
Further Quantum Physics
John Wheater

Hilary Term 2009 Problems

These problem are labelled according their difficulty. So some of the problems have a double dagger
†† to indicate that they are a bit more challenging. If you can do them you’re really on top of the
subject. Some of the problems have a single dagger †. They are straightforward extensions and
applications of material in the lectures; first time round they will take you some time and may
raise difficulties that you’ll need to discuss with your tutor but in a couple of years time they’ll
seem really easy. Finally there are problems with no daggers; these are either really easy or pretty
much the same as problems we’ve done in the lectures.

Your tutor may well tell you to do just a subset of the problems to start with, but you will find it
very helpful to have attempted them all before the TT exams.

1 Hydrogen gross structure

1. Energy levels Write down the expression for the energy levels of hydrogen. Evaluate the
ionization energy of hydrogen to 5 significant figures in electron volts, taking care to allow
for the reduced mass of the electron. Calculate the wavelength of the transition from n = 4
to n = 3.

2. Write down the definition of the fine structure constant α in terms of e, ε0, ~ and c. Show
that α is dimensionless. Evaluate α and 1/α to 4 significant figures.

3. Write down an expression for the Bohr radius a0, (a) in terms of e, ε0, ~,m; (b) in terms of
α and other quantities.

4. States Find the errors in the following, and suggest corrections:
(a) The ground state of hydrogen is 2s.
(b) The 2p–1p transition in hydrogen is ultraviolet.
(c) The angular part of the wavefunction in hydrogen depends on n and l.

5. Wavefunctions
(a) Treating a0 as a parameter, write down the complete wavefunctions (including radial
and angular parts) for the states 1s, 2s, and 2p (giving all three ml possibilities in the last
case). In each case draw neat graphs of the radial part of the wavefunction, R(r), and also
r2|R(r)|2. What is the significance of the latter? N.B. this question is not intended to test
your mathematical abilities, but to produce familiarity with the wavefunctions. Look them
up and copy them!
(b) How does Rn,l vary with r as r → 0? Draw on a single plot a ‘close-up’ of Rn,l in the
region r < 10−15 m for the states 3s, 3p, 3d. What is the significance of this region?
(c) Consider the probability density distributions for an electron in the 2p ml = 0 state and
the 2p ml = 1 state, where ml is the magnetic quantum number. Which distribution is
shaped like an hour-glass, and which like a doughnut? Make an “artists impression” sketch
of these 3-dimensional probability density distributions. How does the wavefunction (not the
probability density) carry the information about the sign of ml when ml = 1 or −1?

6. An excited state wavefunction We will sketch the radial part of the wavefunction for the
n = 10, l = 9 state of hydrogen. First consider
(a) How many nodes has it got?
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(b) How does it vary for small r?
(c) Now consider the radial effective potential

Veff =
l(l + 1)~2

2µr2
− e2

4πε0r
.

Solve Veff(r) = E for r, where E is the total energy −E1/n
2. Thus obtain the two places

where the kinetic energy falls to zero for the n = 10, l = 9 state. In between these two values
of r is the classically allowed region. Outside the classically allowed region the wavefunction
falls rapidly to zero. Bringing your results from (a), (b) and (c) together, sketch the radial
part of the wavefunction.

7. †Expectation values Show that in the ground state of hydrogen, 〈rn〉 = (n+2)(a0/2)
〈
rn−1

〉
.

What is
〈
r0
〉
? Is there any restriction on the value of n? Derive 〈r〉 and 〈1/r〉 in terms of

a0. Hence find 〈V (r)〉, where V (r) = −e2/4πε0r. Given the expression for the ground state
energy, use this result to deduce the mean kinetic energy of the electron in the ground state
and hence its r.m.s. speed v. Express v in terms of α and the speed of light.

8. Scaling: hydrogen-like ions
(a) How do the energy levels of hydrogen-like ions scale as a function of the nuclear charge Z?
The following wavelengths (as well as many others) are observed in emmision from a plasma:
3.375 nm, 2.848 nm, 2.700 nm, 18.226 nm, 13.501 nm, 12.054 nm. Show that this spectrum
is consistent with emission from a hydrogen-like ion, and identify the element. [Method: first
make a reasonably accurate sketch of this spectrum on a frequency scale, then guess the
identity of one or more of the transitions, then confirm your guess using your knowledge of
the pattern to be expected, and hence deduce Z].
(b) How does the mean radius for an electron in the ground state of hydrogen-like ions scale
as a function of the nuclear charge Z? What is the mean radius for an electron in the ground
state of this ion?

9. Scaling: muonic ions A muon has mass 206 times the electronic mass and the same charge
as an electron. The particle may be captured by an atom and the radiation which is emitted
as the muon cascades through the energy levels can be measured.
(a) Assuming the muon-nucleus system can be treated as hydrogen-like, find the energy in
MeV of the photon emitted as the muon goes from a state with principle quantum number
2 to the ground state in an atom of lead.
(b)†Is it reasonable to neglect the effect of the electrons in this calculation as a first approx-
imation? (Consider the mean radius of the muon orbits). Do you think the influence of the
nuclear charge has been accurately accounted for?

10. Spectroscopy: ionization potential Explain how the ionization potential may be derived
from the emission spectrum of hydrogen. Outline a sensible way to analyse the experimental
data in order to get a precise result.

11. Spectroscopy: line resolution Estimate how many lines of the Paschen series of hydrogen
could be resolved by a good grating spectrometer whose grating had a width 10 cm. Would
such an instrument also be useful for examining the the Lyman series?

12. States Which of the following are energy eigenstates for hydrogen (ignoring normalisation)?
In each case give your reasoning and if it’s not an eigenstate then what is it? (N.B. The
intention is that you answer this without operating on each wavefunction with the Hamil-
tonian. Rather, look up the energy eigenstate wavefunctions (radial and angular parts) and
recognise them. If you are unsure in any given case, of course operating with the Hamiltonian
will give an unambiguous answer, but that ‘brute force’ method is less insightful.)
(a) e−r/a0

(b) re−r/2a0

(c) re−r/2a0 cos(θ)
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(d) e−r/a0 cos(θ)
(e) re−r/2a0(cos(θ) + sin(θ)eiφ)
(f) e−r/a0 + (1− r/2a0)e−r/2a0

2 Perturbation theory

1. Derivation Derive the expressions for the first order shift in energy, and change in the
wavefunction, in non-degenerate perturbation theory. Explain why this calculation fails if
there are degenerate states in the spectrum.

2. Example 1 A particle of charge q and mass m is in a harmonic oscillator potential V 0 =
(1/2)mω2x2. A perturbation is introduced which changes the potential to V = V 0 + ∆V
with ∆V = (1/2)λmω2x2 where λ is small.
(a) Use perturbation theory to compute the first order shift in the ground state energy. [The
integral that you will need is given later in Question 5.2.]
(b) Of course the problem with the full potential V is exactly solvable because it’s just a SHO
with a shifted frequency! So write down the exact expression for the ground state energy.
Now expand it in powers of λ and check that the order λ term is the same as you calculated
in part (a).

3. Example 2 †This is a classic example of – and test of – perturbation theory. A particle of
charge q and mass m is in a harmonic oscillator potential V = (1/2)mω2x2. A weak external
electric field of magnitude f is applied along the x direction. This gives an electrostatic
potential −fx and potential energy Vf = −qfx. Treating this as a small perturbation,
calculate the shift in energy of all the states, as follows.
(a) Write down the energy shift to be calculated, δE(1)

n , in the form of a matrix element
(don’t do the integral yet), by quoting the standard result of first-order perturbation theory.
(Call the energy eigenstates of the unperturbed Hamiltonian |n〉 as usual.)
(b) Now have a quick look at the overall form of the integral for the matrix element, and
using your general knowledge of the quantum harmonic oscillator, deduce that the first order
shift is zero for every n.
(c) We will next work out the first order change in the wavefunctions (this will turn out to
be non-zero). First write down the standard result, derived in question 1, involving a sum of
matrix elements divided by energy differences.
(d) We could in principle write out the integrals using the Hermite polynomials and Gaussian
function, but that is hard work! Let’s see if we can apply our knowledge of the harmonic
oscillator. First, recall that the position x can be regarded as an operator, and written in
terms of raising and lowering operators:

x = C(a+ a†)

where C = (~/2mω)1/2. The raising and lowering operators have the effects

a† |n〉 =
√
n+ 1 |n+ 1〉

a |n〉 =
√
n |n− 1〉

Use this information to evaluate the matrix element 〈n|x |k〉 for arbitrary n, k (you should
find that there are two cases to consider).
(e) Hence show that up to first order the state is∣∣∣n(1)

〉
= |n〉+

qfC

~ω

(
(n+ 1)1/2 |n+ 1〉 − n1/2 |n− 1〉

)
.
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Does this formula give the correct result when n = 0? (f) Write down the formula for the
2nd order energy shift, and use the result of part (e) to show it is δE(2)

k = −q2f2/2mω2.

(g) This is a nice test of perturbation theory, because the problem can be solved exactly by a
simple insight. To get the general idea, plot a graph of V (x) and also of V (x) + Vf (x). (For
the purpose of this graph alone, choose m = ω = q = f = 1). The point is, the new potential
energy is still exactly a quadratic, it is merely shifted over and down a bit. Therefore write
V (x) + Vf (x) = A(x − x0)2 + B and find A and B. Use this to deduce the exact energy
eigenvalues for this problem, and hence confirm your answers from parts (b) and (f).

4. Degenerate PT †The two-dimensional SHO has Hamiltonian

H =
1

2m
(p2
x + p2

y) +
1
2
mω2(x2 + y2)

and the normalized wavefunctions for the ground state and 1st excited state of the one-
dimensional SHO are φ0(x) = N0e

−αx2/2 and φ1(x) = N1xe
−αx2/2 respectively. Let Φnm(x, y) =

φn(x)φm(y).
(a) Explain why the ground state wavefunction for the 2d SHO is Φ00(x, y) and the first
excited state is doubly degenerate with wavefunctions Φ10(x, y) and Φ01(x, y).
(b) A small perturbation λxy is now added to the Hamiltonian. Show that to 1st order in λ
the ground state energy does not change.
(c) Using degenerate perturbation theory show that the degeneracy of the 1st excited state is
lifted and that the wavefunctions of the two resulting states are (Φ01(x, y)± Φ10(x, y))/

√
2.

What are the corresponding energies?
(d) Show that in this context a “small” perturbation means λ� mω2.

3 Hydrogen fine structure

1. Angular momentum reminder The total angular momentum of a particle with orbital
angular momentum l and spin angular momentum s is j = l + s. The eigenvalues of j2, l2

and s2 are j(j + 1)~2, l(l + 1)~2 and s(s + 1)~2 respectively. State the possible values of j
for the cases
(a) l = 0, any s
(b) l = 1, s = 1/2
(c) l = 1, s = 1
(d) l = 1, s = 3/2
What is the general rule which tells you how many values of j to expect for arbitrary l, s?
What basic information about the fine structure of hydrogen does all this tell us?

2. Relativistic correction to KE Show that the first correction to the kinetic energy term
in the Schrödinger equation, when one allows for special relativity in the case v � c, gives a
perturbation

δHm = − 1
2mc2

(
H0 − V (r)

)2
.

Quoting the standard results of 1st order perturbation theory, show that for hydrogen the
energy shift produced by this perturbation is

δE = − 1
2mc2

(
E2
n + 2En

e2

4πε0

〈
1
r

〉
+
(

e2

4πε0

)2〈 1
r2

〉)
Obtain the shift of the ground state of hydrogen using your results from problem set 1, Q.7.
Express the result in terms of a suitable power of α and other quantities. Evaluate the shift,
in GHz.
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3. Spin-orbit interaction
(a) Derive the expression for the spin-orbit interaction Hamiltonian in a one-electron atom
or ion with nuclear charge Z. Use the simple method which leads to a factor of 2 error, and
then put in the factor 1/2 correction due to Thomas precession, but don’t spend time on the
latter at this stage.
(b) What is the direction of the B-field experienced by the electron relative to its orbital
angular momentum?
(c) What is the direction of the intrinsic magnetic dipole of the electron relative to its spin
angular momentum?
(d) If the spin and orbital angular momentum vectors were described by classical mechanics,
explain in qualitative terms how they would behave as a function of time.

4. Constants of motion Explain what a ‘constant of the motion’ is, and what is meant by
a ‘good quantum number’. Considering the fine structure (spin orbit coupling) of hydrogen
in order to have a definite example, state the (relevant) constants of the motion and good
quantum numbers. Give an example of one or more quantum numbers which are not good
in this case.

5. With your expression from Q.3, use perturbation theory to derive the spin-orbit shift

∆Eso =
gs
8
mc2Z4α4 1

n3

(
j(j + 1)− l(l + 1)− s(s+ 1)

l(l + 1/2)(l + 1)

)
You may quote the expression for < 1/r3 > from a reference. The shift is of order Z2α2

times the gross structure energy of the atom. What is the significance of this?

6. Find the splitting between the j = 3/2 and the j = 1/2 levels of the 2p configuration in
hydrogen, in GHz. Estimate the size of the magnetic field experienced by the electron. Using
the known n-dependence, find also the splitting of the 3p configuration. Draw a simple
energy-level diagram showing all the n = 2 and n = 3 levels, labeling the levels with the
appropriate quantum numbers. Exaggerate the fine structure so that it is clearly indicated,
but is to a consistent scale for both configurations. (There is actually another contribution
called the Lamb shift which you may ignore for this question. If you have time read about it
in Haken and Wolf.)

7. Spectroscopic notation Which quantum numbers are specified by the notation 3 2D5/2?
Give the names and the values which are indicated. How many degenerate quantum states
are together included in the level 3 2D5/2 of hydrogen?

8. ††Show that the spin-orbit interaction, when small and therefore treatable as a perturbation,
does not shift the ‘centre of gravity’ of the set of energy levels when it splits up a degenerate
energy level into a group. The ‘centre of gravity’ of a set of energy levels is defined as the
sum of giEi where Ei are the energies and gi the degeneracies, i.e. the number of quantum
states in the level (e.g. the 2j+ 1 states of different mj for given j). The case where s = 1/2
as in hydrogen is fairly easy because you only have j = l ± 1/2 to consider, but if you wish
you may like to prove the result for the more general case of any values of l and s.

9. Sodium 10+ ion Estimate the size of the fine structure of the 2p configuration in hydrogen-
like sodium (i.e. sodium ions with all but the last electron removed). Why can’t we use
perturbation theory to calculate the effect of the spin-orbit interaction in hydrogen-like ura-
nium?

10. Isotope shift
(a) If you haven’t already done it, go through section 7.1 of James Binney’s ”Book of the
course” now.
(b) Calculate the difference between the ground state energy of hydrogen and deuterium
owing to the different reduced mass. Calculate the isotope shift for the transition 2s–3p, in
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GHz (i.e. just calculate that part of the isotope shift which is caused by the difference in
reduced mass).

11. Nuclear volume Calculate by first-order perturbation theory the nuclear volume shift for a
hydrogen isotope, using the model that all the nuclear charge is contained in a spherical shell
of radius R. Compare your answer with the result described in the lectures where the nucleus
is modeled (somewhat better) as a uniform sphere of charge. Taking R = 1 fm, calculate the
size of the shift and compare it to the mass shift calculated in question 10.

12. ††This is a trick which allows you to work out 〈1/r〉 for all the energy levels of hydrogen.
Consider the quantity 〈λ/r〉 where λ is small. We can interpret 〈λ/r〉 as the first-order
correction due to a perturbation λ/r. Now such a problem can be solved exactly: we just
replace e2/4πε0 by (e2/4πε0)−λ: explain why. Now e2/4πε0 = α~c, so we are replacing α~c
by α~c − λ. Make this replacement in the formula −(1/2)µα2c2 for the energy levels and
hence show that the energy change to first order in λ is λ/a0n

2. Hence derive 〈1/r〉.

13. ††This confirms a point which has been assumed above, namely that the relativistic kinetic
shift can be treated using the familiar states having quantum numbers n, l,m. Since we have
degeneracy, we can’t take it for granted. Argue that the orbital angular momentum l̂2 is a
constant of the motion under both H0 and δH, as follows.
(a) We already know [l̂2, H0] = 0 for any spherically symmetric problem, but in any case give
a proof to make sure we know what we are doing. [Hint: work in spherical polar coordinates,
and express the kinetic energy as an r-dependent part plus l̂2/2mr2. If you actually carry
out any differentiating, you have not taken the simplest route.]
(b) Show that [l̂2,K] = 0, where K̂ = p̂2/2m is kinetic energy, e.g. by re-using part (a).
(c) Our perturbation is proportional to kinetic energy squared. Use a general result for
commutators of the form [A,B2] to show that [l̂2,K] = 0 implies [l̂2,K2] = 0.
(d) We have now proved both [l̂2, H0] = 0 and [l̂2, δH] = 0 for our problem where H =
H0 + δH. What is the significance of these results to degenerate perturbation theory?

4 Zeeman effect

1. Weak field Explain what is meant by ‘weak’ and ‘strong’ magnetic fields in the context of
the Zeeman effect. Give appropriate values of magnetic field for experiments on the 1s–2p
transition in hydrogen.

2. Explain which constants of the motion are relevant to the Zeeman effect.

3. The ground state g of the helium atom has zero angular momentum (both orbital and spin
contributions are zero). The first excited state e (i.e. the lower level of the pair which together
form the first excited configuration) has zero orbital angular momentum, and spin 1. Show
that a weak applied magnetic field B will not change the ground state energy, and it will
split the first excited state energy into three energy levels, and derive the splitting. Hence
derive the effect on the observed radiation associated with transitions between e and g. (N.B.
the transition between these two states is weak because it cannot occur by electric dipole
radiation (to be discussed later), and its study is non-trivial because of the far-ultra-violet
wavelength.)

5 Helium gross structure

1. Helium atom; screening
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(a) Account for the energies of configurations 1s2, 1s2s, 1s2p, 1s3s, 1s3p, 1s3d of helium in
terms of a simple screening argument, as follows. All but the ground state configuration give
a pair of terms (the singlet and the triplet); for present purposes just take the average energy
of this pair. We will model the set as hydrogenic with an effective nuclear charge Zeff(n, l).
Calculate Zeff for all the configurations mentioned above, and notice the general pattern.
Comment on how the dependence on both n and l can be understood by simple screening
arguments. (To find the energy levels, look them up in a book. They are given in Woodgate
and in Kuhn, for example, and in the Optics practical course).
(b) Have we allowed for the energies of both electrons in these calculations? What are we
taking to be the situation corresponding to zero energy?

2. Variational method Apply the variational method to find an upper limit on the ground
state of a particle in the potential V = λx4, using a Gaussian trial wavefunction exp(−αx2/2)
(and don’t forget to normalize it!). You should find

E0 ≤
3
8

(
6~4λ

m2

)1/3

Compare this with the calculation we did in the lectures. Which is better and why? [Here
are some integrals:∫ ∞

−∞
xne−αx

2
dx =

(π
α

)1/2

×
{

1,
1

2α
,

3
4α2

}
for n = 0, 2, 4. ]

3. He: ionisation potential
(a) If we make the (poor) approximation of ignoring the electron-electron repulsion altogether,
what value (in eV) is obtained for the ionization potential of the ground state in helium?
(Ionization is the case that one electron is removed.) How much additional energy would
then be required to remove the second electron? Assuming these estimates have been made
as precisely as reasonably possible without lengthy calculation, state the degree of precision
of each of these two results (i.e how close they may be expected to be to the true first and
second ionization energies for helium.)

(b) To do better, use the variational method. Using hydrogen-like wavefunctions for both
electrons, the mean energy as a function of an effective nuclear charge Z is found to be

E(Z) = −2ER
(
4Z − Z2 − 5Z/8

)
.

Complete the variational procedure, and hence obtain an upper limit for the ground state
energy, and a lower limit for the ionization energy of helium.

4. Exchange Symmetry
(a) State the Exchange Principle. Give the exchange symmetry requirement for (i) states of
identical bosons and (ii) states of identical fermions. Derive the Pauli Exclusion Principle.
(b) The Pauli Exclusion Principle specifies an important restriction on the possible states
of identical fermions. Is there a restriction on the possible states of identical bosons, or are
they unrestricted?

5. Write down the potential energy as a function of particle positions for
(a) The gravitational potential energy of two particles of the same mass, positioned some-
where in the vicinity of the earth and moon, but far from any other body.
(b) The electrostatic potential energy of the H2 molecule, which consists of two protons and
two electrons.
Examine the exchange symmetry of the functions you have written down. They illustrate (if
they are correct!) the fact that interaction energies do not depend on particle labelling.
(c) Do these expressions depend on whether the particles are bosons or fermions?
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6. Exchange symmetry quiz Which of the following are impossible? (and, as always, explain
your reasoning)
(a) In the ground state of helium, both electrons have the spatial wavefunction ψ(r, θ, φ).
(b) The potential energy of a pair of electrons in two potential wells centred at a and b (where
b 6= a) is V = C(a− x1)2 + C(b− x2)2.
(c) A pair of electrons is in the state

1√
2

(f(r1)g(r2)− g(r1)f(r2))⊗ |↓〉1 ⊗ |↑〉2

(d) A pair of electrons is in the state

1√
2

(f(r1)g(r2)⊗ |↑〉1 ⊗ |↓〉2 − g(r1)f(r2)⊗ |↓〉1 ⊗ |↑〉2)

(e) A pair of electrons is in the state

1√
2

(f(r1)g(r2)− g(r1)f(r2))⊗ |↑〉1 ⊗ |↑〉2

(f) A group of three electrons is in the state

1√
2

(f(r1)g(r2)h(r3)− f(r2)g(r3)h(r1) + f(r3)g(r1)h(r2))⊗ |↑〉1 ⊗ |↑〉2 ⊗ |↑〉3

7. (Singlet-triplet splitting) Explain carefully how the splitting between singlet and triplet
states arises in helium. A thorough argument including mathematical expressions as well
as explanatory statements is needed. Estimate the order of magnitude of the splitting (by
considering the interaction which causes it).

6 More on Exchange Symmetry

1. †Fun with exchange operators Let X be the exchange operator. Prove that:
(a) X 2 = 1
(b) X has eigenvalues ±1.
(c) If XQX = Q for operator Q, then [X , Q] = 0.
(d) If XQX = W , then XQ2X = W 2.
(e) If [X , H] = 0 then non-degenerate eigenstates of H must also be eigenstates of X .
(f) If [X , H] = 0 then 〈+|H |−〉 = 0, where

X |+〉 = |+〉 , X |−〉 = − |−〉

[Hint: if in doubt about operator manipulations, allow the operator product or sum to act
on a state, and then if the result doesn’t depend on the state, it must be a property of the
operators themselves.]

2. ††More fun, and we will get to a nice result. Prove that
(a) Xx1X = x2

(b) Xp1X = p2 [Hint: do the differentiation, but think carefully. If in doubt, try the
wavefunction ax2

1 + bx5
2 just to get the hang of things.]

(c) X V (x1, x2)X = V (x2, x1) [Hint: argue that V can always be expanded as a power series
in powers of x1 and x2, and just treat a general term xn1x

m
2 from such a series.]

(d) [X ,K] = 0 where K = p2
1/2m+p2

2/2m is the combined kinetic energy of a pair of identical
particles. [use part (b), and 1(d) and 1(c)]
(e) If V (x1, x2) = V (x2, x1) then [X , H] = 0. [use parts (c) and (d) and 1(c)]
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Since potential energy will never depend on particle labelling, (c.f. question 5.5) and using
the extension of these results to include spin as well, the conclusion from part (e) is that
exchange symmetry is always a constant of the motion. Also, using 1(e), non-degenerate
energy eigenstates of identical particles always have definite exchange symmetry (and you
may like to show further that the degenerate energy eigenstates can always be combined in
such a way as to ensure they have definite exchange symmetry).

3. ††Suppose there existed a particle called a hypertron which is in all respects like an electron,
except it has a further property called ‘hyperspin’ which distinguishes it from an electron.
Assume that we do not possess a means to detect the presence of hyperspin directly, and
it does not contribute to the energy of interaction of hypertrons with everyday particles
such as protons, electrons or photons. If some helium atoms contained one electron and one
hypertron, how could they be told apart from helium atoms which contained two electrons?
List as many features or experimental observations as you can.

4. ††Practice on exchange symmetry A one-dimensional harmonic potential well has the
form V (x) = (1/2)mω2x2. The lowest three energy eigenstates are g(x), f(x) and h(x)
(to keep the notation uncluttered it will be convenient to use g, f, h rather than ψn(x)). A
convenient notation for fermionic spin states is ↑, ↓ for |s = 1/2,ms = ±1/2〉 (spin half) and
⇑, ↑, ↓, ⇓ for |s = 3/2,ms = 3/2 · · · − 3/2〉 (spin 3/2). Suppose three identical particles are
in the well. Write down a possible form for the ground state, and hence deduce the ground
state energy, when
(a) the particles each have spin zero
(b) the particles each have spin half
(c) the particles each have spin 3/2
(in all cases assume the particles do not interact with one another) [Hint: (b) and (c) require
careful thought. Begin by listing some low-lying single-particle states having the form of a
product “(spatial part) ⊗ (spin part)”. Then use a determinant to help you write down a
state which is antisymmetric w.r.t. exchange of any pair. For (b) and (c) the ground state
of the 3-particle system is degenerate, so there is more than one correct answer.]

5. ††More practice on exchange symmetry Imagine a situation in which there are 3 par-
ticles and only 3 states a, b, c available to them. Show that the total number of allowed,
distinct configurations for this system is
(a) 27 if the particles are non-identical
(b) 10 if they are bosons
(c) 1 if they are fermions
(d) write down the state in the case of 3 fermions

6. ††When is identical distinguishable? Discuss under what conditions identical particles
may be regarded as distinguishable. Make an order-of-magnitude estimate of the degree of
approximation involved in treating as distinguishable the electrons in two hydrogen atoms
separated by 1 nm (consider for example the impact on the energy levels).
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