Transformations

5.1 Reflection symmetry around a point \mathbf{x}_0

Let $P_{\mathbf{x}_0}$ be the operator that induces reflections around a point \mathbf{x}_0 . Argue that

$$\begin{split} \dot{P}_{\mathbf{x}_{0}} |\mathbf{x}_{0} + \mathbf{x}\rangle &= |\mathbf{x}_{0} - \mathbf{x}\rangle , \\ \dot{P}_{\mathbf{x}_{0}} \hat{\mathbf{x}} \hat{P}_{\mathbf{x}_{0}} &= 2\mathbf{x}_{0}\mathbf{1} - \hat{\mathbf{x}} , \\ \dot{P}_{\mathbf{x}_{0}} \hat{\mathbf{p}} \hat{P}_{\mathbf{x}_{0}} &= -\hat{\mathbf{p}}, \end{split}$$

and that the transformed wave function fulfils

$$\psi'(\mathbf{x}) = \psi(2\mathbf{x_0} - \mathbf{x}).$$

5.2 For which potentials V is the Hamiltonian $H = \frac{\hat{p}^2}{2m} + V(\hat{\mathbf{x}})$ translationally invariant?

5.3 Show that the orbital angular momentum operators \hat{L}_a (a = x, y, z) are Hermitian.

5.4 A spinless QM system is called *rotationally invariant* if its Hamiltonian commutes with the orbital angular momentum operators $[H, \hat{L}_a] = 0$, a = x, y, z. Rotational invariance expresses the fact the energy measurements remain unchanged under rotations of the system. If the Hamiltonian commutes only with \hat{L}_z it is called invariant under rotations around the z-axis. Consider Hamiltonians of the form

$$H = \frac{\hat{\mathbf{p}}^2}{2m} + V(\hat{\mathbf{x}}).$$

Show that potentials that depend only on the distance $\|\mathbf{x}\|$ lead to rotationally symmetric Hamiltonians, while potentials that depend on x and y only through the combination $x^2 + y^2$ leads to Hamiltonians that invariant under rotations around the z-axis.

5.5 Show that

$$\lim_{N \to \infty} \left[1 + \frac{x}{N} \right]^N = e^x.$$

Give arguments that an analogous formula holds for operators.

Orbital angular momentum

5.6

(a) Show by explicit calculation using $\hat{L}_i = \epsilon_{ijk} \hat{x}_j \hat{p}_k$ that $[\hat{L}_i, \hat{x}_j] = i\hbar \epsilon_{ijk} \hat{x}_k$ and $[\hat{L}_i, \hat{p}_j] = i\hbar \epsilon_{ijk} \hat{p}_k$.

(b) Evaluate $[\hat{L}_x, \hat{L}_y]$ by writing $\hat{L}_y = \hat{z}\hat{p}_x - \hat{x}\hat{p}_z$ and using the results from part (a) of this question.

(c) Show that in the position representation we have

$$\langle \mathbf{x} | \hat{L}_i | \psi \rangle = \hat{L}_i \psi(\mathbf{x})$$

and obtain explicit expressions for the differential operators \hat{L}_i . Show that for any differentiable function f

$$(\hat{\mathbf{L}}_x \hat{\mathbf{L}}_y - \hat{\mathbf{L}}_y \hat{\mathbf{L}}_x) f(x, y, z) = \mathrm{i}\hbar \hat{\mathbf{L}}_z f(x, y, z).$$

Since this holds for any f it can be written as an operator equation $[\hat{\mathbf{L}}_x, \hat{\mathbf{L}}_y] = \hat{\mathbf{L}}_x \hat{\mathbf{L}}_y - \hat{\mathbf{L}}_y \hat{\mathbf{L}}_x = i\hbar \hat{\mathbf{L}}_z$, as you will have found in part (b). Deduce similar expressions for $[\hat{\mathbf{L}}_y, \hat{\mathbf{L}}_z]$ and $[\hat{\mathbf{L}}_z, \hat{\mathbf{L}}_x]$.

(d) Defining $\hat{\boldsymbol{L}}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$, show that (Hint: remember $[\hat{A}, \hat{B}\hat{C}] = \hat{B}[\hat{A}, \hat{C}] + [\hat{A}, \hat{B}]\hat{C}$)

$$[\hat{L}_x, \hat{L}^2] = [\hat{L}_y, \hat{L}^2] = [\hat{L}_z, \hat{L}^2] = 0.$$

(e) Show that in spherical polar co-ordinates the differential operators \hat{L}_i take the form

$$\hat{\mathbf{L}}_x = i \sin \phi \frac{\partial}{\partial \theta} + i \cot \theta \cos \phi \frac{\partial}{\partial \phi} , \quad \hat{\mathbf{L}}_y = -i \cos \phi \frac{\partial}{\partial \theta} + i \cot \theta \sin \phi \frac{\partial}{\partial \phi} , \quad \hat{\mathbf{L}}_z = -i \frac{\partial}{\partial \phi}$$

5.7 (a) Verify that the three functions $\cos \theta$, $\sin \theta e^{i\phi}$ and $\sin \theta e^{-i\phi}$ are all eigenfunctions of \hat{L}^2 and \hat{L}_z . (b) Find normalization constants N for each of the above functions so that

$$\int_0^{2\pi} \mathrm{d}\phi \int_0^{\pi} \mathrm{d}\theta \,\sin\theta \, N^2 \, |\psi(\theta,\phi)|^2 = 1.$$

(c) Once normalized, these functions are called spherical harmonics and given the symbol $Y_{\ell}^{m}(\theta,\phi)$. Hence deduce that your results are consistent with the functions:

$$Y_1^0(\theta,\phi) = \sqrt{\frac{3}{4\pi}}\cos\theta; \qquad Y_1^1(\theta,\phi) = -\sqrt{\frac{3}{8\pi}}\sin\theta \,\mathrm{e}^{\mathrm{i}\phi}; \qquad Y_1^{-1}(\theta,\phi) = \sqrt{\frac{3}{8\pi}}\sin\theta \,\mathrm{e}^{-\mathrm{i}\phi}.$$

(Note, you can't use this method to get the signs of Y_1^0 , Y_1^1 and Y_1^{-1} . The minus sign in Y_1^1 can be deduced by using

a raising operator \hat{L}_+ on Y_1^0 . This is not required.) (d) Rewrite these functions in terms of Cartesian variables $[x = r \sin \theta \cos \phi, y = r \sin \theta \sin \phi, z = r \cos \theta]$. Sketch $|Y_1^0|^2$, $|Y_1^1|^2$ and $|Y_1^{-1}|^2$. (They are angular functions, so keep r fixed and look only at the angle dependence. A cross section in the x-z plane will do. Why?)

5.8 The angular part of a system's wavefunction is

$$\langle \theta, \phi | \psi \rangle \propto (\sqrt{2}\cos\theta + \sin\theta \,\mathrm{e}^{-\mathrm{i}\phi} - \sin\theta \,\mathrm{e}^{\mathrm{i}\phi})$$

What are the possible results of measurement of (a) \hat{L}^2 , and (b) \hat{L}_z , and their probabilities? What is the expectation value of \hat{L}_z ?

5.9 A system's wavefunction is proportional to $\sin^2 \theta e^{2i\phi}$. What are the possible results of measurements of (a) \hat{L}_z and (b) $\hat{\boldsymbol{L}}^2$?

5.10 A system's wavefunction is proportional to $\sin^2 \theta$. What are the possible results of measurements of (a) \hat{L}_z and (b) \hat{L}^2 ? Give the probabilities of each possible outcome.

5.11 A particle of mass m is described the Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 - \frac{e^2}{4\pi\epsilon_0 r} - e\mathcal{E}\hat{x}.$$

(a) What is the physical origin of the last term in \hat{H} ?

(b) Which of the observables represented by the operators \hat{L}^2 , \hat{L}_x , \hat{L}_y and \hat{L}_z are constants of the motion assuming (i) $\mathcal{E} = 0$; (ii) $\mathcal{E} \neq 0$ (Hint: Use the results for $[\hat{L}_i, \hat{x}]$ from [5.6].)

5.12 Show that \hat{L}_i commutes with $\hat{x} \cdot \hat{p}$, $\hat{x} \cdot \hat{x}$ and $\hat{p} \cdot \hat{p}$.

Evaluate (think carefully!) the commutator
$$\left[L_x, \left((\hat{\boldsymbol{x}} \times \hat{\boldsymbol{p}}) \cdot \left(\hat{\boldsymbol{L}} \times \hat{\boldsymbol{p}}\right)\right)^2\right]$$