DIRAC FORMULATION oF M

MORE POWERFUL AND MURE GENERAL
THAN WAVEFUNCTIONS . ALL SERIORS

PUYSICISTS USE IT.
LET’s ABSTRACT GENERAL FEATURES ofF QM

o LJAVEFUNCTIONS CAN (E LINEARLY

CUPERPOSED VITH COMPLEX COEFFS

HATHEMATICAL STRUCTURE IS
COMPLEx LINEAR VECToR SPAcCE

BAsIC ORTECT 1§

STATE KET' |> REPRESENTING

STATE OF
SYSTCM

A PARTICUAR SET OF STATES ARE ENERGY

GEN TES
‘Glfﬂ'ﬁf H'n>=En'”>



W
WE ALSO HAVE COMPLEX CoNTUGATES OF

WAVEFUMCTIONS AND EIGENSTATES

REPRESENT THESE BY STATC @rAs)
4| oR  <n|

® THE OVERLAP OF UAVEFUNCTIONS

de BOS Y (x)

GENERALIZES To

UNITARY INNER PR6DUCT FoRrR
BRAS AND KETS

<EI¥D = Commex NuMEER
CMING OVERLAP
OF [¥> Awo |¢>

LG|V> SATISFIES RutES EXPLANED
IN MATHS METHODS COURSE . . .

Ee. LI+ =Y



A KET IS NoRMALIRED IF
<¥I¥> =1

AND |4> AND |g> ARE ORTHOGONAL IF
¥ @S =<L|¥+> =0

MEANS WITH
INNER PRoOUCT

&
THIS UNITARY CoMAEX VECTGR SPACE <£..|..»

DEscRI1bNG THE Po3SIBLE STATES OF THE

SYSTEM IS CALLEP THE

‘UILBERT SPACE' OF THE SYsTEM

CoMETIMES DENOTED BY 7TurLYy' M

® LIKE ANY LINEAR VECTOR SPAcE D) HAS
A DiMenNSIoN DETERMINGD BY MAXIMAL NUMBER

OF LIVEARLY INDEPENDENT VECTORS

CIUD + oy (U .. +luy> =0



¢
A DIFFERENCE WITH VECTOR SPACES Youu ARE

FAMILIAR WITH IS THAT

PiMeNSIoN OF ) IS TyPicALLY oo |

EG. WE KNOW PARTICLE IN 1D SQUARE WeLL
HAS & NUMBER OF ENCAGY EICeNSTATES

P,(x) «> In> WHICH ARE LINEARLY INDEFY

HOWEVER LATER IN COURSE WE L MEFET
VERY INPORTANT PHYSICAL SYSTENMS WHERE
YO 1s FimTe DiMensiovAL ((sPin,...)

AVD CANMOT RE DESCURED BY JAVEFUNCTIONS

® ExISTENCE oF IWWER PRodUCT < | D>
ALLoWS LS To CONSTRUCT CoMPLETE SETS
OF ORTHONORMAL KeTs (A BASIS For M)
VIA SCHMIDT PROCEDURE
U v LU, Jun> =6,



&
LF HAVE SucH A BASIS THEN ANY STATE
[¥+> OF SYSTEM CAN BE EXPANMDED

dimH

+> = 2> ¢, |und

n=,

C,’s DPETERMINED BY TRKING INNER PRoDuct
oF THIS Eav wiTK <u,, |

din M
<U.ml""‘> = 2 C., <“,m'un.>

h =,
3
i
= Cm o CE<UL P>

THUS EXFANSION For |¥> IS

dim H dumH
14> = 2 (u>c, =2 [ud<u, ¥
hs) ha

EASILY REMEMEERED
FORM



(3
THE BRAS AND KETS ARE RELATED @Y

TAKING THE ADTUINT (CoMPLEY CoNTUCATE

THANSMSE FOR WSUAL VECTBRS) So EQN
disM

I+> = 2 U, c,

n=y

IMPLIE S
JO*H

() = (£ 1ua>c )f
\" dim M *-'\v
4l = 2 C* <u,l

"N

NoTE ¥ coefF,

THUS NORMALIZATION IMILIES

dimM dis X
l"(’”""> Z C <v,| Z U C,,

h= m=

= 2 C.,*Cm Uy [UmD

", = \-‘w

" l




(#
* IN QM ALSe HAVE (HERMITIAN) OPERATGRS

WHICH REPRESENT (RSERVABLES

A KEY PRINCIFLE OF QM IS THAT ALL
OPERATORS ARE LINEAR, = IF

,*> = Cl ,“|> * Cl 'ut>
Tuen

O 14> = ¢, (81u5) +¢, (E1u,>)

To BE TAUTHAUL THERE IS ONE, AND ONLY ONE

EXCEPTION To THIS , THE “TIME- REVERSAL
A
OPERATOR T WHICH IS "ANTTUNEAR — THIS

I€ AN ApbvaNczD (AND INTERESTING !) ToPic, ..

OPERATORS ALSe ACT ¢N THE VECTuR SPACE
OF BRAS LINEARLY (8 (AN ACT LEFT oR ‘RIGHT)
o A
Ao = (C,*(u,l-'-c: (u‘])o
= ¢*(<y10) + ¢ (<u,)3)



4
SINCE BRAS AND KET EXCHANGED RY TAKING

ADTOINT | USEFUL To DEFINE ACTION oF
ADTOINT ON OPERATORS Teo

4
A

. A4 .
ADT«INT A OF of. A DEFINGES &Y

CHIATIeY = <plal+y

HermTIAW (0R CELE - ADTOINT ) GPERATORS
SATISFY

A <A

So For. HERMITIAN oPS (onLY)
CPIARINSY = <A

THE QUANTITY <?l£ |4 IS CALLED THE
'NATRIX ELEMENT ' oF A BETWEEN STATES

| 1p> AVD 145
IF (W, ) Is AN ORTHONORMAL BASIS THEN

A
U AW, Y = AL, S HATRIX ELENENT
IN CONVENTIONAL SENSE.



“
e A SURPRISINGLY WUSEFuL OPRRATGR SECRETLY

APPEARS IN THME ExPANSION OF GENERAL |¥)>
die X
D> = 2 [U.D<uall¥)d>
h=

SINCE THIS HoLVs For ANY KET [w) We

CAN CANCEL |+ FRem RGTH LHS ANO RHS, s,
dim M

i - z Ib‘.n><un‘

"ne)

N

UHERE T 1S THE ‘10ENTITY OPERATGR®

UMIcH LEAVES ALL STATES UNCHANEED
" dimH
I'?) - 2 lun><“n'¢>
h=|

= l?) BY ExPANSIGN THHM

For g%
THE MATRIX ELEMENT UF T IS (N A PAsis)
Jin M,
(u.,,lj: us> = 2. <uplud Cu, luy>
ns)
sfn Snt



THUS QRITTEN ExPuCITLY AS A MATRIX
f.’ IS REPRESENTED As

A-
L ! { ' me)'(
\ ©
\/\/\_’: '
dim >

THE UNMIT MATRIx !

® ANOTHER USEFRL EXAMALE 1S THE PMATRIX. ELEMENT
OF APROOUCT oF OPEAATERS

<uplﬁ§lu1> = <u,.lﬁf:§ lvg)

— \ CAN ALWAYS
(/uz),,1 INSERT T
OVERATOR
= 2. <uglAluSCualBlu,S
n
% Arn B uL
—————

TusT USUAL MATRIX

MULTIPLICATION OF MATRICGS
.S

REPRESENTING A ANO 8



Y
OuR EARLIER PEFN oF AT Acrzes om

AOTOINT oF A MATRIX
(AT) on =<u, | Afu.S
= <U, M | U D7
BYFOR"M (A ) nm  INDICES TRANSANED
= (AT

BACK To PHYSICS...
X EUNDAHENTAL PosTULATES oF arm Y-

I) STATES OF A SYsTeEm ARE
REPRESENTED QY NommAuIZep
KETS |+ or Bras <p|

IN A HILBERT SPAcE (wHicH
VARIES FlloM SYSTEM To SYSTEN)

IL) 08S€RVAGLES ARE RePRESEVTED
BY LINEAR HERMITIAN OPERATIRS
ACTING oN KETS of @AS




U2

) ALL Sucd HEQMITIAN OFS. A Afe Astumep

To Posscss A CoMPLETE SET OF ONTHUNORMAL

EI6ENSTATES
| > WITH EIENVALUE @,

12 n " Ga

i " 5 d'?!

ComMETE SET' MEANS THAT |19, 1), ..
FoRMS A BASIS FoR THE SPACE, o ANY |4
(AN BE EXPANDED IN EICENSTATES OF A (For

ANY A
_ )l'+> = %.Ih)(nhk)

N) THE FUNDAMENTAL PROBAZILITY PosTULATE

FOR MEASUREMENTS 1S

i) PossiaLe REsueTs oF MEASUREENT
o A ARE EIGENVAWES OF A QNLY

i) Prog (A=a,) = | <n|¥>|"




&
jii) AFTER_MEASUREMENT OF A WITH RESULT

Oy THE STATE IW> (s REDUCE) To
( coreAPrsES T6')

l*a&(:cv-.» = ,">
AN

COEFF (CHANGED EIGE:IKET
To | o= A WITH

ﬁl”) =an'">

ﬁofe: IF d, IS A DEGENERATE EIGEMALUE
(1E IF MORE THAN ONE LINEARLY
INOER’T KET HAS SAME A4, EIGENALY)

THE PRocEDURE OF REDACTION IS
SLIGHTLY MORE INVOLVED — THIS 1§

AN ADVANCED Tofic J

NOTE: SUBSCAUENT MEASUREMENTS OF SAME A
ON | ¥, Y = InD> RETURN &), WiITH

PRoRABILITY =1 AS LoNG AS No MEASARENE
OF OTHER OPs 8 ARE MAPE AT INTERMENATE
TIMES (MORE ON THIS LATER)



(%
T) IN THE ABSENCE OF A MEASUREHENT

TUE TIME EVOLUTION GOF THE KKET |¥())
DESCRIBING THE STATE OF THE SYSTerM

AT TIME £ CHANGES SMOOTHLY IN TIME

ACCORDING To THE TOSE

R AR IG) — Q’\'(,(&)>
ok

NoTES : 1) THE TDSE IS A LINEAR
EQN  WJHICH IS ALSO
DSTERMNISTIC , 1E HVEN
THE STATE AT E=0 |¥()>
THE STATE AT A LATER TiIME €

IS UNIQUE LY RETERMINED AS
LONG AS NO MEASVREMSENTS
ARE AERFurmED |

i) THUS THE PRORALISTIC , NoW -
DETERMINKSTIC ASPECTS OF AN |
RRE PRRgLY DU To THE

(OLLAPSE OF THE STATE UpPow
MEAsugeEMswr |




s
A
i) H IS THE HAMILTONIAN —THE

OPERATOR CoRARCTSPeVPING To THE
ENERCY 6F THE SYSTEM

v) WE (AN ForMALLY INTEGAATE Tig
TOSE FheM Time = Ly To €s

- (A CE, -4
[¥Ces)> = @ ‘H ’)/*lm.,;

WMHclE THE EXPONENTIAL IS DEFANED
BY ITS foER SERIES

(o) A 4
EéG. @ =,[-9»8+-_Q._.1-...
2.

SiNce l-,l\-'r— l'?+ (HEARM TIAN) THE

OPERATOR .
-iH(f&'éo)/t
K= €

1€ UNITARY e b ki
tHT(G -k -cH(k-6)/%
wu=e ° e

(Al -t - ALty -t) /4
-

= |

' N
So TIME EVoLuT)oN IS UNITARY EVoLusiod



How Do WE RECOVER LIAVE FUNCTIONS ©

CoNSIDER PeStTiIeN OPERATOR )? . THrs

HAS A CoNTINUAOUS SPECTRUM OF EIGENVALUES

A
X|x> = x[x>
THE E6ENKETS X > ARE NO6RMALIZED

As
(xl ¥’'> = §¢x-x’)

/

TMIS IS ANALOGUE P

<nlm> =4, IN

DISCRETE CASE
THE EXPANSION OF A NORMALIRED STATE
IS OF THE PARTICLE (N TEAMS OF

fostTieN EIGENKETS REAOS
1v> = \dx [x><x|+>
7~ '
ANALOEWE 0F ANALOGRE OF
S H> =2 [n><ni>

n



(g
TUE GENERAL RULES OF THE DMAC

FoRMALISM TELL WS THE |NTERPRETATIGN
oF {x|¥S

x| ¥S = PReBARILITY AMPLITUDE
THAT PARTICLE IN STATE
N> IS LOCATED AT X

1E, <x|¥Y 1S fRECQISELY WHAT WE
PREVICUSLY CALLED THE WAVEFUNCTIGN !

THE DESCULTION 6F STRTES BY
WAVEFUNCTIONS IS CALLEY THE

/ s,

'Y - REPRESENTATION (0R “CacrDINATE

REP /N, AND SCHRUEDINGER 'S UAVE

- MECHANICS IS THE FolM QM TAKES
|F THE (ccROINATES of A PALTICLE |
ARE AL ONE cARES AdouT (E6. IF
No SAN, No ANTIFARTIC(LE (REATIOV,...)

SN R I PR




&4
(JORTHWHILE To EMAHASIRE THAT ALL AsPecTs
OF (AVE MECHANICS CAN RE DERWVED FRoM

DIRAC
EG. OVERLAP

<Hl¢> = <+I('(J»x lx><xl)ly>

|,
INSCRTING THE

IDENTITY OPEARTUR
IN X—REP’N,

¢t T =3 Ino<n|
--de. LIS <x 1 9>

= jc}«x (x!"}’>*<x!;o>
= (dx Vo0 @00 v

IN SUMMARY, WE MAVE SEEN THAT THE
PRORABILITY AMPLITUDE |S THE CAvCIAL
08T¢Ect IN QM THAT WE HuST CoMPUTE To
SoLtVE A PROBLEN FuLLy
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RuLEs For AMPLITUDES @

® IN THE X-REPRESENTATION (1€ USVUAL
WAVEFUNCTIONS ) THE AMPLITUDES ARE TusT

FPound Ry SoLving THE TISE WITH APPROPRIATE
BOUNDARY CeniD(Tion's (AnD H !)

CUSEFUL To STATE SuME VERY GENERAL
RULES FOR PRuB. AMPLITUDES THAT CAN RE
DERIVED FRoM DIRAC FORMULATION

LET'S DEFINE ‘AN EVENT 1N AN ExPERIMENT '
To BE A SITUATIGN IN WHICH ALL 6F TUE INITIAL

AND FINAL (oNDITIONS OF THE EXP'T ARE
COMALETELY SPECIEIED

IE, ALL PosITioNs , ANGULAR HoM™M, . , oF
ALL PARTILIPATNG PARTICIES SPECIFIED



@e

RULE | : WHEN AN SVENT CAN OCCUR IN
SCVERAL ALTEANATIVE WAYS, TUE
AMPUTUOE 1S THE SUM OF THE
AMPLITUDES For EACH WAY (oNSIDERED
SEPARATELY (So GET INTERFERENTCE)

RULE 2 : THE AMPUTUVOE FOR EACH SEPARATE
VAY Aai EVENT (AN OCCUR (AN RE

WRITTEN AS THE PReDuCT OF THE
AHALITUDE FoR PART OF THE EVEWT

OCCUAING THAT WAY UWITH THE
AMPLITUDE CF THE REMAINING FART

EG. AnpP (PARTILE X —> Y))

X
£

J
Amp(Y-’J) = Amp(x-=>2) + Amp (2 9)
& (3]1) = <3l%><%|3‘> (oNvENTION



J
RULE 3: TF AN EXPERIMENVT 1S PERFORMED

WHICH 1S CAPABLE IN PRINUPLE GF

DETERMINING WH|(H 6F THE ALTEANATIVE

YAYS ActuwLy IS TAKEN (So Iv FACT
NoT ALL FINAL CoNDITIONS ARE TME SAME)
MTE! ( THEN TotAL PAoBABKITY s

NoT SUM_OF PRoRARILITIES FoR EAct
WATWE Acreanative

Por =R tP ...

(INTERFERENCE 1S LosT )

NOTE: CAPASLE IN PRINCIPLE DogsN*T MEAN
THAT ITS NECESSARY FuR A HUMAV
(oR OTHER SENTIGNT BEINE) To ek
THAT ALL FINAL (ONDITIeNS ARE THE SAME

(IT'5 Enouen For THE STATE oF ONE ATon

To @€ DIFFENENT VHETHER WERE A\Mﬁ‘; 19'.4)



uSEftAL To HANIPULATE. AMPLITUDES EVEN WHEN
DoN T hNow (YET) ExacTLy THEIR VALUE

EG. TWO-SLIT INTERFERENCE

O8SERVING
sSuUTi SCREEN

#o -
T S~ [T
-

| SLIT2

Q1SS = AMPLITUDE Fol PARTICLE To 6o Frten
S Te sur |

x> = AHP. For sSUITI Te X ON SCREEW
Simitat FoR <L2|s> AND <x (2D
SO TOWL_AMP_ FRoM SouRCE S To X

Ave,, = <x[1><i]s> + <x25<42(s>

\ ADO DIFFERENT
RouTes

MULTIPLY AMPS.
ALONG ROUTE

X
=> Pro@ (s—x) = | TorAL AP |

Because o —> £ Prog (s—1->x) +Pro3(s-2+)

INTERFEAENCE I I 9 W N
Teams | <xl1y<ils?| | <x)a><2|$> |



LECTURE : CoNSERVE D QUANTITIES

IV CLASSICAL PHYSICS MANY ConNS@RVED
QUANTITIES (ENEAGY, MoM’M, ANG. Mam M. )
WHAT AbuT OM 7

® CONSIDER EXPECTATION VALVE OF

SoME Of, Q WHICH PoES NOT HAVE ANY
ExfuaIT Time-DER (€6. X o ~ctd/ox)

<o, = (Voo atoe dx
-00

BECAUSE ¥ 1S FuneheN OF & WE unL
FIND  IN GENERAL , THAT <Q 2, IS A
Funenion oF L ...

e R (CTntat 0

USE TDSE HY = ~t§_i To REPLACE
E -DEAUVATIVES

Mo - ["{ (5t v via(it) ]



RHS -Eik_-[.:i—\P*HQ"’+1P”&‘P§J)‘ N

Rs.&ase \

IS HERMITAN
H NOTE : fEemé

CAREFUL
WITH ORVER!

fj VHHGa-GH) Y d

= *_(‘(HQ-G\H)),*

o O 1S A ConNSERVED QAUANTITY IF

d4a> —o NO MATTER WHAT STATE
“JE -

4 THE PARTICLE IS IN

THIS CAN ONLY HAPPEN IF

| (Ha=@QH)Y =© l @

FOoR ANY NORMALIRAALE FuricTioN

HE 0BJECT HA-QH 1S CALLED THE
Comnu:ra'ror& OF H AND Q , DENQTED

M, al ¥ Ha -aH

’




THE STATEMENT THAT [H,GA]=0 MEAWS
(*). WHEN WORKING ouT COMMUTATORS OF
DIFFERENTIAL OPS. REMEMRER. To HAVE THEN

ACT oN SoME ARBITRARY FN To Aveip
VISTAKES

EXAMALE
SIMPLEST CASE IS Q=1
d 4 |W> =i y|[H 1T+ =0
7o CHY> =L &HI[H ]l}

Sy
As [A11=0 For
ANY 0P, A

NANELY , THE PRoBASILITY IS CONSERVED
INDEP'T OF TIME

<> =1

IN FACT PROBAGILITY (AND ALL OTMER CowSERVED
QUANTITIES) ARE (oNSERVED LocALLY

= IT FLouws ARounND SATISFYING
A LoCAL CONSEAVATION EQN,



PRoBABILITY CURRENT

/; = V¥ IS THE PRo&. DENITY

¥y *
%% ae *‘*L O

BuT Tose SAYS For 1D G
%Y = -%' vy + VY

¢ 2m
aqtid:*,—: viHr vt (Vs eead)

THus RUS oF (D A€ovE
= . v ¥ ’ -?*‘t‘ : 3
F{LE TPV

HAVE (onNSERVATION EQN
i Q,é'_ + V. J_ =0




P -£¢
EXAMPLE - PLANE WAVE e‘(f ) 4

] =ik (e°£”/ts%. e PF_ . c.)

m

= ¥ 2p £ =v

Cf =
2w 4 ™
“THe PoTENTIAL STEP

APPLICATION OF (oNS. oF fPRo3 (AND
SUPERPoSITION OF ESTATES)

Recien
Vi) =V
— I
= [ REGIoN 2

Vi =0 X=o

CLASSICALLY A PARTICLE INCIDENT FloM
LEFT WITH KE =F WTH E<V Wit

RE REFLECTED By BARMIER . \JHAT
HAMENS IN QM ?

PROCEDPURE

® FIND GENERAL SoL'N To Tose IN
EAcH (ECION



® HATCH SotNS AT X=0O USING
BouNDARY CONDITION S

1) ¥Ox €Y ConTINUOUS

i) 9WHLE) coNTINUOS
oX
NOTE : ii) APPLIES WHEN JuMP

IN V IS NOT INFINITE

[ o NORMALIEE SoL’N ]

E&jbh’ !
ALREADY KnNow THAT FREE (Ve=o) Thse
HAS Sel’N
-( Et Ry -
1" ¢ A(QC‘ +}e ¢h!>
/e
s il F-vemv‘zw
+ve TRAvELLNG WAVE
E=H 1 (Ivcomrwe)  (RERECTED)

T uvitt CHooSE

a=| , b=r

SEE WHY SooW...



@
RE6i0N 2 :

-3? Z , ’ -Etn
o TVITER hedke

SUPPOSE FoR MeMENT THAT £ >V THen

.&lx L P
Bo=ce T ae™ anely
o~ Tm

“ve TRAVELULING

AT wE YANT PARTICLES

ONLY INCIPENT FRsM LEFT
o d=0

Voo (NPoSE RounbDARY CONDITIONS :

) \':(";L') =Y (x,t) AT x=o (Fot)kuv
¢
=> E=€’ (% Eneaey tons.)

Atso ¢ (0) = ¢, (o)
= |+ r =c
i) B7) = gy (e CANCEL)




@
NOTE: WE FIND A F#0 — A TRANSMITTED
WAVE As Exfeercd (FoR E> V)

BuT ALse r £0 — THERE IS

A _QEFLEcTED WAVE Tee (CrAstiuY
Fel E >V, N6 REFLECTI0N) !

° | g'r’: Now CALCULATE. PROB. FLUXES
o IN RES6ioN 2

v ¢'(h.'x—EeA-) “’a
S 2 ) 55 ©

eat

= ER%jc)*  (Wor quet 14171

i(ek -E¢h)
e

o IN RS6ioN | GET

= kR rHER
m L
| B Sy

INCIDENT REFLECTED

WHAT WE CARE AGuT 1S PRoGABILITY OF
REFLECTIoW ©R TNRANSMISSIGN . THESE
ARE CIWVEN BY RATIGS

ReFecTeD Fux /veinenT FLux = R



@

TKANJH!TT£O F"""/INCODENT' wa E—— T‘
M
SiNce WE DVIDE

BY THie Po NoT

NEED T6 N6AMALIZE
RE€&wwn ) WAvE

(FAsesT To TAKE
CoEres 1, r )
Find
Ro= 1l 6RMm )2 (R )“
k. /m R+ k'

T = *h7m 'C" E_k‘_,,'(’)= h*kh.,
th/m R (R+nr’)?

NoTE THAT A+T =| v/ (ToT ppoe -1
WHAT HAPPENS IF E<V ?

Now SoL’/N WV REGIeW 2 1S

¢L = & Q—Kx +Ael€x
w

4

EXPLODES AS X =—> +00
PHYSICALLY IMPOSSIGLE
=2 J=0

2.2
ﬁ.':\"‘E
2w



ACAIN, MATCHING SeL'NS AT Bounpary
| +r =¢
(hCl=r) = — ke

Se r = |-(K/R , ¢ =—%

| +c K/R ItiR/k

Now FIND
R=1rl" =| A peFiecTED

AND  j, = "t % el (e-k?.e"“—e. c.)

=0 SO NONE TRANSMITTED v

NoTe HowEVER THE

i

WAVEFUNCTION DOES PENETRATE
INToO THE CLASSICALLY FORIBIDDEN

REGION !

FINITE PRe3. OF Finoin ¢
PARTICLE MERE!



