DIRAC FORMULATION OF QM

MORE POWERFUL AND MORE GENERAL
THAN WAVEFUNCTIONS. ALL <u>SERIOUS</u>
PHYSICISTS USE IT.

LET'S ABSTRACT GENERAL FEATURES OF QM

• WAVEFUNCTIONS CAN BE LINEARLY

SUPERPOSED WITH COMPLEX COEFFS

MATHEMATICAL STRUCTURE IS

COMPLEX LINEAR VECTOR SPACE

BASIC OBJECT IS

'STATE KET' I+> REPRESENTING

STATE OF

SYSTEM

A PARTICULAR SET OF STATES ARE ENERGY

EIGENSTATES $H|n\rangle = E_n|n\rangle$

WE ALSO HAVE COMPLEX CONJUGATES OF WAVEFUNCTIONS AND EIGENSTATES

REPRESENT THESE BY STATE BRAS'

< 41 OR < n |

THE OVERLAP OF WAVEFUNCTIONS

GENERALIZES TO

EG. < \$ | +> = < + | \$ >

A KET IS NORMALIZED IF

 \(\psi \ | \psi \ > = 1 \)

AND 14> AND 16> ARE CRTHOGONAL IF

<+10> = <01+> = 0

MEANS WITH INNER PRODUCT

THIS UNITARY COMPLEX VECTOR SPACE <......

DESCRIBING THE POSSIBLE STATES OF THE
SYSTEM IS CALLED THE

HILBERT SPACE OF THE SYSTEM
SOMETIMES DENOTED BY YURLY H

• LIKE ANY LINEAR VECTOR SPACE > HAS

A DIMENSION DETERMINED BY MAXIMAL NUMBER

OF LINEARLY INDEPENDENT VECTORS

c, lu, > + c2 lu2> + ... + < , lun> = 0

SATISFIED ONLY IF C = C = ... = CN = O

A DIFFERENCE WITH VECTOR SPACES YOU ARE FAMILIAR WITH IS THAT

DIMENSION OF > (IS TYPICALLY 00)

EG. WE KNOW PARTICLE IN 1D SQUARFWELL

HAS ON NUMBER OF ENERGY EIGENSTATES

Pn(x)
In> WHICH ARE LINEARLY INDEST

HOWEVER LATER IN COURSE WE WILL MEET

VERY IMPORTANT PHYSICAL SYSTEMS WHERE

H. IS FINITE DIMENSIONAL (SPIN,...)

AND CANNOT BE DESCRIBED BY WAVEFUNCTIONS

• EXISTENCE OF INNER PRODUCT < 1 >

ALLOWS US TO CONSTRUCT COMPLETE SETS

OF ORTHONORMAL KETS (A <u>BASIS</u> FOR)-()

VIA SCHMIDT PROCEDURE

|U_m > WITH ⟨U_n |U_m > = δ_{nm}

IF HAVE SUCH A BASIS THEN ANY STATE 14> OF SYSTEM CAN BE EXPANDED

$$|+\rangle = \sum_{n=1}^{\dim H} c_n |u_n\rangle$$

Cn's DETERMINED BY TAKING INNER PRODUCT OF THIS EQN WITH < Um |

$$\langle u_m | \psi \rangle = \sum_{h=1}^{\dim \mathcal{X}} c_n \langle u_m | u_n \rangle$$

$$\int_{\delta_{mn}}$$

$$= C_m : C_n = \langle u_n | + \rangle$$

THUS EXPANSION FOR 1+> 15

$$|+\rangle = \sum_{n=1}^{\dim H} |u_n\rangle c_n = \sum_{n=1}^{\dim H} |u_n\rangle \langle u_n|+\rangle$$

EASILY REMEMBERED FORM THE BRAS AND KETS ARE RELATED BY
TAKING THE ADJUINT (COMPLEX CONJUGATE

THANSPOSE FOR USUAL VECTORS) SO EQN

$$| \psi \rangle = \sum_{n=1}^{d_{n} + H} | u_{n} \rangle c_{n}$$

IMPLIES

$$(1+)^{+} = \left(\frac{d_{in}H}{\sum_{n=1}^{+} |u_{n}\rangle c_{n}}\right)^{+}$$

$$(1+)^{+} = \left(\frac{d_{in}H}{\sum_{n=1}^{+} |u$$

THUS NORMALIZATION IMPLIES

$$1 = \langle +|+\rangle = \sum_{n=1}^{\dim H} c_n^* \langle u_n| \sum_{m=1}^{\dim H} |u_m\rangle c_m$$

$$= \sum_{n,m} c_n^* c_m \langle u_n| u_m\rangle$$

$$= \sum_{n,m} |c_n|^2$$

$$= \sum_{n} |c_n|^2$$

• IN QM ALSO HAVE (HERMITIAN) OPERATURS
WHICH REPRESENT OBSERVABLES

A KEY PRINCIPLE OF QM IS THAT ALL.

OPERATORS ARE LINEAR, IE., IF

I+> = C, |U,> + C, |U,>

THEN

 $\hat{O} | + \rangle = c_1(\hat{O}|u_1\rangle) + c_2(\hat{O}|u_2\rangle)$

TO BE TRUTHFUL THERE IS ONE, AND ONLY ONE EXCEPTION TO THIS, THE TIME-REVERSAL' OPERATOR A WHICH IS ANTI-LINEAR'—THIS IS AN ADVANCED (AND INTERESTING!) TOPIC...

OPERATORS ALSO ACT ON THE VECTOR SPACE

OF BRAS LINEARLY (Ô CAN ACT LEFT OR KIGHT)

(410 = (C,*<u,1+c,*<u,1)ô

= c,* (<u,10) + c;* (<u,10)

SINCE BRAS AND KET EXCHANGED BY TAKING
ADJOINT, USEFUL TO DEFINE ACTION OF
ADJOINT ON OPERATORS TOO

ADJUINT
$$\hat{A}^{\dagger}$$
 OF OP. \hat{A} DEFINED BY

 $< \forall 1 \hat{A}^{\dagger} | \phi > \equiv < \phi | A | \forall >^{*}$

HERMITIAN (OR SELF-ADJOINT) UPFRATORS

SO FOR HERMITIAN OPS (ONLY)

< 9 | Â | 4 > = < 4 | Â | 9 >

THE QUANTITY $< \rho | \hat{A} | + > 1$ CALLED THE 'HATRIX ELEMENT' OF \hat{A} BETWEEN STATES $| \rho > AND | + >$.

IF $|u_n\rangle$ is an orthonormal basis then $\langle u_m | \hat{A} | u_n \rangle \equiv A_{mn}$ is matrix element in conventional sense.

· A SURPRISINGLY USEFUL OPERATOR SECRETLY

APPEARS IN THE EXPANSION OF GENERAL $|+\rangle$ $|+\rangle = \sum_{n=1}^{\infty} |u_n\rangle\langle u_n|+\rangle$

SINCE THIS HOLDS FOR ANY KET IT WE

CAN CANCEL IT'S FROM BOTH LHS AND RHS, SO

$$\hat{I} = \sum_{n=1}^{\dim \mathcal{H}} |u_n\rangle \langle u_n|$$

WHERE I IS THE IDENTITY OPERATOR

UHICH LEAVES ALL STATES UNCHANGED

$$\hat{T}|\varphi\rangle = \sum_{h=1}^{dim \times} |u_n\rangle\langle u_n|\varphi\rangle$$

= | p > BY EXPANSION THM
FOR | p >

THE MATIRIX ELEMENT OF Î IS (IN A BASIS)

$$\langle u_p | \hat{I} | u_q \rangle = \sum_{n=1}^{din H} \langle u_p | u_n \rangle \langle u_n | u_q \rangle$$

$$\delta_{pn} \qquad \delta_{nq}$$

THUS WRITTEN EXPLICITLY AS A MATRIX Î IS REPRESENTED AS

THE UNIT MATRIX!

• ANOTHER USEFUL EXAMPLE IS THE MATRIX ELEMENT OF A PRODUCT OF OPERATORS

OUR EARLIER DEF'N OF ÂT AFREES WITH

ADJOINT OF A MATRIX

$$(\hat{A}^{\dagger})_{mn} = \langle u_m | \hat{A}^{\dagger} | u_n \rangle$$

$$= \langle u_n | \hat{A} | u_m \rangle^{*}$$

$$= \langle \hat{A} | \hat{A} | u_m \rangle^{*}$$

$$= (\hat{A})_{nm}^{*} \text{INDICE: TRANSPUSED}$$

$$= (\hat{A}_{mn})^{*}$$

BACK TO PHYSICS ...

- * FUNDAMENTAL POSTULATES OF aM *
 - I) STATES OF A SYSTEM ARE
 REPRESENTED BY NORMALIZED
 KETS IY > OR BRAS < 91
 IN A HILBERT SPACE (WHICH
 VARIES FROM SYSTEM TO SYSTEM)
 - II) OBSERVABLES ARE REPRESENTED

 BY LINEAR HERMITIAN OPERATORS

 ACTING ON KETS OF BRAS

III) ALL SUCH HERMITIAN OPS. Â ARE ASSUMED

TO POSSESS A <u>COMPLETE SET</u> OF ORTHUNORMAL

EIGENSTATES

(OMPLETE SET' MEANS THAT (17, 12),...

FURMS A MASIS FOR THE SPACE, SO ANY (4)

(AN BE EXPANDED IN EIGENSTATES OF Â (FUR

ANY Â)

|+> = \(\sum_{n} \) \(\lambda \)

IV) THE FUNDAMENTAL PROBABILITY POSTULATE FOR MEASUREMENTS IS

i) Possible Results of MEASUREMENT of A ARE <u>EIGENVALUES</u> of \hat{A} <u>ONLY</u> ii) Prob $(A = a_n) = |\langle n| \forall \rangle|^2$ iii) AFTER MEASUREMENT OF Â WITH RESULT an THE STATE I+> IS REDUCED TO ('COLLAPSES TO')

 $| \forall after \rangle = | n \rangle$ COEFF CHANGEO EIGENKET $TO I OF Â WITH Aln > = a_n | n >$

NOTE: IF an is A degenerate eigenvalue

(IE IF MORE THAN ONE LINEARLY

INDEP'T KET HAS SAME an EIGENVALU)

THE PROCEDURE OF REDUCTION IS

SLIGHTLY MORE INVOLVED - THIS IS

AN ADVANCED TOPIC.

NOTE: SUBSEQUENT MEASUREMENTS OF SAME Â

ON | Yaster > = | n > RETURN an WITH

PROBABILITY = | AS LONG AS NO MEASUREMENTS

OF OTHER OPS B ARE MADE AT INTERMEDIATE

TIMES (MORE ON THIS LATER)

IN THE ABSENCE OF A MEASUREMENT

THE TIME EVOLUTION OF THE KET | \(\(\) \(\) \\

DESCRIBING THE STATE OF THE SYSTEM

AT TIME & CHANGES SMOOTHLY IN TIME

ACCORDING TO THE TOSE

it 3 14(e)> = H14(e)>

- NOTES: i) THE TOSE IS A LINEAR

 EQN, WHICH IS ALSO

 DETERMINISTIC, IE GIVEN

 THE STATE AT E = 0 | \(\psi(0) \rangle)

 THE STATE AT A LATER TIME E

 IS UNIQUELY DETERMINED AS

 LONG AS NO MEASUREMENTS

 ARE PERFORMED!
 - 11) THUS THE PROBALISTIC, NONDETERMINISTIC ASPECTS OF QM
 ARE PURELY DUE TO THE

 (OLLAPSE OF THE STATE UPON
 MEASUREMENT!

- iii) \hat{H} IS THE HAMILTONIAN THE OPERATOR CORRESPONDING TO THE ENERGY OF THE SYSTEM
- iv) WE (AN FORMALLY INTEGRATE THE

 TUSE FROM TIME = t_0 To t_f $|+(t_f)>=e^{-i\hat{H}(t_f-t_0)/t}|+(t_0)$

WHERE THE EXPONENTIAL IS DEFINED BY ITS POWER SERIES

EG.
$$e^{\hat{0}} = 1 + \hat{0} + \frac{\hat{0}^2}{2!} + \dots$$

SINCE $\hat{H} = \hat{H}^{\dagger}$ (MERITIAN) THE OPERATOR $-i\hat{H}(t_{\sharp}-t_{\bullet})/t_{\bullet}$ $U \equiv e$

IS UNITARY $\frac{1}{4} \frac{1}{4} \frac{1}{4}$

SO TIME EVOLUTION IS UNITARY EVOLUTION

HOW DO WE RECOVER WAVEFUNCTIONS ?

CONSIDER. POSITION OPERATOR. X. THIS

HAS A CONTINUOUS SPECTRUM OF EIGENVALUES

$$\hat{X}|x\rangle = x|x\rangle$$

THE EIGENKETS IX > ARE NORMALIZED
AS

$$\langle x | x' \rangle = \delta(x - x')$$

THIS IS ANALOGUE OF $\langle n|m\rangle = \delta_{nm}$ IN DISCRETE CASE

THE EXPANSION OF A NORMALIZED STATE IN) OF THE PARTICLE IN TERMS OF POSITION EIGENKETS READS

$$|+\rangle = \int dx |x\rangle \langle x|+\rangle$$
ANALOGUE OF
$$|+\rangle = \sum_{n} |n\rangle \langle n|+\rangle$$

THE GENERAL RULES OF THE DIRAC
FORMALISM TELL US THE INTERPRETATION
OF <X14>

\(\times \| \psi \rightarrow = \text{PROBABILITY AMPLITUDE} \)

THAT PARTICLE IN STATE

\(\psi \rightarrow \)

\(\psi \rightarrow \)

I \(\psi \rightarrow \)

IS LOCATED AT \(\psi \rightarrow \)

\(\psi \rightarr

PREVIOUSLY CALLED THE WAVEFUNCTION!

THE DESCRIPTION OF STATES BY

WAVEFUNCTIONS IS CALLED THE

"X-REPRESENTATION" (OR "COORDINATE

REP'N), AND SCHROEDINGER'S UNVE

MECHANICS IS THE FORM GIM TAKES

IF THE COORDINATES OF A PARTICLE

ARE ALL ONE CARES ABOUT (EG. IF

NO SPIN, NO ANTIPARTICLE CREATION, ...)

WORTHWHILE TO EMPHASIZE THAT ALL ASPECTS
OF WAVE MECHANICS CAN BE DERIVED FROM
DIRAC

EG. OVERLAP

$$< \forall | \varphi \rangle = < \forall | ((d \times | x) < x)| | \varphi \rangle$$

INSERTING THE

IDENTITY OPERATOR

 $| (x) = (x)| | ($

IN SUMMARY, WE HAVE SEEN THAT THE

PROBABILITY AMPLITUDE IS THE CRUCIAL

OBJECT IN QM THAT WE MUST COMPUTE TO

SOLVE A PROBLEM FULLY

RULES FOR AMPLITUDES

- IN THE X-REPRESENTATION (IE USUAL WAVEFUNCTIONS) THE AMPLITUDES ARE JUST FOUND BY SOLVING THE TISE WITH APPROPRIATE BOUNDARY CONDITIONS (AND Ĥ!)
- USEFUL TO STATE SOME VERY GENERAL

 RULES FOR PROB. AMPLITUDES THAT CAN BE

 DERIVED FROM DIRAC FORMULATION

LET'S DEFINE AN EVENT IN AN EXPERIMENT

TO BE A SITUATION IN WHICH ALL OF THE INITIAL

AND FINAL CONDITIONS OF THE EXP'T ARE

COMPLETELY SPECIFIED

IE, ALL POSITIONS, ANGULAR MOM'M,..., OF
ALL PARTICIPATING PARTICLES SPECIFIED

RULE 1: WHEN AN EVENT CAN OCCUR IN

SEVERAL ALTERNATIVE WAYS, THE

AMPLITUDE IS THE SUM OF THE

AMPLITUDES FOR EACH WAY CONSIDERED

SEPARATELY (SO GET INTERFERENCE)

RULE 2: THE AMPLITUDE FOR EACH SEPARATE.

WAY AN EVENT CAN OCCUR. CAN BE.

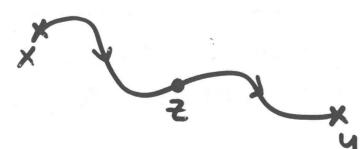
URITTEN AS THE PRODUCT OF THE

AMPLITUDE FOR PART OF THE EVENT

OCCURING THAT WAY WITH THE

AMPLITUDE OF THE REMAINING PART

EG. AMP (PARTICLE X -> y)



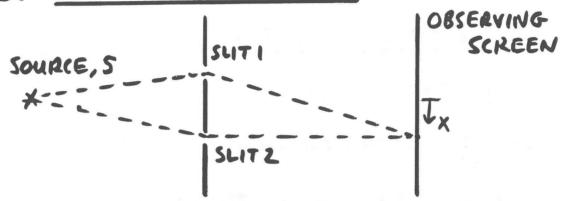
 $Amp(x\rightarrow y) = Amp(x\rightarrow z) \cdot Amp(z\rightarrow y)$ $\iff \langle y|x \rangle = \langle y|z \rangle \langle z|x \rangle$ (Sinvention) RULE 3: IF AN EXPERIMENT IS PERFORMED WHICH IS CAPABLE IN PRINCIPLE OF DETERMINE WHICH OF THE ALTERNATIVE WAYS ACTULLY IS TAKEN (SO IN FACT NOT ALL FINAL CONDITIONS ARE THE SAME)

NOTE! (THEN TOTAL PROBABILITY IS SUM OF PROBABILITIES FOR EACH ALTERNATIVE

> PTOT = P, + P2 + ... (INTERFERENCE IS LOST)

NOTE: CAPABLE IN PRINCIPLE DOESN'T MEAN THAT IT'S NECESSARY FOR A HUMAN (OR OTHER SENTIENT BEING) TO CHECK THAT ALL FINAL CONDITIONS ARE THE SAME (IT'S ENOUGH FOR THE STATE OF ONE ATON TO BE DIFFERENT WHETHER WE'RE AWARE OR USEFUL TO MANIPULATE AMPLITUDES EVEN WHEN DON'T KNOW (YET) EXACTLY THEIR VALUE

EG. TWO-SLIT INTERFERENCE



(XII) = AMP. FOR SLIT I TO X ON SCREEN

SIMILAR FOR <215> AND <x12>

SO TOTAL AMP. FROM SOURCE S TO X

MULTIPLY AMPS.
ALONG ROUTE

ADD DIFFERENT ROUTES

=> PROB(S -> X) = | TOTAL AMP. |2

BECAUSE OF \Rightarrow \neq PROB(S \Rightarrow 1 \Rightarrow x) + PROB(S \Rightarrow 2 \Rightarrow x)
INTERFERENCE

| (x|1)<(1|S>|^2 |(x|2)<2|S>|^2

LECTURE : CONSERVED QUANTITIES

IN CLASSICAL PHYSICS MANY CONSERVED QUANTITIES (ENERGY, MOM'M, ANG. MOM'M,...) WHAT ABOUT QM?

• CONSIDER EXPECTATION VALUE OF SOME OR Q WHICH POES NOT HAVE ANY EXPUCIT TIME-DER (EG. X 012 - 14 2/3x) $\langle Q \rangle_{+} = \int_{-\infty}^{\infty} +^{x}(x, t) Q + (x, t) dx$

BECAUSE & IS FUNCTION OF & WE WILL

FIND, IN GENERAL, THAT < Q>, IS A

FUNCTION OF & ...

$$\frac{qf}{q\langle \sigma\rangle^{4}} = \int_{\infty}^{\infty} \left\{ \left(\frac{gf}{gA_{+}} \right) \sigma A + A_{+} \sigma \frac{gf}{gA_{-}} \right\} qx$$

USE TOSE HY = it 24 TO REPLACE L-DERIVATIVES

$$\frac{d\langle \alpha \rangle}{dt} = \int_{-\infty}^{\infty} \left\{ \left(\frac{H + \gamma}{i \pi} \right)^* \alpha + \gamma^* \alpha \left(\frac{H + \gamma}{i \pi} \right) \right\} dx$$

• Q IS A CONSERVED QUANTITY IF

d<0> NO MATTER WHAT STATE

THE PARTICLE IS IN

THIS CAN ONLY HAPPEN IF

= = = < (HO-OH)>+

$$(HQ-QH)Y=0 \quad (*)$$

FOR ANY NORMALIZABLE FUNCTION Y.

THE OBJECT HQ-QH IS CALLED THE

COMMUTATOR OF H AND Q, DENOTED

[H, Q] = HQ-QH

THE STATEMENT THAT [H,Q] = 0 MEANS

(*). WHEN WORKING OUT COMMUTATORS OF

DIFFERENTIAL OPS. REMEMBER TO HAVE THEN

ACT ON SOME ARBITRARY FN TO AVOID

MISTAKES

EXAMPLE

SIMPLEST CASE IS Q = 1

NAMELY, THE PROBABILITY IS CONSERVED INDEP'T OF TIME

<+1+>=1

IN FACT PROBABILITY (AND ALL OTHER CONSERVED QUANTITIES) ARE CONSERVED LOCALLY

A LOCAL CONSERVATION EAN.

PROBABILITY CURRENT

$$P = + + + 1S THE PROB. DENSITY$$

$$\Rightarrow \frac{\partial P}{\partial E} = \frac{\partial +}{\partial E} + + + \frac{\partial +}{\partial E} 0$$

BUT TOSE SAYS FOR ID ON

$$\Rightarrow -ik\frac{\partial F}{\partial A} = -\frac{zw}{F_s} \triangle_s A_+ + A_+ A_+ \qquad (A.12 \text{ LEAP})$$

$$\Rightarrow -ik\frac{\partial F}{\partial A} = -\frac{zw}{F_s} \triangle_s A_+ + A_+ A_+ \qquad (A.12 \text{ LEAP})$$

THUS RHS OF () AROVE

$$=\frac{i}{k}\left\{\left(\frac{1}{2m}\nabla^{2}+^{4}+v+^{4}\right)\Psi-\Psi^{*}\left(\frac{1}{2m}\nabla^{2}+v+v\right)\right\}$$

$$=\frac{-i}{2m}\left(\Psi\nabla^{2}+^{4}-\Psi^{*}\nabla^{2}\Psi\right)$$

$$=-\frac{i}{2m}\left(\Psi\nabla\Psi^{*}-\Psi^{*}\nabla\Psi\right)$$

HAVE CONSERVATION EAN

EXAMPLE: PLANE WAVE
$$e^{i(px-Et)/t}$$

$$j = -\frac{it}{2m} \left(e^{-ipx/t} \frac{\partial}{\partial x} e^{ipx/t} - c.c. \right)$$

$$= -\frac{it}{2m} \frac{2ip}{t} = \frac{p}{m} = v$$

THE POTENTIAL STEP

APPLICATION OF CONS. OF PROB (AND SUPERPOSITION OF E'STATES)

CLASSICALLY A PARTICLE INCIDENT FROM
LEFT WITH KE = E WITH E < V WILL
BE REFLECTED BY BARRIER. WHAT
HAPPENS IN QM?

PROCEDURE

• FIND GENERAL SOL'N TO TOSE IN EACH REGION

· MATCH SOL'NS AT X=0 USING BOUNDARY CONDITIONS

NOTE: ii) APPLIES WHEN JUMP IN V IS NOT INFINITE

NORMALIZE SOL'N

REGION 1

ALREADY KNOW THAT FREE (V=0) TOSE HAS SOL'N

$$\psi_{i} = e^{-iEE/k}(ae^{ikx} + be^{-ikx})$$

$$p = tk$$

$$p = tk$$

$$+ ve TRAVELLINE$$

$$(INCOMMING)$$

$$(REFLECTED)$$

I WILL CHOOSE a=1, b=r

SEE WHY SOON ...

REGION 2:

$$\frac{-t^2}{2m} \frac{d^2\phi}{dx^2} + V\phi = E\phi \qquad \frac{1}{2} = \phi_2 e^{-iE^2/4m}$$

SUPPOSE FOR MOMENT THAT E > V THEN

$$\phi_2 = c e^{i k' \times} + d e^{-i k' \times} \frac{\hbar^2 k'^2}{2m} = E' - V$$

FUT WE WANT PARTICLES
ONLY INCIDENT FROM LEFT
SO d = 0

NOW IMPOSE BOUNDARY CONDITIONS:

i)
$$\gamma'(x,t) = \gamma_2(x,t)$$
 AT $x = 0$ (FOR ALL t)

$$\Rightarrow E = E' \quad (SO \, ENERGY \, CONS.)$$

ALSO $\beta_1(0) = \beta_2(0)$

$$\Rightarrow \quad 1 + r = c$$

ii) $\beta'(0) = \beta'(0) \quad (e^{-iEt/k} \, CANCEL)$
 $i \, k(1-r) = i \, k'c$

So $r = \frac{1-k'/k}{1+k'/k}$, $c = \frac{2}{1+k'/k}$

NOTE: WE FIND a \$0 - A TRANSMITTED

WAVE AS EXPECTED (FOR E>V)

BUT ALSO r \$0 - THERE IS

A REFLECTED WAVE TOO (CLASSICALLY

FOR E>V, NO REFLECTION)!

· LET'S NOW CALCULATE PROB. FLUXES

• IN REGION' 2

$$\int_{2}^{2} = \frac{-i\hbar}{2m} \left\{ \left(ce^{i\left(k'_{X} - Ee/_{K}\right)} \right)^{+} \frac{\partial}{\partial x} ce^{i\left(k'_{X} - Ee/_{K}\right)} \\
- c.e. \right\}$$

$$= \frac{\hbar k'}{m} \left[\left[c\right]^{2} \left(\text{NOT JUST } \left[c\right]^{2} \right] \right]$$

· IN REGION | GET

$$j_1 = \frac{\pm k}{m} + \frac{|r|^2 \pm (-k)}{m}$$
INCIDENT REFLECTED

WHAT WE CARE ABOUT IS PROBABILITY OF REFLECTION OR TRANSMISSION. THESE ARE GIVEN BY RATIOS

REFLECTED FLUX / INCIDENT FLUX = R

TRANSMITTED FLUX /INCIDENT FLUX = T

SINCE WE DIVIDE

BY THIS PONOT

NEED TO NORMALIZE

REGION! WAVE

(FASIEST TO TAKE

COEFFS!, r)

FIND

$$R = \frac{|r|^2 \hbar k/m}{\hbar k/m} = |r|^2 = \left(\frac{R - k'}{R + k'}\right)^2$$

$$T = \frac{\frac{t \, k/m \, |c|^2}{t \, k/m}}{\frac{t \, k/m}{t}} = \frac{R' |c|^2}{R} = \frac{4 \, k \, k'}{(R + R')^2}$$

NOTE THAT R+T = 1 / (TUT. PROR = 1)

WHAT HAPPENS IF E < V?

NOW SOL'N IN REGION 2 15

$$\phi_2 = c e^{-Kx} + de^{Kx} \qquad \frac{\hbar^2 \kappa^2}{2m} = V - E$$

EXPLODES AS X -> + 00
PHYSICALLY IMPOSSIBLE

| d = 0

AFAIN, MATCHING SOL'N'S AT BOUNDARY

$$l+r = c$$
 $ik(l-r) = -kc$

So $r = \frac{l-iK/R}{l+iK/R}$, $c = \frac{2}{l+iK/R}$

NOW FIND

$$R = |r|^2 = | ALL REFLECTED$$
AND
$$j_2 = -\frac{it}{2m} |c|^2 (e^{-kx} - c.c.)$$

$$= 0 \quad \text{SO NONE TRANSMITTED} \checkmark$$

NOTE HOWEVER THE

WAVEFUNCTION DOES PENETRATE
INTO THE CLASSICALLY FORBIDDEN
REGION!

