RETURN TO OUR BASIC CONSERVATION EQN.

SOFAR STUDIED CONSEQUENCES FOR SIMPLEST CASE Q = 1

. NOW EXPLORE MORE GENERALLY

(AS USUAL TAKE
$$H = \frac{p^2}{2m} + V(x)$$
)

- i) TOTAL ENERGY IS CONSERVED BECAUSE

 [H, H] = HH-HH = 0

 SO d <+|H|+>=0 FOR ALL 1+>
- ii) NOW CONSIDER MOH'M P $[H, P] = \left[\frac{2m}{2} + V(x), P\right] + \left[V(x), P\right]$ $= \left[\frac{2m}{2} \cdot P\right] + \left[V(x), P\right]$ $= \left[V(x), P\right]$ $= \left[V(x), P\right]$

BUT [V(x), p] = [V(x), -it 2/2x]

TO WORK THIS OUT PUT ARBITRARY FN ON

RITS

$$[v(x), y] + (x) = \{v(x)(-ix) + (x) + (x) \} = (x) + (x)$$

$$= -i + \frac{3}{2}(x) + (x) + (x)$$

$$\Rightarrow [v(x), p] = i \pm \frac{3x}{3}$$

NOT ZERO

THEREFORE

NOTE SIMILARITY OF (*) TO CLASSICAL EON OF MUTICN

(*) SHOWS THAT d/dt CANNOT BE ZERO UNLESS DV/DX = 0 . BUT DV/DX = 0

SAYS V = CONST, AND FIND LINEAR MOM'M

CONSERVATION ONLY WHEN H INDEP'T OF POSITION)

iii) NOW TAKE Q = X

$$[H, \times] = \left[\frac{p^2}{2m} + V, \times\right]$$

$$= \left[\frac{p^2}{2m}, \times\right] + \left[V(\times), \times\right]$$

$$V(\times) \times - \times V(\times)$$

USEFUL TO HAVE EXPRESSION FOR [A B]

$$[A^{2}, B] = A^{2}B - BA^{2}$$

$$= AAB - (ABA - ABA) - BAA$$

$$= A(AB - BA) + (AB - BA)A$$

$$= A[A, B] + [A, B]A$$

APPLYING THIS

$$[H,x] = \frac{1}{2m} \left\{ P[P,x] + [P,x] P \right\}$$

NOW CALCULATE [P, x] BY ACTING ON ARBITRARY f(x)

$$[P \times]f(x) = (-i + \frac{3}{3} \times + \times i + \frac{3}{3}) + \frac{3}{3}$$

$$= -i + \left(\frac{3}{3} \times + \times \frac{3}{3} - \times \frac{3}{3} \right) + \frac{3}{3}$$

$$= -i + \left(\frac{3}{3} \times + \times \frac{3}{3} - \times \frac{3}{3} + \frac{3}{3} \right)$$

FUNDAMENTAL X AND P OPE

HENCE

$$[H,\times] = \frac{1}{2m} \left\{ p(-ih) + (-ih) p \right\}$$

$$= -ih p$$

$$\frac{d\langle x\rangle}{dt} = \frac{\langle p\rangle}{m} (t)$$

AND POSITION IS NOT CONSERVED UNLESS IN SPECIAL STATE WITH =0

NOTE: (†) IS QM ANALOGUE TO CLASSICAL X = P/m

FROM (*) AND (†) SEE THAT CLASSICAL EDNS OF MOTION ARE OBEYED ON THE AVERAGE IN QM (EHRENFEST THM.)

9

MORE ON COMMUTATORS

- HAVE SEEN HOW [H, Q] = 0 IMPLIES

 d(Q) = 0 IN QH.
- SO FAR HAVE ALWAYS BEEN WORKING WITH EXPECTATION VALUES (AVERAGES).
- · DOES [H, Q] = O HAVE SPECIAL

 CONSEQUENCES FOR INDIVIDUAL MEASUREMENTS

 YES...
 - · WE KNOW ESTATIES OF H SATISFY

 $H \phi_n = E_n \phi_n$

REMEMBER THIS MEANS THAT IF

NOT A SUPERPOSITION

THEN WHEN WE MEASURE ENERGY WE WILL GET En (WITH PROR. = 1)

NOW SUPPOSE THE SAME FUNCTIONS ON ARE
ALSO E'STATES OF ANOTHER OP. Q

THIS MEANS THAT IF PARTICLE DESCRIBED BY

IN THEN IT ALSO HAS A DEFINITE VALUE

OF Q GIVEN BY 9n

PROB(Q = 9n) = 1

· WHAT IS CONDITION THAT THIS IS POSSIBLE?

ACT ON $H \not p_n = E_n \not p_n$ with Q $Q H \not p_n = E_n Q \not p_n = E_n q_n \not p_n;$

ALTERNATIVELY ACT ON Qpn = qn pn WITH H

HQPn = qnHpn = qnEnpn; SAME

SUBTRACTINE ABOVE EQNS

 $(HQ - QH) \phi_n = 0$

SINCE, BY ASSUMPTION, TRUE FOR ALL &

$$\Rightarrow [H,Q]=0$$

THUS:

IF [H,Q] = 0 IT IS POSSIBLE FOR

PARTICLE TO BE IN STATE OF DEFINITE

ENERGY (A'STATIONARY STATE') IN WHICH

THE VALUE OF Q IS ALSO DEFINITE.

· WHAT HAPPENS IF Y(x,t) IS NOT AN E-EIGEN EG. SUPERPOSITION OF 2 E'STATES +(x,t) = a, 4,(x)e +a, 4,(x)e WITH 1= |a, |2 + |a2|2 SO PROB(E=E,) = |a,12 PROB (E=E,) = |a,12 · LET'S COMPUTE <Q> < 0> = (+*Q+dx = ((a, 0, e i E, t/k + a, 4, e i E, t/k) (a, 9, 0, e it, t/k a, 9, 6, e it, th)

= 9,10,12+ 92/02/2

THIS IS JUST

<Q>= 1. * (PROB IN STATE) + 12 * (PROB STATES)

SO IF WE MAKE A MEASUREMENT OF BOTH H AND

 (E_1, q_1) WITH PROB = $|a_1|^2$ (E_2, q_2) WITH PROB = $|a_2|^2$

FUNDAMENTAL POINT IS

IF [H, Q] = 0 THEN CAN MEASURE

BOTH QUANTITIES AND SIMULTANEOUSLY

FIND PRECISE VALUES OF BOTH H

AND Q

WHAT HAPPENS IF [H,Q]≠0?

IN FACT ALREADY STUDIED THIS UKEN

LOOKED AT Q = | IN CASE OF INFINITE

SQUARE WELL ...

$$V = \infty$$

$$V = \infty$$

$$V = \infty$$

$$V = 0$$

$$V =$$

IN THIS CASE WE SAW THAT

IF PARTICLE HAS DEFINITE ENERGY 4(x,t) = e-i =nt/4 & (x) THEN

4 IS A SUPERPOSITION OF STATES WITH DIFFERENT

Equiv:

WE CANNOT KNOW BOTH E AND

P FOR SURE SINCE [H, P] = 0

GENERAL RESULT IN QIM

IF A AND B ARE PHYSICAL (HERMITIAN) Y OPS. WITH [A,B] # O THEN CANNOT IN
GENERAL SIMULTANEOUSLY KNOW VALUES

COMPLETE SETS OF QUANTUM NUMBERS

SUPPOSE WE HAVE TWO OPS. Q, Q2 SATISFYING

THEN
$$\frac{[H,Q_1]=0}{d < Q_1 > = 0}$$
 AND $\frac{[H,Q_2]=0}{dt}$

AND BOTH OBSERVABLES ARE CONSERVED

- HOWEVER IF [Q,,Q2] 70 THEN

 WILL NOT BE ABLE TO MAKE DEFINITE

 MEASUREMENTS OF BOTH
- ON OTHER HAND IF $[Q_1,Q_2] = 0$ THEN ALWAYS POSSIBLE TO FIND SIMULTANEOUS ESTATES OF Q_1 AND Q_2 AND H $Y(x,t) = e^{-iE_nt/K_1}(x)$

WHICH HAS

DEFINITE ENERGY En THE QUANTUM NUMBERS OF STATE Y

- IN CASE [Q,,QZ] = O Q, AND QZ ARE 'COMPATIBLE'
- · IN CASE [Q,Q2] = 0

Q, AND Q2 ARE INCOMPATIBLE

WITH EITHER

SDEFINITE ENERGY E.

1, Q, q,

OR SDEFINITE ENERGY E Q2 Q2

BUT NOT BOTH

- HAVE A STATE IN WHICH BOTH

 P AND X HAVE DEFINITE VALUES
 - WE SAY THAT E,... FORM A COMPLETE SET

 OF QUANTUM NUMBERS IF MAXIMAL NUMBER

 OF SIMULTANEOUS E'VALUES ARE SPECIFIED

THE UNCERTAINTY PRINCIPLE

• PREVIOUSLY LOOKED AT STATES WHICH ARE EKENFUNCTIONS OF MORE TRAN ONE OBSERVABLE.

THESE ARE RATHER SPECIAL STATES ...

ALSO WANT TO KNOW WHAT HAPPENS WHEN WE MAKE MEASUREMENTS ON SOME GENERAL SUPERPOSITION

• CONSIDER, EG, ENERGY SUPERIORITION $\psi(x,t) = a_1 \phi_1 e^{-iE_1t/t_1} + a_2 \phi_2 e^{-iE_2t/t_2}$

SUPPOSE MEASUREMENT OF ENERGY AT t=to gives result E,

THAT ENERGY IS E,

BUT THIS IMPLIES THAT NOW (IE. FOR.

L > Lo) SYSTEM MUST BE IN ENERGY

E'STATE

\(\frac{4}{x}, \text{t} > \text{t}_0\) = \(\phi_1 \text{e}_1\)

- THE PART OF THE ORIGINAL & WHICH
 HAS A DIFFERENT ENERGY TO THE ONE
 MEASURED DISAPPEARS
- (3) THE REMAINING PART HAS IT'S COEFF

 CHANGED SO THAT THE NEW WAVEF'N

 IS CORRECTLY NORMALIZED
- of the Wavefunction
- ENERGY) IS MEASURED
 - · COLLAPSE OF THE WAVEFUNCTION' (ALSO KNOWN

 AS THE 'PROJECTION POSTULATE' OF QH)

 APPEARS TO BE A DISTINCT TYPE OF

 TIME EVOLUTION FROM THE TOSE
 - THE COPENHAGEN INTERPRETATION OF BOHR ETAL ACCEPTS THIS
 - OTHERS HAVE TRIED TO DERIVE 'COLLAPSE'
 FROM TOSE FOR LARGE OBJECTS (EG. YOU)

ACTING AS MEASURING DEVICE INTERACTING-UITH SYSTEM

• FINALLY THERE ARE RADICAL PROPOSALS

SUCH AS 'MANY WORLDS' WHICH TRY TO

EXPLAIN WHY WE EXPERIENCE COLLAPSE

THIS PART OF OM IS STILL CONTROVERSIAL

(AND EG. LEADS TO SUCH FUN AS SCH'S CAT...)

BUT IMPORTANT TO STRESS

EVERY EXPERIMENT EVER PERFORMED
LEADS TO RESULTS CONSISTENT WITH
THE SIMPLE 'COLLAPSE' POSTULATE
AND DON'T REQUIRE ANYTHING FANCIER

LET'S SEE WHAT IT PREDICTS FOR A SERIES OF MEASUREMENTS

1) START WITH

$$\Psi(x, t) = \phi_1(x) e^{-iE_1 t/t_1}$$

$$E_n = \frac{h^2 \pi^2 n^2}{2ma^2}$$

$$\phi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$$

2) MEASURE ENERGY

RESULT: E,
$$\psi(x,t) = \psi_{i}(x)e^{-iE_{i}t/t}$$

3) HEASURE HOMENTUM

TO WORK OUT POSSIBLE RESULTS
MUST REWRITE YLAS A SUM OF
NON'H E'STATES

$$\frac{1}{a} = e^{-iE_1E/\hbar} \sqrt{\frac{2}{\alpha}} \frac{1}{2i} \left\{ e^{i\pi x/\alpha} - e^{-i\pi x/\alpha} \right\}$$

$$\frac{1}{a} = e^{-iE_1E/\hbar} \sqrt{\frac{2}{\alpha}} \frac{1}{2i} \left\{ e^{i\pi x/\alpha} - e^{-i\pi x/\alpha} \right\}$$

$$\frac{1}{a} = e^{-iE_1E/\hbar} \sqrt{\frac{2}{\alpha}} \frac{1}{2i} \left\{ e^{i\pi x/\alpha} - e^{-i\pi x/\alpha} \right\}$$

$$\frac{1}{a} = e^{-iE_1E/\hbar} \sqrt{\frac{2}{\alpha}} \frac{1}{2i} \left\{ e^{i\pi x/\alpha} - e^{-i\pi x/\alpha} \right\}$$

$$\frac{1}{a} = e^{-iE_1E/\hbar} \sqrt{\frac{2}{\alpha}} \frac{1}{2i} \left\{ e^{i\pi x/\alpha} - e^{-i\pi x/\alpha} \right\}$$

$$\frac{1}{a} = e^{-iE_1E/\hbar} \sqrt{\frac{2}{\alpha}} \frac{1}{2i} \left\{ e^{i\pi x/\alpha} - e^{-i\pi x/\alpha} \right\}$$

$$\frac{1}{a} = e^{-iE_1E/\hbar} \sqrt{\frac{2}{\alpha}} \frac{1}{2i} \left\{ e^{i\pi x/\alpha} - e^{-i\pi x/\alpha} \right\}$$

$$\frac{1}{a} = e^{-iE_1E/\hbar} \sqrt{\frac{2}{\alpha}} \frac{1}{2i} \left\{ e^{i\pi x/\alpha} - e^{-i\pi x/\alpha} \right\}$$

$$\frac{1}{a} = e^{-iE_1E/\hbar} \sqrt{\frac{2}{\alpha}} \frac{1}{2i} \left\{ e^{i\pi x/\alpha} - e^{-i\pi x/\alpha} \right\}$$

$$\frac{1}{a} = e^{-iE_1E/\hbar} \sqrt{\frac{2}{\alpha}} \frac{1}{2i} \left\{ e^{i\pi x/\alpha} - e^{-i\pi x/\alpha} \right\}$$

$$\frac{1}{a} = e^{-iE_1E/\hbar} \sqrt{\frac{2}{\alpha}} \frac{1}{2i} \left\{ e^{i\pi x/\alpha} - e^{-i\pi x/\alpha} \right\}$$

$$\frac{1}{a} = e^{-iE_1E/\hbar} \sqrt{\frac{2}{\alpha}} \frac{1}{2i} \left\{ e^{i\pi x/\alpha} - e^{-i\pi x/\alpha} \right\}$$

$$\frac{1}{a} = e^{-iE_1E/\hbar} \sqrt{\frac{2}{\alpha}} \frac{1}{2i} \left\{ e^{i\pi x/\alpha} - e^{-i\pi x/\alpha} \right\}$$

$$\frac{1}{a} = e^{-iE_1E/\hbar} \sqrt{\frac{2}{\alpha}} \frac{1}{2i} \left\{ e^{i\pi x/\alpha} - e^{-i\pi x/\alpha} \right\}$$

SUPPOSE WE FIND + TT to/a

WAVEFUNCTION COLLAPSES TO $\psi_b = e^{-iF, t/t} e^{i\pi x/a}$

4) NOW MEASURE ENERGY AGAIN

TO WORK OUT POSSIBLE RESULTS MUST REUPITE Y AS A SUM OF ENERGY E'STATES

MUST USE FOURIER SERIES TO WRITE THIS AS

$$\int_{\alpha}^{\infty} \cos \frac{\pi x}{\alpha} = \sum_{n=1}^{\infty} a_n \left(\int_{\alpha}^{\infty} \sin \frac{n \pi x}{\alpha} \right)$$

REMEMBER THIS IS AN ENERGY E'FN.

$$a_{n} = \sqrt{a} \int_{a}^{2} \sin n\pi \times \cos \pi \times dx$$

$$= \int_{a}^{2} \cos n \times dx$$

$$=$$

THUS

$$\frac{e^{i\pi x/a}}{\sqrt{a}} = \frac{i}{\sqrt{2}} \left(\phi_1(x) \right) + \sum_{n \in \text{ven } TT(n^2-1)} \left(\phi_n(x) \right)$$

SO WHEN MEASURE ENERGY WE GET (!)

E, WITH PROB
$$P(E_1) = 1/2$$
.

E, $P(E_2) = \frac{32}{9\pi^2}$

E, $P(E_n) = \frac{8n^2}{(n^2-1)^2\pi^2}$

THUS EVEN THOUGH WE STARTED WITH AN ENERGY E'STATE, BY MAKING A MEAS. OF MON'M (AN OP. INCOMPATIBLE WITH H) WE HAVE LEFT PARTICLE IN A STATE OF VERY INDEFINITE ENERGY!

- CONSIDERATIONS SUCH AS THESE LEAD

 HEISENBERG TO HIS FAMOUS UNCERTAINTY

 PRINCIPLE
- THE U.P. IS NOT A SEPERATE AXIOM OF QM. IT IS SIMPLY A CONSEQUENCE OF RULES ALREADY STATED ...

WHEN THERE IS UNCERTAINTY IN OUTCOME OF MEAS.
USEFUL TO QUANTIFY: DEFINE UNCERTAINTY

As $(\Delta q)^2 \stackrel{\text{def}}{=} \langle q^2 \rangle - \langle q \rangle^2$

DQ = 0 IF q TAKES A SINGLE VALUE

HEISENBERG'S U.P. CONSIDERS X AND P (REMEMBER [x,p]=it) AND STATES

 $\Delta \times \Delta p \geq t/2$

BEFORE PROVING THIS LET'S INVESTIGATE SOME ASPECTS OF ITS MEANING

IT SAYS THAT IF WE PREPARE A PARTICLE
IN A STATE WHEREBY ITS LOCATION X IS
KNOWN TO WITHIN DX, THEN THE
UNCERTAINTY IN ITS MOMENTUM IS AT
LEAST \$/20x

EXAMPLE:

SUPPOSE GAUSSIAN WAVEF'N
$$\phi(x) = \frac{1}{a^{1/2}\pi^{1/4}} e^{-x^2/2a^2}$$

CLEARLY
$$\langle x \rangle = \int_{-\infty}^{\infty} |\phi(x)|^2 dx = 0$$

ALSO

$$\langle x^{2} \rangle = \frac{1}{\alpha \pi^{1/2}} \int_{-\infty}^{\infty} x^{2} e^{-x^{2}/\alpha^{2}} dx$$

= $\alpha^{2}/2$

NOW FOR p:

$$\langle p \rangle = -\frac{i\pi}{\omega \sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2\omega}} dx = 0$$

$$\langle p^2 \rangle = -\frac{1}{\alpha \sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^2/2\alpha^2} \frac{\partial^2}{\partial x^2} e^{-x^2/2\alpha^2} dx$$

$$= -\frac{1}{\alpha \sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^2/2\alpha^2} \left(\frac{x^2}{\alpha^4} - \frac{1}{\alpha^2} \right) dx$$

$$= \frac{1}{\alpha^2/2\alpha^2}$$

$$\Rightarrow \Delta p = \frac{t}{a\sqrt{2}}$$

$$\Delta p \Delta x = \frac{\pi}{a\sqrt{z}} \frac{a}{\sqrt{z}} = \pi/2$$

EXACTLY SATURATING H.U.P. BOUND

IN FACT A GAUSSIAN WAVEFUNCTION GIVES

THE LEAST POSSIBLE VALUE FOR OP DX

• SINCE DP ≠0 INTERESTING TO ASK WHAT THE MOM'N DISTRIBUTION IS

IN DIRAC NOT'N THIS IS $\langle x | \phi \rangle$ 'AMPLITUDE FOR PARTICLE IN STATE ϕ TO BE
FOUND AT X'

WE WANT <PI\$>

AMPLITUDE FOR PARTICLE IN STATE & TO BE MEASURED WITH MOM'M P'

THIS IS JUST FOURIER TRANSFORM OF \$(x)

$$\widehat{\phi}(p) = \frac{1}{\sqrt{2\pi t}} \underbrace{\int_{-\infty}^{\infty} e^{ip\times/t}}_{\text{VALUES}} \phi(x)$$
So
$$\underbrace{\int_{-\infty}^{\infty} dp |\widehat{q}|^2}_{\text{VALUES}}$$

$$= 1$$

$$\text{VALUES}$$
LIKE 2-SLIT
INTERFERENCE

NOTE:

$$\langle b|x\rangle = \langle x|b\rangle_{+} = \left(\frac{5\pi x}{e^{-ibx/t}}\right)_{+} = \frac{\sqrt{5\pi t}}{e^{ibx/t}}$$

INTEGRAL FOR \$(p) CAN BE DONE BY COMPLETING
THE SQUARE

$$\bar{\phi}(p) = \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{\infty} e^{-\frac{1}{2\alpha^2} \left\{ (x - ip\alpha^2/t)^2 + p^2\alpha^4/t^2 \right\}} \\
= \int_{-\frac{1}{2\pi t}}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\frac{1}{2\pi t}}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\frac{1}{2\pi t}}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\frac{1}{2\pi t}}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\frac{1}{2\pi t}}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\frac{1}{2\pi t}}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\frac{1}{2\pi t}}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\frac{1}{2\pi t}}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\frac{1}{2\pi t}}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\frac{1}{2\pi t}}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\frac{1}{2\pi t}}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\frac{1}{2\pi t}}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi t}} e^{-\frac{1}{2\alpha^2} \left(2t^2 - ip\alpha^2/t^2 \right)} \\
= \int_{-\infty}^{\infty$$

ANOTHER GAUSSIAN (SHOULD RECALL THIS
FROM THEORY OF FOURIER TRANSFORMS)

PROOF OF GENERAL U.P. (NON-EXAMINABLE)

SUPPOSE WE HAVE 2 HERMITIAN OPS A AND B WITH [A,B] =0

DEFINE
$$\overline{A} = A - \langle A \rangle$$
 $\overline{B} = B - \langle B \rangle$

AND CONSIDER FULLOWING WAVEF'N

$$\phi_{\lambda} = \overline{A} + i \lambda \overline{B} +$$

A PARAMETER

AND NORMALIZATION INTEGRAL

 $W'' \in \mathcal{A}$
 $W'' \in \mathcal{A}$

SINCE A AND B HERMITIAN, SO ARE A, B, SO

$$I(\lambda) = \int dx (\bar{A} + i\lambda \bar{B} +)^* (\bar{A} + i\lambda \bar{B} +)$$

EXPANDING=
$$\int dx \left\{ |\bar{A}+|^2 + \lambda^2 |\bar{B}+|^2 + \lambda^2 |\bar{B}+|^2$$

HERMITIAN = $\int dx \psi^*(\bar{A}^2 + \lambda^2 \bar{B}^2 + i\lambda[\bar{A}, \bar{B}])\psi$

ASING DEF = $(\Delta A)^2 + \lambda^2 (\Delta B)^2 + i\lambda \int dx \, \Psi^*[\bar{A}, \bar{B}] \Psi$ DF(DA)² ETC = $(\Delta A)^2 + \lambda^2 (\Delta B)^2 + i\lambda \langle [A, B] \rangle$ SINCE

CONST. PIECES

CA7, CB> CANCEL

THUS WE LEARN

$$(\Delta A)^2 + (\Delta B)^2 + i\lambda \langle [A,B] \rangle > 0$$

AND MINIMUM MUST EXIST WHEN & LHS/JA = 0

$$2\lambda (\Delta B)^2 + i \langle [A,B] \rangle = 0$$

SUBST. SOL'N OF THIS INTO I (X) WE GET

$$(\Delta A)^2 - \frac{\langle [A,B] \rangle^2}{4(\Delta B)^2} + \frac{\langle [A,B] \rangle^2}{2(\Delta B)^2} \geqslant 0$$

$$\Rightarrow (\Delta A)^{2} (\Delta B)^{2} \geqslant \frac{1}{4} \langle i[A,B] \rangle^{2}$$

USEFUL TO KNOW!

SO IN GENERAL ANY 2 OPS. WITH [,] #0
WILL MAVE UNCERTAINTY KELATION (THOUGH
RHS WILL DEPEND ON DETAILS)

FOR PARTICULAR CASE OF $[P,x]=-i\pi$ GET $\Delta \times \Delta P \geq \pi/2 \qquad \checkmark$

THE SIMPLE HARMONIC OSCILLATOR

BECAUSE MANY SYSTEMS TO LEADING APPROX'N

ARE THE SHO. (OR HANY WEAKLY COUPLED S.H.O &)

THIS IS AN IMPORTANT CASE...

THE POT'L ENERGY IS $V(x) = \frac{1}{2}kx^2$ SO

TISE IS $\frac{-t^2}{2m} \frac{d^2\phi}{dv^2} + \frac{1}{2}kx^2\phi = E\phi$

VERY CONVENIENT TO RESCALE THE X

AND INSIST THAT COEFFS OF KE, AND P.E.

ME SAME

$$\Rightarrow \alpha^2 = \frac{t}{\sqrt{mk}}$$

THEN TISE

NOW JR/M = W THE CLASSICAL ANGULAR
FREQ., SO LET

$$\epsilon = \epsilon / (\frac{\hbar \omega}{2})$$

I.E., E IS THE ENERGY IN UNITS OF TW/2
THUS OUR TISE BECOMES

$$-\frac{d^2\phi}{dy^2} + y^2\phi = \epsilon \phi$$

IT'S EASY TO CHECK THAT

$$\phi_0 = e^{-y^2/2}$$

IS A SOLUTION (CLEARLY IT'S NORMALIBABLE)
LET'S DO IT ...

$$\phi'_{0} = -ye^{-y^{2}/2}$$

$$\phi''_{0} = y^{2}e^{-y^{2}/2} - e^{y^{2}/2}$$

SO TISE READS

$$-(y^{2}e^{-y^{2}/2}-e^{-y^{2}/2})+y^{2}e^{-y^{2}/2}=\epsilon e^{-y^{2}/2}$$

$$\Rightarrow Sot'w |F| \epsilon = 1$$

THE ENERGY E'VALUE

IN FACT AS WE'LL SOON SEE THIS IS THE

$$E_o = \frac{\hbar\omega}{2} > 0 !$$

. THERE ARE 2 WAYS OF GETTING REST ...

•I. TRY
$$\beta = H(y)e^{-y^2/2}$$

THEN $\beta' = H'e^{-y^2/2} - yHe^{-y^2/2}$

$$\beta'' = H''e^{-y^2/2} - 2yH'e^{-y^2/2} - He^{-y^2/2} + y^2He^{-y^2/2}$$

SO TISE BECONES

$$e^{-y^{2}/2}(-H''+2yH'+H) = \epsilon He^{-y^{2}/2}$$

or

 $H''-2yH'+H(\epsilon-1)=0$

THIS IS CALLED <u>HERMITE'S EQN</u>, AND CAN BE SOLVED BY THE FROBEINIUS SERIES METHOD.

THERE ARE NORMALIZABLE SOL'NS FOR

E = 2n+1; Hnly) IS A HERMITE POLYNGHIA

TI A MUCH MORE INSTRUCTIVE METHOD WHICH GENERALIZES TO MANY OTHER PROBLEMS...

IN y words our HAMILTONIAN OP. 15

$$H = -\frac{d^2}{dy^2} + y^2$$

LET'S TRY TO FACTORIZE THIS

DEFINE OPERATORS

$$a_{+} = -\frac{d}{dy} + y$$

$$a_{-} = \frac{d}{dy} + y$$

ACTING ON ARBITRARY S(y)

$$a_{+}a_{-}f = (-\frac{1}{3}y^{+}y)(\frac{1}{3}y^{+}y)f$$

$$= -\frac{1}{3}y^{2} + y\frac{1}{3}y^{-}y\frac{1}{3}y^{-} + y^{2}f$$

$$= (-\frac{1}{3}y^{2} + y^{2}f) - f$$

SIMILARLY

$$a_{-}a_{+}f = \left(-\frac{d^{2}f}{dy^{2}} + y^{2}f\right) + f$$

SO WE LEARN

• i)
$$[a_{+}, a_{-}] = a_{+}a_{-} - a_{-}a_{+}$$

= -2

· ii) WE (AW WRITE TISE AS

$$(a_+a_-+1)\phi=\epsilon\phi$$

• iii)
$$a - \phi_0 = \left(\frac{d}{dy} + y\right) e^{-y^2/2} = 0$$

THUS (a+a-+1) \$ = 1.\$0

AND AGAIN HAVE FOUND E. = 1

• IV) NOW ACT ON TISE (THE ENERGY E'VALUE EQN) (1) WITH Q+ AND USE [a+,a-]

$$a_{+}(a_{+}a_{-}+1) \phi = \epsilon a_{+} \phi$$
 $a_{+}(a_{-}a_{+}-2+1) \phi = \epsilon a_{+} \phi$

$$[a_{+}a_{-}a_{+}+(-2+1)a_{+}] \phi = \epsilon a_{+} \phi$$

$$(a_{+}a_{-}a_{+}+(-2+1)a_{+}] \phi = \epsilon a_{+} \phi$$

$$(a_{+}a_{-}+1) a_{+} \phi = (\epsilon+2)a_{+} \phi$$

SO HAVE LEARNT

IF & HAS EVALUE E at & HAS EVALUE E+2

. V) SIMILARLY EASY TO SHOW THAT

IF & HAS E'VALUE &

a_\$ HAS E'VALUE &-2

SINCE Q_\$0 =0 (WE SAY 'Q_

ANNIHILATES \$0') THERE IS NO STATE

WITH LOWER ENERGY THAN \$0

STATE, WITH E = 1

ovi) BY REPEATED APPLICATION OF Q ON ON WE GENERATE ENTIRE SPECTAUM!

	a+ AND a_ ARE KNOWN
a- 6 = 5 a+	AS 'RAISING AND LOWERING'
Po 5 9+	OR 'LADDER' OR 'CREATION AND ANNIHILATION' O'S.

$$\epsilon_0 = 1$$
 $\epsilon_0 = \frac{\hbar\omega}{2}$ $\phi_0 = e^{-y^2/2}$

$$\phi_0 = e^{-y^2/2}$$

$$\epsilon_1 = 3$$

$$E_1 = 3$$
 $E_+ = (1 + \frac{1}{2}) \pm \omega$ $\phi_1 = (-\frac{d}{dy} + y) \phi_0 = 2y e^{-y^2/2}$

$$\epsilon_{z} = S$$
 $\epsilon_{q} = (z + \frac{1}{2})t_{1}\omega$ $\phi_{z} = (-\frac{1}{dy} + y)\phi_{q} = 2(zy^{2} - 1)e^{-y^{2}/2}$

$$E_n = 2n+1$$

$$E_n = 2n+1$$

$$E_n = (n+1/2) + \omega$$

$$\varphi_n = \left(-\frac{d}{dy} + y\right)^n \varphi_0 = H_n(y) e^{-\frac{y^2}{2}}$$

A COMPLETE SOL'N OF PROBLEM!

SO FAR HAVEN'T NORMALIZED WAVEF'NS ...

$$1 = \int_{-\infty}^{\infty} dx \left| \phi_0 \right|^2 = \left(\frac{2}{3} \right) \int_{-\infty}^{\infty} dx \, e^{-x^2/\alpha t^2} \quad \text{Convert BACK}$$

$$\Rightarrow C = \frac{1}{\alpha'/2\pi'/4}$$

- · SIMILARLY CAN MORMALIZE HIGHER \$ (x) 's ...
- · JUST AS IMPORTANT OUR WAVEF'NS ARE
 ALSO ORTHOGONAL

$$\int_{-\infty}^{\infty} \phi_n(x) \, \phi_m(x) \, dx = 0 \quad n \neq m$$

THIS MUST BE TRUE: THEY ARE E'FUNCTIONS
OF HERMITIAN OPERATOR H WITH
DIFFERENT E'VALUES En AND Em.

C.F. 'STURM-LIOUVILLE' THEORY IN MATHS
HETHOOS COURSE...

- NOTE THAT THE \$(x) GO EVEN-ODD-EVEN ...

 AND JUST LIKE THE OO [] LI, THE nth

 EXCITED STATE HAS IN NODES.
- FEATURES OF THE GROUND-STATE

$$\phi_o(x) = \frac{1}{\alpha^{1/2}\pi^{1/4}} \exp\left(-\frac{x^2}{2\alpha^2}\right)$$

$$E_o = \frac{\hbar\omega}{2}$$

$$\alpha^2 = \frac{\hbar}{\sqrt{mR}}$$

A CLASSICAL PARTICLE OF TOTAL ENERGY tow/z

$$V(x) \leqslant E_o$$

$$\Rightarrow x^2 \leq \frac{t\omega}{R} = \frac{t}{R\sqrt{m}} = \frac{t}{\sqrt{m}R} = x^2$$

IF GO BACK TO TISE

$$\frac{-t^2}{2m}\frac{d^2\phi}{dx^2} + \frac{1}{2}kx^2\phi = E\phi$$

AT THE POINT WHERE E = V(x) (THE UNIT OF THE CLASSICAL MOTION) WE SEE THAT

$$\frac{d^2\phi}{dx^2} = 0 \qquad \frac{A \text{ POINT OF}}{\text{INFLEXION FOR } \phi}$$

THIS IS TRUE FOIL ANY STATE

PROB OUTSIDE CLASSICAL REGION	N
QUANTUM (0.157	0
EFFECTS MOST 0.116	1
SIGNIFICANT 0.095	2
FOR LOW E	
STATES	

SCATTERING, TUNNELING, AND FINITE POTENTIAL WELLS

CONSIDER FOLLOWING V(X)

$$I \longrightarrow E < V_0 \qquad V = 0$$

$$V = 0 \qquad V = 0$$

$$X = 0 \qquad X = 0$$

WITH PARTICLE OF ENERGY E < VO INCIDENT

THREE REGIONS IN WHICH SOL'NS TO TISE ARE:

$$V_{I} = e^{ikx} + r e^{-ikx} \frac{h^{2}k^{2}}{2m} = E$$
INCIDENT REFLECTED

$$t_{I} = Ae^{Kx} + Be^{-Kx}$$
 $\frac{t^2K^2}{2m} = V_0 - E$

$$\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}} = \frac{$$

NOW MUST IMPOSE BOUNDARY CONDITIONS
AT X=0 AND X= ...

$$\psi$$
 continuous $|+r = A+B|$

$$1+r=A+B$$

$$ik(1-r) = K(A-B)$$

AT X = a

CLASSICALLY ZERO TRANSMISSION THROUGH BARRIER. WE WANT TO FIND & IN OH CASE ...

FROM X = 0 EQNS GET

$$I+r = A+B$$

$$2 = A(1 - iK/R) + B(1 + iK/R)$$
 0

FROM X = a EQNS GET

PUT THESE BACK INTO 1

$$2 = t e^{ik\alpha} \left\{ \frac{1}{2} e^{-k\alpha} \left(1 - i \frac{K}{R} \right) \left(1 + i \frac{K}{K} \right) + \frac{1}{2} e^{k\alpha} \left(1 + i \frac{K}{R} \right) \left(1 - i \frac{K}{K} \right) \right\}$$

$$= t e^{ik\alpha} \left\{ \frac{1}{2} e^{-k\alpha} \left(2 + i \left[\frac{R}{K} - \frac{K}{R} \right] \right) + \frac{1}{2} e^{k\alpha} \left(2 - i \left[\frac{R}{K} - \frac{K}{R} \right] \right) \right\}$$

$$= t e^{ik\alpha} \left\{ 2 \cosh K\alpha - i \left(\frac{R}{K} - \frac{K}{R} \right) \sinh K\alpha \right\}$$

$$\Rightarrow t = \frac{2e^{-ik\alpha}}{2\cosh K\alpha - i \left(\frac{R}{K} - \frac{K}{R} \right) \sinh K\alpha}$$

THUS PROB OF TRANSMISSION IS

$$T = |E|^{2} = \frac{4}{4 \cosh^{2} K \alpha + \frac{(R^{2} - K^{2})^{2} \sinh^{2} K \alpha}{R^{2} K^{2}}}$$
 (2)

NB. THE FACTORS OF KR/M ININCIDENT AND TRANSMITTED FLUX CANCEL. (AS R'S SAME)

THERE IS MUCH PHYSICS IN (2)
LET'S LOOK AT SOME CASES...

· WHEN KA IS LARGE

$$T \simeq \frac{4 e^{-2k\alpha}}{1 + (k^2 - k^2)^2 / 4k^2 k^2} > 0$$
!

THIS IS TYPICAL TUNNELLING BEHAVIOR, IN PARTICULAR THE EXPONENTIAL DAMPING OF THE TUNNELLING PROB. WITH THE WIDTH OR OF BARRIER.

· WHEN E= Vo

$$K^2 = \frac{2m}{\hbar^2} (V_0 - E) = 0$$

AND THIS IMPLIES

$$T = \frac{4}{4 + k^2 a^2}$$
 < 1!

NOTE THAT EVEN THOUGH CLASSICALLY ONE UOULD GET PERFECT TRANSMISSION, HERE T \$1, AND IN QM GET SOME REFLECTION

$$R = 1 - T = \frac{k^2 \alpha^2}{4 + k^2 \alpha^2}$$

• WHEN E > Vo

$$K^{2} = \frac{2m}{k^{2}} (V_{o} - E) < 0 \quad \text{SO URITE}$$

$$K = i \hat{R} = i \left[\frac{2m}{\hbar} (E - V_{o}) \right]^{1/2}$$

THEN WITH THIS SUBST

$$t = \frac{2e^{-ik\alpha}}{2\cos k\alpha - (k/k + k/k)i\sin k\alpha}$$

GIVING

$$T = |E|^2 = \frac{4}{4 \cos^2 \hat{R} \alpha + \left(\frac{R}{12} + \frac{\hat{R}}{R}\right)^2 \sin^2 \hat{R} \alpha}$$

$$4 \cos^2 \hat{R} \alpha + \left(\frac{R}{12} + \frac{\hat{R}}{R}\right)^2 \sin^2 \hat{R} \alpha$$

$$\int so \, 2 e R o$$

$$WHICH IS LESS THAN I UNLESS \hat{R} \alpha = N \pi$$

CF. CLASSICALLY

T=1 FOR E>Vo!

'RESONANT TRANSMISSION'

SO FAR SQUARE BARRIER, NOW SQUARE WELL ...

$$\psi_{I} = A e^{K \times}$$

$$\frac{t^{2}k^{2}}{2m} = V_{0} - E$$

$$\psi_{I} = B \cos k \times + C \sin k \times \frac{t^{2}k^{2}}{2m} = E$$

$$\psi_{II} = D e^{-K \times}$$

BOUNDARY CONDITIONS

THESE EWNS ARE A PAIN TO SOLVE BY HAND
- NOWADAYS WE'D USE A SYMBOLIC MATH PROGRAM
(EG. MAPLE, MATHEMATICA,...) BUT WORTHWHILE TO
STUDY SOME FEATURES... WE CAN WRITE (1)... (4) AS

$$det()=0$$

THIS IMPLIES:

(I)
$$\frac{K}{R} = \tan R\alpha$$
 IN WHICH CASE

EVEN WAVEF'NS \Leftarrow

$$0 = A$$

$$B = \frac{e^{-K\alpha}}{A}$$

OR
$$(I) \frac{K}{R} = - \cot R\alpha \quad \text{IN WHICH CASE}$$

$$ODD \text{ WAVEFNS} \Leftarrow \begin{cases} B = 0 \\ 0 = -A \end{cases}$$

$$C = -A \frac{e^{-K\alpha}}{a}$$

WE NEED TO SOLVE (I) AND (II) TO GET ENERGIES, BUT THESE TRANSCENDENTAL EQNS CAN'T BE SOLVED ALGEBRAICALLY

- SO WE GRAPHICAL METHOD ...

LET'S WRITE

$$E = \epsilon \frac{t^2}{2ma^2} \quad V_0 = \lambda \frac{t^2}{2ma^2}$$

THEN EQNS (I), (II) BECOME

$$\int \frac{\lambda}{\epsilon} - 1 = ton \int \epsilon$$
 AND $\int \frac{\lambda}{\epsilon} - 1 = -cot \int \epsilon$

-> PICTURES OF METHOD OF SOL'N

-> PICTURES OF WAVEFUNCTIONS

NOTE THERE IS <u>ALWAYS</u> ONE EVEN

BOUND STATE NO MATTER HOW SMALL VO

(THIS TRUE OF 10 TISE.)

UNLY A FINITE NUMBER OF BOUND STATES FOR $V_0 < \infty$, AND FORMULA FOR ENERGIES NOT NEARLY SO SIMPLE AS ∞ \square \sqcup CASE.

