M.Phys Option in Theoretical Physics: C6. Problem Sheet 7 HT2019

1) A Green's function

$$
\begin{equation*}
\Delta(x)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k x} \tilde{\Delta}(k) \tag{1}
\end{equation*}
$$

of the Klein-Gordon equation is defined as a function satisfying $\left(\square+m^{2}\right) \Delta(x)=-i \delta^{(4)}(x)$. a) Show that the Fourier transform $\tilde{\Delta}$ of Δ is given by $\tilde{\Delta}(k)=i /\left(k^{2}-m^{2}\right)$.
b) Insert the result from a) into (1) and discuss the various paths in the complex k_{0} plane in relation to the two poles at $k_{0}= \pm \sqrt{\mathbf{k}^{2}+m^{2}}$ which can be chosen to carry out the k_{0} integral.
c) Perform the k_{0} integral for the paths in \mathbf{b}) and show that for one choice of path $\Delta(x)=0$ whenever $x_{0}>0$ and for another choice $\Delta(x)=0$ whenever $x_{0}<0$. Interpret the physical relevance of these two Green's functions, as solutions to the Klein-Gordon equation with a delta function source.
2) Consider a real, free scalar field ϕ with mass m, evaluate the following time-order product of field operators $\int d^{4} x\langle 0| T\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right) \phi(x)^{4}\right)|0\rangle$, using Wick's theorem and draw the associated Feynman diagrams. Focus on the part without loops, Fourier transform x_{1}, \ldots, x_{4} to k_{1}, \ldots, k_{4} and express the result in terms of momentum-space Feynman propagators.
3) Consider a complex, free scalar field φ. Apply Wick's theorem to $T\left(\varphi\left(x_{1}\right) \varphi^{\dagger}\left(x_{2}\right)\right)$ and prove the so-obtained relation explicitly. Do the same for $T\left(\varphi\left(x_{1}\right) \varphi\left(x_{2}\right)\right)$.
4) Consider the decay of a particle with mass M into two particles with mass m.
a) Use the general formula for the decay rate Γ in terms of the matrix element \mathcal{M} derived in the lecture (in fact, in the script I used the symbol \mathcal{A} instead of \mathcal{M} to denote amplitudes or matrix elements) to show that

$$
\Gamma=\frac{1}{16 \pi M} \sqrt{1-\left(\frac{2 m}{M}\right)^{2}}|\mathcal{M}|^{2}
$$

b) Two particle species A_{1} and A_{2} with masses m_{1} and m_{2} scatter in a process of the type $A_{1}+A_{2} \rightarrow A_{1}+A_{2}$. For incoming momenta k_{1}, k_{2} and outgoing momenta q_{1}, q_{2} define the Mandelstam variables s, t, u by $s=\left(k_{1}+k_{2}\right)^{2}, t=\left(k_{1}-q_{1}\right)^{2}$, and $u=\left(k_{1}-q_{2}\right)^{2}$. Show that $s+t+u=2 m_{1}^{2}+2 m_{2}^{2}$.
c) Set $m=m_{1}=m_{2}$ for simplicity. In the centre of mass frame, express the Mandelstam variables in terms of the total centre-of-mass (CM) energy E_{CM} and the scattering angle θ (and the mass m).
d) Show that the matrix element \mathcal{M} for the scattering process in b) can always be written as a function of s and t.
5) Consider $2 \rightarrow 2$ scattering for the case where all four particles have identical masses.
a) Derive the explicit form of the 2 -body phase-space element $\int d \Pi_{2}$ that has been introduced in the lecture.
b) Using your result calculate the angular differential cross section $(d \sigma / d \Omega)_{\mathrm{CM}}$ for a generic $2 \rightarrow 2$ process in the CM frame. The solid angle $d \Omega$ is given by $d \phi d \cos \theta$ where $\theta \in[-\pi, \pi]$ is the polar scattering angle (with respect to the beam axis) and $\phi \in[0,2 \pi[$ the azimuthal scattering angle (around the beam axis). You should obtain

$$
\begin{equation*}
\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{CM}}=\frac{\left|\mathcal{M}\left(p_{1}, p_{2} \rightarrow q_{1}, q_{2}\right)\right|^{2}}{64 \pi^{2} s} \tag{2}
\end{equation*}
$$

where $\mathcal{M}\left(p_{1}, p_{2} \rightarrow q_{1}, q_{2}\right)$ represents the relevant scattering matrix element and $s=E_{\mathrm{CM}}^{2}$ is the total CM energy squared.
6) A model with two real scalar fields ϕ_{1} and ϕ_{2} is described by the Lagrangian density $\mathcal{L}=\frac{1}{2}\left(\left(\partial_{\mu} \phi_{1}\right)^{2}+\left(\partial_{\mu} \phi_{2}\right)^{2}-M^{2} \phi_{1}^{2}-m^{2} \phi_{2}^{2}-\mu \phi_{1} \phi_{2}^{2}\right)$.
a) Derive the Feynman rule for the triplet vertex (i.e., the vertex involving one ϕ_{1} and two ϕ_{2} fields) in this theory by computing the appropriate amputated Green's function.
b) Assume that $M>2 m$ and compute the rate Γ for the decay of a ϕ_{1} particle into two ϕ_{2} particles at leading order.
c) Compute the matrix element for scattering of two ϕ_{2} particles into two ϕ_{2} particles at leading order and express it in terms of Mandelstam variables.
d) Write the matrix element in \mathbf{c}) in terms of the total CM energy E_{CM} and the scattering angle θ. Compute the differential cross section $(d \sigma / d \Omega)_{\mathrm{CM}}$ for the process in \mathbf{c}), assuming, for simplicity, that $E_{\mathrm{CM}} \gg m$.

