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1.) Consider a scalar field Φ with a Lagrangian density

L = (∂µΦ)†(∂µΦ)−m2Φ†Φ− λ(Φ†Φ)2 ,

that possesses a global SU(2) symmetry. Assume m2 < 0 and λ > 0 in what follows.

a) Show that the SU(2) Lie algebra consists of all complex, hermitian 2× 2 matrices with
vanishing trace.

b) Give a basis, τ i, for the Lie algebra of SU(2). What is the dimension of this Lie algebra?
Calculate the associated structure constants.

(Hint: Given a set of generators T a, the structure constants fabc express the Lie brackets of
pairs of generators as linear combinations of generators from the set, i.e. [T a, T b] = ifabcT c.)

c) Assume that the field Φ transforms under the fundamental representation of SU(2) and
that it acquires a vacuum expectation value of the form 〈Φ〉 = (0, v)T with v 6= 0. Compute
v2 in terms of m2 and λ and find the sets of broken and unbroken SU(2) generators. How
many Goldstone modes do you expect for the symmetry breaking under consideration?

d) The global SU(2) is now promoted to a gauge symmetry. Write down a minimal coupling
between the gauge fields Aiµ and the fundamental SU(2) scalar Φ and calculate the masses
of the gauge bosons that result from this Higgs mechanism.

(Hint: For SU(N) the original set of complex N × N matrices corresponds to the funda-
mental representation.)

e) Repeat the analysis you have performed in (d) now assuming that Φ transforms under
the adjoint representation, i.e. the representation the gauge fields Aiµ belong to. Explain
briefly similarities and differences between this model of electroweak symmetry breaking
and the one actually present in the Standard Model of particle physics.

(Hint: In the adjoint representation the generators are given by (T a)bc = −ifabc.)

2.) Consider a complex scalar field ϕ transforming as ϕ(x) → eiα(x)ϕ(x) = V (x)ϕ(x) un-
der a local U(1) symmetry. Any field theory should contain a kinetic term of the form
(∂µϕ

∗)(∂µϕ), where the derivative of ϕ in the direction nµ is defined by the limiting proce-
dure

nµ∂µϕ(x) = lim
ε→0

1

ε
[ϕ(x+ εn)− ϕ(x)] .

a) Why is the above definition of the derivative impractical in the presence of the U(1)
gauge symmetry? Try to construct a sensible derivative, the covariant derivative Dµ, by
introducing a comparator U(y, x) with the following properties: U(y, x) is identical to 1 for
zero separation and required to be a pure phase U(y, x) = exp (iφ(y, x)). It transforms as

U(y, x) = V (y)U(y, x)V ∗(x) ,

under the U(1) symmetry.
b) By considering infinitesimal separated points find an explicit expression for Dµ involving
a gauge connection (or field) Aµ(x). How do Aµ and Dµϕ transform under infinitesimal
U(1) transformations? Write down a gauge-invariant kinetic term for ϕ.
c) To complete the construction of a locally invariant Lagrangian, we must also find a
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kinetic term for the gauge field Aµ. Such a term can, for example, be found by considering
comparisons around a small square in space-time in the (1, 2) plane, namely

U(x) = U(x, x+ ε2̂)U(x+ ε2̂, x+ ε1̂ + ε2̂)U(x+ ε1̂ + ε2̂, x+ ε1̂)U(x+ ε1̂, x) .

Here 1̂ and 2̂ denote unit vectors in the 1- and 2-direction, respectively. How does U(x)
transform under the U(1) symmetry? By expanding U(x) to second power in ε, show that
∂1A2 − ∂2A1 or more generically

Fµν = ∂µAν − ∂νAµ ,

is locally gauge invariant. What is the gauge-invariant kinetic term associated to Aµ?

(Hint: To complete this step use that U(x + εn, x) = exp
(
−iεnµAµ(x+ εn/2) +O(ε3)

)
after verifying that this result is correct.)

d) How does [Dµ, Dν ]ϕ transform under the U(1) symmetry? Find a connection between
the commutator [Dµ, Dν ] and the field-strength tensor Fµν .

e) Try to generalise the results of a), b), c) and d) to the case where the field ϕ transforms
under a local SU(2) symmetry, that is, ϕ(x) → eiα

i(x)τiϕ(x) = V (x)ϕ(x) with τi = σi/2
and σi the usual Pauli matrices (i = 1, 2, 3). Comment on similarities and differences in the
derivations and final results.

3.) Consider three real, free scalar fields φa with the same mass m and Lagrangian density
L = 1

2

∑3
a=1

(
∂µφa∂

µφa −m2φ2a
)
.

a) Show that this theory has an SO(3) symmetry and derive the Noether currents and
charges associated to this symmetry.
b) Generalising the results for a single real scalar field,

φ(x) =

∫
d3k̃

(
a(k)e−ikx + a†(k)eikx

)
,

π(x) = −i
∫
d3k̃ ωk

(
a(k)e−ikx − a†(k)eikx

)
,

quantise this theory using the equal-time commutation relations

[φ(t,x), φ(t,y)] = [π(t,x), π(t,y)] = 0 , [π(t,x), φ(t,y)] = −iδ(3)(x− y) .

Here d3k̃ = d3k/(2π)31/(2ωk) with ωk =
√

k2 +m2, kµ = (ωk,k), and a(k) (a†(k)) an-
nihilate (create) single particle states with momentum k. Find the conjugate momenta,
write down canonical commutation relations, expand the fields in terms of creation and
annihilation operators, work out the commutation relations for aa(k) and a†a(k) and use the
creation operators to construct the Fock space.
c) Find expressions for the conserved Noether charges in terms of creation and annihilation
operators and use these expressions to verify that the Noether charges form an SO(3) al-
gebra.
d) Compute the action of the Noether charges on one-particle states and show that the
one-particle states with a given four-momentum k form a representation of SO(3). What
is the ”spin” of this representation?
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4.) Let’s be adventurous and consider a field theory in two dimensions, with coordinates
(σµ) = (τ, σ), where µ, ν, · · · = 0, 1 and a collection of real scalar fields Xa = Xa(τ, σ),
where a, b, · · · = 0, ..., n− 1. The Lagrangian density is given by L = −1

2gab∂µX
a∂µXb with

associated action S =
∫
d2σL. Two-dimensional indices µ, ν, . . . are lowered and raised

with the two-dimensional Minkowski metric (ηµν) = diag(−1, 1) and its inverse. We take the
metric gab to be the Minkowski metric in n dimensions, that is, (gab) = diag(−1, 1, . . . , 1).
Also, we assume that the fields Xa are periodic with period l = 2π in the spatial coordinate
σ, so that Xa(τ, σ) = Xa(τ, σ + l).
a) Derive the equations of motion for Xa using the variational principle.
b) Introduce ”light-cone” coordinates σ± = τ ± σ and show that the equations of motion
can be written in the form

∂2Xa

∂σ+∂σ−
= 0 .

c) Show that the most general solution to this equation can be written as Xa(τ, σ) =
Xa
−(σ−) +Xa

+(σ+) with

Xa
±(σ±) =

1

2
xa + paσ± +

∑
n6=0

αa±ne
−inσ±

,

where xa, pa are real constants and αa±n are complex constants with αa±−n = (αa±n)∗.
d) Determine the conjugate momenta for Xa and quantise the theory by imposing canonical
commutation relations. Find the commutation relations for the operators xa, pa and αa±n
in the above expansion such that the canonical commutation relations are satisfied.
e) Show that αa±n with n < 0 (n > 0) can be interpreted as creation (annihilation) operators
and construct the Fock space. Then verify that the states α0

±n|0〉 for n < 0 have negative
norm. Speculate on what might have gone wrong.

5.) Consider a real scalar φ(t, x) field living on a two-dimensional space-time and defined
on an interval x ∈ [0, L] with Dirichlet boundary conditions φ(t, 0) = φ(t, L) = 0.
a) Show that the (classical) positive- and negative-frequency solutions to the Klein-Gordon
equation that also satisfy the boundary conditions have the form

φ(±)n (t, x) =
1√
ωnL

e±iωnt sin(knx) .

Give the expression for kn in terms of L. How is ωn related to kn?
b) Now quantise the field φ(t, x), keeping in mind that momentum is discrete

φ(t, x) =

∞∑
n=1

(
φ(−)n (t, x) an + φ(+)

n (t, x) a†n

)
,

with the annihilation/creation operators satisfying [an, am] = [a†n, a
†
m] = 0 and [an, a

†
m] =

δmn. Compute the vacuum expectation value 〈0|H|0〉 of the Hamiltonian density

H =
1

2

[
φ̇2 + (∂xφ)2 +m2φ2

]
.

Integrating your result over the interval [0, L] and show that the total vacuum energy is

E0(L) =
1

2

∞∑
n=1

ωn .
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c) Since this quantity is infinite, we need some form of regularisation in order to handle the
divergence. Let us introduce an exponentially damping function exp(−δωn) with δ > 0 in
the sum, and consider for simplicity the case of a massless field. Prove that in this case the
vacuum energy can be written as

E0(L, δ) =
π

8L
sinh−2

(
δπ

2L

)
.

Take the limit δ → 0 and determine the vacuum energy for the case when no boundary
conditions are imposed. With all this at hand calculate the Casimir force, that is, the
attractive force associated to the mismatch between the vacuum energy of the unbounded
space and that of the theory on the interval.
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