LE(’TME |

RETURN To ouR BASIC CoNSERVATION EQN.

d vulaite - < |
[:E(.«Hq:w L<¥ICH Q11 ,

SOFAR STUDIEN CoNSEQUENCES ForRr SIMNFLEST
cprseE Q=14

e NOW EXPLORE MORE GENERALLY
(/’(S' UWSnAL TARE H --_g’i <+ V(x) )
Zm

i) TOTAL EVERGY IS CSNSERVED REcAwIE
[HH] = HH-HH = ©

so zd_b_.gq.ww) =o For AL |¥4>

1) Now (eN3IDER MoH M p
[(H,p) = [-fs-w(x), Pl
= [£5 0P ]+ [ven, Pl

=L (p'p-prt) + [von, p]
) \-—?_J

= [Vix), p]



BuT [V, I = [u03, -t ¥/ax )

To Wtk THIS OUT PuUT ARBITRARY FN 6V

Rs
[VO, P18 0> = SVOn)(-h2 Y it vm}sm
s —chVlv) oF 03' + KV g -o-c#\N}
_-" ox >’ _ o

= (h oV Y
ORr

= [vo),p] =it %;r, NoT 2ego
X

THEREFORE
[Hpl =ckev  Awnb
ox
d<py o —(ov
S22 - 3) | @)

NoTE SiMiAlTY oF (%) To CLASSICAL
EaN oF MoTien

(%) SHews THAT dp>/de canwer RE Zeko
UNLGSS aV/ax =0 . RuT a\'/a’ = o

SAYS V= ConST  Ad) FIND LINEAR MoM ‘M



@D
CONSERAVATION ONLY WHEN H INDEF’T 6F

Pesthioni (SYSTEM INDELT oF PosiTiow)
i) Ndd TAKE Q=¥

L
(Hx] = [E+v, x]

= -5% s .xj + [ver), x]

Vir) x= 3 Viy)

= 0
USEFuL To HAvE Exmession For (A% @]

[A® ] = A8 - BA®

= AA&’ (AgA - AgA) - KAA
\.—-—-\—__'

= A(AB-RA) + (Ae-eA)A

| = A[A,8) + [a,g]A
APPLYING THIS

[, x] = = {F[ﬁ,kl + [ﬂx]r}

Now CALcucATE [P, %] 8Y AcTING oN
ARNTAANY £(x)



®
[ﬁk]{()&) & (-i*\% X + X ¢'k39; ) 4

= - a_", o _ oF
i be x'.a.... . L3 ?
= ¢k $(n) |
= [FUNMDAMENTAL
I [P, X] = -(F PRoPERTY dF
X AND p OF%

&
[(H,x] ={‘;£,o(-ik) * (-#)p |
— -Ct.ﬂ.

d<x> - <p>
2 = 2| d)

AND (osiTionN 1S NoT CoNSEAVED UNLESS IN

THws

SPEaAL STATE WiTH P> =0
NUTE : (f) IS M ANALGGUE To CLASSICAL
X = p/m

FRor (%) AND (1) SEE THAT CLASSICAL EQNS

OF MoTiow ARS oKeEYED ON THE AVERAGE

IN &1 (EHREVFEST THN.)



MORE ON cmnufg’oes

» HAVE SEen How [H, Q] =o IMPLES

d<aAS> o v B,
Ie

e So FAR HAVE ALWAYS BEEN WokNwW & WITH
ExPGCTATION VALUES (AVERAGES).

e0ES [H,QF =0 HAVE SPECIAL
CONS EUV.ENCES FoR INOIV!IDUAL MEASVPENER

YES...
o WE. kNow E%TAr=s oF H SATISFY

He¢ = E. ¢

REMEMBER THIS MEANS THAT IE

Wix,t) = e‘iE”klt' 55,,(3)
N

NOT A SufeRpPosITien

“THEN WHEN WE MEASURE ENERGY WUE
Uitk 6ET E, (WITH PROR =)

o NOW SUPPOSE THE FAME FuncTIoNS @, ARE
ALSO E STATES oF ANOTHER oP. QL

Q¢h =“Lh¢n




©
THIS MEANS THAT IF PARTICLE DESCRIEED BY

P THEN IT ALSo HAS A DEFINITE VALUE -
oF Q GIVEN BY ‘Ln

PRo8 (A= 9n) = I

® WHAT IS CoNOITION THAT THIS IS PoSsiQLE?
ACT oN HH, =E. 4, with @

-— - - e g,

QHA. = E.Q¥. =!E,q. ¥}

ALTERNATVELY ACToN Q@, = 1§,
WITH H

HQ¢.\ =1hH¢ .Q“E ¢h‘SI\hC

§~--

SUBTRACTING ABovE EQNS
(Ha - aH) ¢, =0
SINCE, @Y AssumPTIoN, TAUE FoR ALL &,

N




"mus :

I [H,a] =0 T Is fessT@LE FoR |
n

PARTICLE To BE IN STATE OF DEFINITE :
ENERGY (A'sTATIoNARY STATE') IN WHICH :

THE VALUE oF @ IS ALSo DEFINITE -:

-_— e o o o e G or oG aGF oG o o O OF O G T oSO

re———===="

o VUAT HAPPENS IF W(x,t) IS NOT AN E - EIGEW
- STATE?

EG. SUPERPesITION OF 2 E'STATES
oty =o,dime’ oo gne
WTH = (a1 + e [*
So PRoB(E=E) = oI
PRo8 (E<E,) = |aql®
CLET’S CoMPUTE CQY
<63 "“(‘l’*Q Y dx
- ‘((df 4 etﬁ.e/g+a,: ¢‘e¢°s‘e/¢;)
(426 € aqude™

= q,(a,|'+ ‘l\-l“tlz




@
THIS IS TusT

<Q> = 7,*(PreB v s1ATEL) +1, * (PROR STATEZ)

Co IF WE HAKE A NMEASUREMENT OF BoTH H AND
8. WE FIND

CE,q,) WITH PRoG = [a,|
(e, 2) WITH PRog = [ay]”

=i

FUNDAMENTAL POINT (S

IF [H, @] =0 THEN CAN HEAsuRE
BoTH QUANTITIES AND SIMULTANEGLSLY

Fwb PRECISE. VALUES OF BoTH H
AND @

o VHAT HAPPENS IF [H @] #07

IN FACT ALREADY STuDIED THIS UHEN
Loohed AT Q=7 IN CASE OF INFIMITE
SQUALE. WELL ...



$ 4
V=09
V= ¢ :
[H/F-] = tta_\f # 0
oX
Since AT X=0 ?_V_,-.,g
I x
© y=z¢o A AND AT Xzo. IV —300

X
IN THIS CASE WE SAW THAT

IF PAATicLE MHAS DEFIMITE ENELGY
Yont) = e B L ) THEW

Y 1S A SUPERPosiTIoN oF

STATES WITH DIFFERENT
MOMENTA

Eauwv: | WE CANNOT kNoW RéTH E AND
P FoR surE siNce [H pl#o

GEWERAL RESULT W QM

IF A AND B ARE PHYSILAL (HERMITIAW)
I | ofc. Wit [A,8]# 0 THEN CANNOT IV

GENERAL SIMWULTANBOUSLY KNow VALUES
OF A Avo (&




COMALETE SETS OF QuAWTuM Nuneeﬂg
Sutfose Ve HAvE Two ofs. Q, , Q,
SATISFYING

[M,a,1=c a0 [HQ,]=0

THeEN
dt ZF.' °

AND BoTH OBSERVARLES ARE (ONSERVED

osHWEVER IF [@,,Q, ] #0 THEN

ViLL NOT BE ABLE To MAKE DEFNITE
MEASUREHENTS OF BoTH

¢ON OTHER HAND IF [@,,Q,] =0 TrHEN
ALWAYS POSSIBLE To FIND SIMULTANEGUS
E’sTATES OF Q, AND Q. AND H

Y k) = ot %, (0

WHICH HAS " S
. HE
DEFINITE ENERGY En Wiy
" Q, L | oF stare +

L Q-‘, 1L



®

o IN cAse [q,,Q,]=0 Q, AvMD Q, ARE
‘CoMPATI@LE"

o IN chse [Q,, Q. J#0
Q, AVD dy ARE INCHAATIOLE
MO 1T IS PossiBLE FoR US Tu HAVE STATE
pen, ) = e EH gy

WINTH E!THER
éoepuw-re ENERCY E

e Q, "J
or
{oemmr& ENERGY E
b Q. e
BUT WoT BoTH

e EG. SIke [P xT=-ik WE cAN NEVER

HAVE A STATE IN WHICH BoTH
R ANO ¥ HAVE DEFINITE VALUES

o WE SAY THAT E, ... FORM A COMAETE SET
OF QUANTUM NUMBERS IF HAXIMAL NUMBER
OF SIMULTANEOVS E’'VAWES ARE SPeCiFieD




THE UNCERTAINTY PRINCIALE
o PREviousLY LookED AT STATES WHICH ARE
EBENFUNCTINS OF MORE TRAN ONE OBSEAVASLE |
THESE ARE RATHER SPECIAL STATES ...

Alse WANT To Know WHAT HAPPENS

WHEN WE MAKRE MEASUREMENTS ON
SOME GENERAL SUPERIPOSITION

* (oNSIPER ,EG, ENEAGY SulFRios(TIoN

-(E¥% -CE b/
1"(",&) =4, #0 < ‘ ta, ¢a e

SuPfosE MEASWREHENT oF ENER6Y AT
E=t, GIvEs ReSWT G,
—> MEANS WE Now KNow Foil SUKGC
THAT ENERGY IS B,
BuT THIS IMPLIES THAT Now (JE. For
L2 Ee) SYSTEM MUST BE IN CNERGY

E'STATE €t/
-l "
""(x,l:ﬂ-.) = ﬁ' e




THUS

® THE PART ofF THE ocRIGINAL ~ WHICH
HAS A DIFFEAENT ENERGY Té THE ONE

MEASURED DISAPPEARS

@ THE REMAWING PART HAS ITS CoEEF

CHANGED So THAT THE NEW WAVEFNWN
IS CoRACETLY NORMALIRED

e THIS PROCEOURE IS THE S0 -CALLEP ‘ColLAVSE
oF THE WAVEFUNCTIoN"

e ITT APPLIES WHEN ANY QUANTITY (NOT Tust
Eueaev) IS MEASURED

o COLLAME OF THE WAVEFUNCTION' (ALso KNuwN

As TMHE ‘PRoTECTION POSTULATE OF QH)

APPEARS To BE A DISTINCT TYPE OF
TIME EvoLuTion FRoM THE TDSE

o THE COPENMASEN INTERPRETATION OF
BoHR ETAL Acceprs THIS

* OTHERS HAVE TRIED To DERIVE ‘colrArse’
FRoM TDSE For LARGE oBsetrs (E¢. You)



€J)
AcTING AS MEAIURING DEVICE. INTELACTING
UITH SYSTEM

o FINALLY THECS ARLE RADIAL PRofosALS
SucH AS ‘MANY WellpS' LHicH TRy To
ExPAN WHY WE ErXPERAIENCE ColLAFSE

Tiis PART OF @ IS STILL. CONTROVERSIAL
(AND EG. LEADS To sucH FuN As SCH's ¢AT...)

PuT IHAATANT To STRESS

EVERY ExPERIMENT EVER PERFRNED
LERDS T® RESULTS CoNSSTENT WITH
THE SIMALE “COLLALSE’ PeSTULATE
AND 00N‘T REMNIRE ANYTMING FANCIER

LET'S SEE WHAT IT PREDICTS Fo A SERIES oF
HEASUREMENTS
) START WITH
—(E t/%
"Hx‘&) = f,(r)e Bt/
En = t‘lwz”z
2meat

- Z_Si nTrY
¢” o "-:




1) NEASURE ENERGY

-¢E,t/
AesuLT : E, ‘\l;_(x,t) = 56,(;): i

3) HEASURE MoMENTUM
To woRkk ouT [oIs3LE RESULTS
MUST REWRITE Y, AT A sumM oF
Mot ESTATES

ST e /}-: L {em%— et
o ?:/

Mon +uk MoM ‘M
o -7k
CAL

Supfose WE FIND +T /o

=P WAVEFUNCTION COLLAPSES To

—¢F,¢€ ]
‘\kb — e ‘9/* e‘"”{“

'y
L) NOW MEASURE ENEREY AGAIN
T0 WORK. OUT PosSIBLE ASSULTS MusT

REUNTE ¥, AS A /M OF eNelcy
E’STATES




LT/ e
= L [CsHX 4+ ¢ SMAKR
o~ {o =

Ch
kb HAfrenNS To
RE AN ENEREY
E’STATE

MusT WE FouwlIER
SEXIES To WRITE THIS AS

oQ

L (esTTY _— ] Lk
I L 2=' d"(& Sim nT)
\——w
REeMEMBER THI!S IS AN
ENetey E’EN,
(T
A,.= Ji nmwx
" \r&i xfm - cu'l_r‘_: Jx
=4 O IF n= 09D
4T n IF N= EVEN
T (wt-1)



So WHEV HEASure ENeRey WE GeT (1)
E, WITH PRe@ PlE)=!/y

E‘_ ] (0 P(E‘) = 22
E‘f h " ’17
E‘ h " F(&n\ = 8”t

. . (-1 72

THus EVEN THouGH WE STARTED WITH AN

Enetey € STATE , BY MAKING A MEAS. oF
Mott’m (AN of. INCOMFATIBLE WITH H ) WE
HAVE LEFT PARTICLE IV A STATE oF

VERY INDEFINITE EBNERGY !

o (ONSIDERATIONS SucH AS THESE LEAD
HEISENBERE To HIS FAMOUS UNCERTAINTY

PRNCIPLE

e THE WP IS NOT A SEPERATE AXioM oF
QM. IT IS SIMPLY A (oONSEQUENCE OF
RuLEs ALREADY STATED ...



Z/
UNCERATANTY 1N CUT CeMi= OF MEAS.
USefuL To QUANTIFY . PEFINE UNCERTAINTY

£ @ T (o5 T |

A‘l =0 TIF q TAKES A SINGLE VALUG

WHEN THEeLe |s

HE(SEnBERGY U.F ConNSIDERS x AND P
(ReMeMgeQ [x,pT=ih) AND stares

Bx Ap 2 ¥/2

BEFORE PROVING THIS LET'S INVESTIGATE Sore
ASPECTS OF ITS MEANING

IT SAYS THAT IF Wwc PREPARE A PPATIae

IN A STATE. WHERERY (TS LOCATIeN X IS
kNN To wiTHiN D%, THEN THE

UNCERTAINTY IN ITS MOMENTUM (S AT
ﬂ‘_"' */ZA;.



ExAMILE

SUPRSE GAUSSIAN UAVEF'N
btv) = —— e~ X/

ve  §
CLEARLY <x>=] « [gt'dx = o

ALSo

vty = | ‘”‘xze-x [0} dx
aw'’tl)_o
= q‘/z
Y
= AXx =[(x">-(x>"] ‘::
Now FoR P y
” —XZ‘ —X‘ “
= -t 'l = O
<F> atwj..,e o X < dx
<P2> - - a &e_xt/zqz a.z —?1/2¢, J
AST J_oe 3y 2
= _i—(“e-x‘/z..‘ X' _ ..'_) Ax
oi% l aY ot
= "'2/20[;l
= AP = :E




EXACTLY SATURATING H.U.P_ BounND

IN FAcT A GAUSSIAN WAVEFUNCT|ON GIVES
THE LEAST PoSSIBLE VALVE FoR Opox

® SINCE Lp #0 INTERESTING To ASK. WHAT
THE MomM’/M DISTRIBUTION IS
WE kNow X~ SPACE WAVEFUNCTION

a 2
=L e~x/e
[ 23 = e e

IN DIRAC NoTN THIS IS x| ¢>

‘APLITUNE For PARTICLE W STATE ¢ To GE
Found AT X'

WE WANT <plé>

AMPLITUDE Fol. PARTICLE IN STATE @ To @&
HEASURED WITH Mon'm p'

THIG 1S TWST FouRIER TRANSFORM OF ¢(x)



px /t ,
¢o
Jirt¥

OR IN DM)
<pleg> = 2 <plx><xl¢>
ALt X

VALUES Like 2-SuT

INTERFERENCE
rNOTE'. "
; y/k C »®
<pls=<elpy =(eF ) ?
AT % \[ _.l

INTEGRAL Fol ¢(p) CAN BE DONE BY COMPLETING
THE SQuA As
Blp) = w Z(x-tf*/t) + platfi §
J"'i
—prd/ar

(- §
=g ©

ANOTHER GAUSSIAN (SHOULD RECALL THIS

FRoM THEORY OF FOURIER TRAWS FoHs )



©®
PRooF OF GenERAL U.P. (NUN -EXAMINARLE)

SupfosE WE HAVE 2 HERMITIAW OFS A AND §
Wwitd [A, 3] #o0

DeFive A = A —-<A>

B =8B -<B>

AND CoNSIDER [FolloWING WAVE F/N

—_ A N (TN
¢)\—A++‘>\B* A

A?A&Anérac
AND NORMALITATION INTEGRAL WERE

~ GOtNG To YARY
TN = Sax #n b, 20

SINCE A AND 3 HERMTAW, S0 ARE A, B, So

TN = I&A(A-‘i’ fc,\é\k)“(ﬁ«lﬂ + A8 V)

Exlmot dx {pi«n’ + N B
| N [(ANNEW -EEn]
HERrmAN = [de 4* (A2 R B+ N [ATT) ¥
8
ASiN¢ OEF ":: (AA)‘& +/\2(63)1 'HI\‘PX ‘-F'[A_,E]*
OFOAY ER 7_ (1 a4 N (88) 4N <TA 81> Ysunee

CONST. PIECES
<Ay, <'|_3> Cnlec



@

THUS WE LEARN
(an)? + (88)* +iA{LABIT> 30
AND MINIMUM MUST EXIST (WHEN A LHS/J) =o0
2N (68)" + (<[A,B8)> =0
SUBST. SOL’N OF THIS INTa T ()) WE 6T
(oa) — <CABTY | <(RE)" 5,
& (08)* 2 (08)"
—_-_->|_(z>n)’ (a8)" 2 T <ilag] >’_|
USEFUL To
Kefow !

C0 IN GENERAL ANy 2 ofS. Wi [, ] #9
WiLL UAVE UNCERTAINTY KELATIoW (THOUGH

RHs WitL Pspewp on DETAILS )

FoR FARTICULAR CASE OF [p,x)=-k «ET
dx bp 3 R/, V4




@
'mE SINALE HARMoNIC OSCILLATOR

BECAUSE MANY SYSTEMS To LEADING APPROX ‘W
ARE THE SHO. (or HANY WEAKLY (oufLED :un)
THiS (S AN IHPORTANT CASE..

THE PoT’L ENERGY IS Vix) =L kx® so
TISE (S

"%'_ é’% + Lrx'¢ = Eg¢

VERY CONVENIENT To RESCALE THE X
VARIAgLEe RY X=oly

‘t a¢ ...'- 2,2 - :
Fryvs -5? th‘(5¢ E¢,

AND INSIST TMAT CoEFFS oF kKE_AND PE.

ARE SAME .
h e .L’ldl
2mu 2
== 0(2
T Imk
THEN TISE

WE 4 (-4 1 98) - €4



@

Now [/m = THE CLASSICAL ANGULAR
FREG., So LET

“ - /(s

lE., € I35 THE ENERGY |N UNITS of tw/2

THus 0w TISE BECOMES
a
-Jd e sz = & #
nz
ITs EASY To CHECK THAT
-4'/2
¢o = € 3 |
IS A soLwTiow (CLeanLy IT's NopmALRASE)
LET’s poIT...

So TISE READS

) (‘J‘E"J‘/k e :"/t) + 3‘e"3‘/‘ =ce
=P SN IF € =|

THE ENER6Y E'VALUE




IN FACT AS WE’LL SooN SEE THIS IS THE
GRouND STATE

[ Bt 50

o THERE ARE 2 WAYS of 6ETTING KEST...
/2

oI TRY ¢ = H(g) c-ﬂ&
THEN g’ = H/e_:’ﬂ/;_ ’ H e-ul/‘t

¢” = H ”C-J‘/‘ - 73 H IQ.Q'A -H e‘a'/‘
+ Y YH e'J‘/'

fo TISE BECoNES
- 2 - 2
e :’A(’H‘-* 23”’+H)= e He g/

OR 174 /
MY~ 24H"+ H(e-D =0

THiS 1S CALLED HERMITE'S EQN, AND
CAV BE SeLVED BY THE FReBEIMUS SERES
METHOD .

Thizre ARE NoRNALIRAGLE SoL’Ns Fold

€=2ntl ; H,ly) IS A HERMTE Porvwania




A 4

El A MUCH HORE INSTRUCTIVE METHOD WHICH
GENERALIRES T& MANY OTHER PROBLEMS. ..

In 9 WoRkPS UR HAMILTONIANV of, IS

LET’S TRY To FAcTORURE' THIS
DEFINE OPGRATORS

a*':'j%""a
4_-;_-1.
=P 9

ACTING oV ARBITRARY -563)
Qe F = (- z:,*'a)( vy) f



SIMILARLY

a_a,§ = (—-gr;_o‘ +:,'5) +§

So WE LEARW
ei) [&y,a ] =asa —a_a,
= -2
o ii) WE AW WAITE TISE AS

Qm) ¢ + 3‘/1 -0
2-fe 7 (55 9)e

THus (a...a- 'H) ¢o = g,
AND AGAIN HAVE Founp €, =

o Iv) Nouw ACT ON TiSE (THE ENERCY E ‘VALUE
EQN) @ WITH o, Anp wE [a, a_ ]

Oy (apa_+1) ¢ = E0r g

Ay (4-61-'2 +1)¢ = e e
[ﬂw—af +(--zn)af]¢ T €Ay

(G- t1)aep = (e+2)as @



So HAVE LEARNT

(F ¢ HAs EVAwe €
aded HAS ENVALME €+2

@ v) SIMILARLY EASY TO SHow THAT

IF ¢ HAs E'VALUE €
d- ¢ HAS EVALLE e-2
SINCE o $, =0 (WE sa¥ ‘a_
ANNIHRATES B," ) THERE 15 Vo STate

WITH LoWER ENERCY THAN ¢,

= @, IS INDEED 6RounD
,STATE, WUWTH € =

ovi) 3Y REPEATED APIPLICATION OF Q. ON
@, WE GENERATE ENTIRE SPECTAUM !

®
®

A+ AVD d_ ARE KNoww
oL (—

‘ AS
s Qa + / )
Y oq RAISING ANVD LOWERING

ot 'CReEATION AND
= ‘Im.mﬂ?m‘ of'S.

Po



THUS SPECTRUM OF SHO IS

€, = E‘,:tu S‘o" e"ba/l
é'l =3 E% = (‘+Il.)tu ¢, =(.a%+y)¢° = zve"3=/?

€, =3 E9/= (lfé)t,w ¢l —-'{j;_-(_g)#’ - Z(zaa_‘) e‘J £

€, =2l | E =(ne')Fw

[} oyt
¢h: ‘(—%-1-3) ¢° = H”(j)e 172

A COMPLETE SoL’N oF PRo8LEM !

o FAR HAVEN'T NORMALIRED WAVEFNS ..
- X2t
E6 AW =Ce R yere: T

w 2 e _, Yt  ConNVERT JACK
| = Jx“ol =(a]¢lx€x/ To X

-yl -0
= ('

= (= Récu
RAY Kbt a("’- '3



&
® SIILARLY CAN NoRMALIRE HIGHER ¢, 00°S ..
® JUusT AS |MPORTANT OuR WAVEFVS ARE
ALsc ORTHoGONAL

I—f-“é,,(x) &, (x) dx = h#mJ

chs MUST €€ TRUE : THEY ARE € Funenions
oF UEAMITIAN OPERATOR H (IUTH
DIFFErRENT EVAWMES €, AND €Ep .
CE STupr -LicuviE THEoRY N MATHS
HETHO0S COWASE ... _{

o NOTE THAT THE B, (x) G0 EVEN —0DD-EveN...

AWD TWT LIKE THE voO U, ThE W&

EXCITED STATE HAS N NODES .

® [FEA JURES OF THE GROUND -STATE
N )
¢o(") = — QKP (‘ xTz)



S

A CLAsSICAL PAATICLE OF TeTAL ENERGY /e
WouULD RBE CGWFINED To REGIOoN WHERE

V(x) € E.
I, 2
“hx* € hu
+ =
észﬁzijE =t =g(:'
R kA ne Jmk
l,E. -'(5 ¥ so(

IF 6o fBAcke To TISE
? a
N a —
E-.En" x? * gk $ =E¢

AT THE PoINT WHERE E = v(x) (THE UNIT
OF THEE CLASSICAL MoTIoN) WE SEE THAT

Q
%;;f = O A PoINT OF
INFLEXION FoR ¢

THIS )S TRUE Foil ANY STATE

PROB OUTSIPE CLASS(CAL AEGIPN

n

AUAVTUM 0.157 o)

QIGNIFIAVT | o ac 2

Fod Lew E ; :
STATES



()

iJ;TT/I’
("

C[assacco(y

-36(

-20¢

-l




W
SCATTERING, TUNNEUING-, AND FINITE PoTENTIAL WELLS

CoNSID ER. Foliow(NG V(x)

. I i3
—» E<V, £“
V=o0 V=V, : V=o
X=o X=OL

UITH PARTICLE OF ENERGY E <V, INCIDENT

FloM LEFT
THREE REGIONS IV VHICH SoL'NS To TISE ALE:
¢ hx -k
Y= e ™ g _g
f 7‘ lm
INWDENT REFLECTED

Y = Aekx-"ﬁe'kx Eﬁ:V-&

o

- 2m
4 = + ey 2, 9
m - E e tk -
‘l‘ am
TRAWSMITTED

NowW MWST (MPeSE B0UNDARY (eNOITIONS
AT X=o AND X = o\ ...




AT x=0

WV (NTINKOUS |+ v = A+8

o (R(1-r) = K (A-8)

I

AT x= o
+ conTivvws A etco; B’C'K‘\ = € e.:!m
%_} t K (Ae™- C?c'h"‘) = (kbe "

CLASSICALLY RERD TRANSMISSIoN THRUGH
RBARRIER . WE WANT To FivD £ IV QN CASE. .

FRoM X=o QNS GET

tr = A<+@
I-v = -_t;;.f‘t (A-8) ADD AND Fwid

2=A0-0R)+B80+iKA) @
FRoM X = o~ EGNS GET

2Ae"™ = (1+ikf)t e
ZB e"Kk -— (""th-/(()te‘h“

‘Ren

PAT THESE BAck INTo ()



2=teP™ S L ke . =
{zc (‘Q‘%)(jf‘k{h\ +

T e (e ) (1o
mEet L (2 - K) +
1o (e [x-£1)

= ¢ cek& {Zco:‘\ Ka — L(% -—L‘E)Sc‘nk Kc,.g

= = 2 e—ika :
lcosh Ka -—i(%—%) Sieh Keo

THus PRo8 OF TrRANSMuSSIoN (S

""-_'“;'1 = L

Y cosh® Ka + (RP-K') Siwh? Ko
h‘l,Kl

NB. THE FACTORS 0F hR/m ININCIDENT AND
TRANSMITTED FLux CAnCEL. (AS R'S SAME)

THERE 1S HucH PHYSIcs (N D)
LETs toolc AT SoME CASES...



e WHEN Ka IS LARGE
—2ko.
T = b € >0 |

|+ (k)R

THis 1S TYPICAL TUNNELLING BEHAVIOR |\
PRARTICULAR THE CXPONENTIAL DAMAING OF
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oUNOARY CowDITIONS
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THESE EalNs ARE A PAIN To SOLVE 8Y HAND
— NOWADAYS WE‘D USE A SYnBotic rMATH Meeram

(EG. MUALE HATMEMATICA, Y GuT worTHWHLE To
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FoR NoN-TRIVIAL SoL/NS NEED
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WE NEED To SowvE (L) AND (L) To GET
ENERGIES . BUT THESE TRANSCENIENTAL
EQNS CAN'T BE SoLvED ALGEBRAICALLY

— S0 WSE GRAPH(CAL METHOO ...



LET’S WRITE

THEN Eans (Z),(T) RECOME

j.é)}_.-! ::éo.nE AND /.eﬁ\;_-[ ".-."CoEE

—> PICTURES OF METHOD OF SoL’~N

—p PICTURES OF WAVE FUNCTION S

NOTE THERE IS ALWAYS ONE EVEN
Bound STATE No MATTER How SMALL V,

(s True oF 10 TsE )

ONLY A FINITE NUMBER G JouUND STATES Fok
V,, <®, AND FoRMULA FoR ENERKES NOT
NEARLY So StMPLE AS QOO LU CASE,
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