)

= −iλ (2π)4
∫

d4p1
(2π)4

. . .
d4p4
(2π)4

δ(4)(p1 + . . .+ p4) e
−i(p1x1+...+p4x4)

× D̃F (p1)D̃F (p2)D̃F (p3)D̃F (p4) .

(1.78)

From the first to the second line we have used Wick’s theorem and then employed the repre-
sentation

DF (x− y) =

∫
d4p

(2π)4
D̃F (p) e

−ip(x−y) , (1.79)

with

D̃F (p) =
i

p2 −m2 + iε
, (1.80)

of the Feynman propagator to rewrite the expression in momentum space. We now Fourier
transform the final result in (1.78), stripping off (2π)4 δ(4)(p1 + . . .+ p4) and the four external
propagators to obtain the amputated 4-point Green’s function:

G(4)
amp.(p1, p2, p3, p4) = −iλ . (1.81)

1.7 Decay Rates and Cross Sections

As in usual QM, also in QFT the probabilities for things to happen are the (modulus) square
of the quantum amplitudes. In this subsection we will compute these probabilities, known as
decay widths and cross sections. One small subtlety here is that any T -matrix element (1.57)
comes with a factor of (2π)4δ(4)(pf −pi), so that we end up with the square of a delta function.
As we will see in a moment, this subtlety is a result of the fact that we are working in an
infinite space.

Decay Rates

We would now like to calculate the probability for a single-particle initial state |i〉 of momen-
tum pi and rest mass m to decay into the final state |f〉 consisting of n particles with total
momentum pf =

∑n
j=1 qj. This quantity is given by the ratio

Pn =
|〈f |S|i〉|2

〈i|i〉〈f |f〉
. (1.82)
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The states |i〉 and |f〉 obey the relativistic normalization formula

〈i|i〉 = (2π)3 2ωpi
δ(3)(0) = 2ωpi

V , (1.83)

where we have replaced the delta function δ(3)(0) by the volume V of space (remember that we
have already seen this when we discussed the energy density of the vacuum in the “Canonical
Quantization” part of the lecture). Similarly, one has for the final state

〈f |f〉 =
n∏

j=1

2ωqj
V . (1.84)

If the initial-state particle is at rest, i.e., ωpi
= m and pi = 0, we get using (1.57) for the

i→ f decay probability

Pn =
1

2mV

n∏
j=1

1

2ωqj
V

[
(2π)4δ(4)(pf − pi)

]2 |A(i→ f)|2

=
1

2mV
(2π)4δ(4)(pf − pi) |A(i→ f)|2 V t

n∏
j=1

1

2ωqj
V
.

(1.85)

Notice that in order to arrive at the second line we have replaced one of the delta functions
(2π)4δ(4)(0) by the space-time volume V t.

We can now divide out t to get the transition function per unit time. After integrating
over all possible momenta of the final-state particles, i.e., V

∫
d3qj/(2π)

3, we then obtain in
terms of the relativistically-invariant n-body phase-space element7

dΠn = (2π)4 δ(4)(pf − pi)
n∏

j=1

d3qj
(2π)3

1

2ωqj

= (2π)4 δ(4)(pf − pi)
n∏

j=1

d3q̃j , (1.86)

the following expression for the partial decay width into the considered n-particle final state

Γn =
1

2m

∫
dΠn |A(i→ f)|2 . (1.87)

Notice that the factors of the spatial volume V in the measure V
∫
d3qj/(2π)

3 have cancelled
those in (1.85), while the factors 1/(2ωqj

) in (1.85) have conspired with the 3-momentum

integrals in V
∫
d3qj/(2π)

3 to produce Lorentz-invariant measures d3q̃j. In consequence, the
density of final states (1.86) is a Lorentz-invariant quantity.

After summation over all possible n-particle final states, one finally finds the so-called total
decay width

Γ =
1

2m

∑
n

∫
dΠn |A(i→ f)|2 , (1.88)

with dΠn corresponding to a given final state. The total decay width is equal to the reciprocal
of the half-life τ = 1/Γ of the decaying particle. If the decaying particle is not at rest, the

7This object is in some textbooks denoted by dPSn.
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decay rate becomes mΓ/ωpi
. This leads to an increased half-life ωpi

τ/m = τ/
√
1− v2 = γτ ,

where v is the velocity of the decaying particle. Of course, this is a well-known effect related
to time dilation. E.g. taking the muon lifetime at rest as the laboratory value of 2.22µs, the
lifetime of a cosmic ray produced muon traveling at 98% of the speed of light is about five
times longer.

In terms of the partial and total decay width, (1.87) and (1.88), the branching ratio (or
branching fraction) for the n-particle decay i→ f reads

B(i→ f) =
Γn

Γ
. (1.89)

Needless to say that B(i→ f) ∈ [0, 1] and
∑

n B(i→ f) = 1.

Cross Sections

Consider an initial state consisting of one target and one beam particle in the momentum state
|i〉 = |pA, pB〉 scattering into a final state |f〉 = |q1, . . . , qn〉. In analogy with the calculation
that lead to (1.88), the corresponding differential transition probability (1.85) per unit time
and flux is given by

dσ =
1

F

dΠn

4EAEBV
|A(i→ f)|2 , (1.90)

which is usually referred to as the differential cross section. Here we have written EA and EB

instead of wpA
and wpB

. In the latter expression F stands for the flux associated with the
incoming beam of particles. The flux can be written as

F =
|vrel|
V

=
|vA − vB|

V
=

|pA/EA − pB/EB|
V

=

√
(pApB)

2 −m2
Am

2
B

EAEBV
. (1.91)

The equality of the next-to-last and last expression can be simply shown by using that p2A =
m2

A = E2
A − p2

A and p2B = m2
B = E2

B − p2
B. Combining (1.90) and (1.91) we thus find the

expression

σ =
1

4
√

(pApB)
2 −m2

Am
2
B

∫
dΠn |A(i→ f)|2 , (1.92)

for the total cross section. The flux factor 1/4
(
(pApB)

2−m2
Am

2
B

)−1/2
is not Lorentz invariant,

but invariant under boosts along the beam direction, as expected for a cross-sectional area
perpendicular to the beam.

Differential Cross Section for 2 → 2 Scattering

To close this chapter we would now like to specialize the result (1.92) to the easiest case of
2 → 2 scattering. We carry out the discussion in the CM frame, the frame in which the
total initial 3-momentum vanishes, i.e., pA +pB = 0. Momentum conservation of course then
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implies that q1 + q2 = 0. For simplicity, we also assume that the masses of all four particles
are equal to m, so in particular we have pApB = q1q2. Under this assumptions one has√

(pApB)
2 −m4 =

√
(q1q2)

2 −m4 =

√
(E1E2 − q1 · q2)

2 − (E2
1 − q2

1)(E
2
2 − q2

2)

=

√
(E1E2 + q2

1)
2 − (E2

1 − q2
1)(E

2
2 − q2

1) =

√
(E1 + E2)

2 q2
1 = E|q1| ,

(1.93)

where in the third step we have used q2 = −q1 and in the final step identified E = E1 + E2

as the total CM energy.
Working in the CM frame we can also partially evaluate the integrals appearing in the

two-body phase space∫
dΠ2 =

∫
d3q1
(2π)3

1

2E1

d3q2
(2π)3

1

2E2

(2π)4δ(4)(pA + pB − q1 − q2) . (1.94)

We first chose to integrate all three components of q2 over the delta function enforcing
3-momentum conservation. This sets q2 = −q1 and converts the integral over the two-body
phase space into ∫

dΠ2 =

∫
dΩd|q1| |q1|2

(2π)32E12E2

(2π) δ(E − E1 − E2) . (1.95)

Integrating over the final delta function gives∫
dΠ2 =

∫
dΩ

|q1|2

16π2E1E2

(
|q1|
E1

+
|q1|
E2

)−1

=
1

16π2

∫
dΩ

|q1|
E

. (1.96)

Here we have used the relation

d

d|q1|
(E1 + E2) =

d

d|q1|

(√
|q1|2 +m2 +

√
|q1|2 +m2

)
=

|q1|
E1

+
|q1|
E2

. (1.97)

From (1.93) and (1.96) we then find the expression

dσ(pA, pB → q1, q2)

dΩ
=

1

64π2

|A(pA, pB → q1, q2)|2

s
. (1.98)

which provides the cross section differential in the solid angle Ω for a 2 → 2 scattering. Notice
that we have used the relation s = E2 here to express the total CM energy E through the
Mandelstam variable s introduced in (1.58).

Notice that the expression for dσ as given in (1.90) is also valid for identical particles in the
final state. Finding a set of particles in the required momentum bin effectively identifies the
particles. However, when integrating dσ to obtain the total cross section σ for the scattering
into the n particles one has to restrict this integration to inequivalent configurations. E.g.,
the total cross section for the 2 → 2 reaction NN̄ → MM in the scalar Yukawa theory is
obtained as σ = 1/2

∫
dσ.
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