l E,:c‘erE | + GENESIS OF QUANTUM THEORY

AT START oF 20% THERE WERE NUMBER JSF

OUTSTANDING PRoBLEMS T3 Do WITH STRUCTURE OF

MATTER

BlonroL7 SPEARING Two AREAS

D AToMs : STARILITY <

STRUCTURE 7

RADIATION 2

KNows THAT ATors HAD [oTH tve
[ + vo
| Ve AND —Ve CHARGES IN BouND

N A
SATE
o QuT IF ONE ORBITS ALOUND OFHER THEW
CLASSIcAL EM THEoAY FPRELICTS
SYSTEM RADIATES ENEAGY (EM RADIATION
DUE To AELERATING CHANRGES) AND
ColLARsES N ey SHoRT TIME — SO

WHY AToMs STAGLE 27

MorkEoved | EXPERINENTs wWITH DISCHARGE TULES Br

BALMER , LYMAN, AND OTHEARS SHoWED THAT

e Lavation (TR, visBe, uv, eTc) EMITIED BY EXQTED
ATéHS cAME IN DISCRETE SIECTRAL L/INES




ej/ @Au%éﬂ SELIES FRom HUYWACGEN

FReauency i
OF LIGHT
l4§ SR —
156 - _
oy R = Rydbery cansbunte
AV A i
< R <I ne )
R N=12,3% 4,5

SEVERAL oTHER SEZES MAD Arse REEN (peNTIFIED TGETHE,E
WITH THE ‘RULE® PR THE FREQUENCIES

WHY DisqReTe sfe<iieum ¢

WHY Sivie Rures FOR V (FtH) 7
“

@ BLACk BoDy RADATION

ALL BIPIES AT TEMP T >0 EMT EH RADIATISN (ANVD
ABsoR8 |T IF N EQUILIRRIUM)

SCHEHATICALLY A BlAck Dy CAN RE MADE VIA

P HEATING Cotl-s
0000 0 T b0

1 i
i —
3 o K> DETECTOR
e ’M
RAPATION @ f ‘\
N _et>
":& - 9 SMALL  APEATURE
EQUILIRIU

T T FOR RADIATION To EMERGE



G

Accorpine To ciassiCAL PHYSIcs (STAT MECH + MAXWELL

THEORY oF Ert) THE AftounT oF EM ENERGY Pl uwviT
VOLUHE, PER umT FREQ.. RANGE IS

SE ~ u*&u IN RANGE U To V+8u

7f/{l§ IC THE RAYLEIGH —TEANS LAW

2uT (T IMPLIES THE NoN SENSIAL RESULT THAT THE TOTAL
ENERGY DPENSITY

- INANITE ENERGY
= o U2 du . DENSITY (AT HisH

T V) Rk ARGIRARLY
SMALL T

o

EXPE&MENTALLV/ SPECTRUM LOOKCS LIKE

SE ~ /JCV) Sv
f(v)% ,

:

| / CrfMen al{j
: .

\
Vimax v

T = S

/Vm (oNnsST
fosiTion oF PeAx HovEs

To HisHal VU AS T INCREASES

(LIewS DIstAGHENT LAW)



®

GREAT CONTRIBUTIoN OF HUAX PLANCIS T8 REALIZE TRAT ARogLer

WAS DUB To CoNTINUouS NATULE OF RAPIAT(ON BNERGY (N

CLASSICAL THEORY AND THAT CIRRECT SFECTRUM

PLAwct. DEMvED
J> v = (cmsbunts) v;  dv TH!s rERFET

@ BT — FIT To 8-8
SIECTAuUM

Arose FroM AssurtPlie THAT EM RADATIoN oF PREQ, U REQUIRES

S TR NIRRT

HINIMUM EXCITATION ENERGY

AE =hvy
det
h': Planch s (d_hJéOlh& = §-626 x)6™* JE

This 15 CoMPLETELY DIFFERENT FloM CLASSIAL THESEY

0l —
[ME CIRTH oF THE QUANTIM

fm IS A NEW FANDAMENTAL CoNSTANT OF NATURE

m/we INTERESTING To READ PARISI ARTicLe ABsuT
SUBTLETIES IN PLAMCK’S AMGAEHENT J



AN EQUALLY IMPORTAN T CoNTRIBATION AS EINSTAaNS
ANALZSIS OF

e THE PHOTOELECTRIC EFFECT

[HE IMPORTANCE OF THIS ExfERIMENT IS THAT
IT SHOWED How FLANCK S (NUANTA ARE

REAL IRFEPUCIRLE ENTITIES

AND NOT TUST SoNETHING THAT EXST IN A STATISTIAL

SENSE
SET Wf S
EM RADIATION L vormee SeuecE
' () Avnetze
HERTZ 9287
VAacuu LENNALD [902

ﬂADmﬂoN INCIDENT ON A CATHODE KNoCkRS oUT
ELE,cmoNs/ wHlcH ARE THEN ATTAATED To ANODE

BY BLECTAIC FIBLp —> A DETECTALLE CURLENT

—LASSIcAL THEOR Y SAYS.

ENERSCY of LICHT 1S DETERMINED By INTENSITY oF
LIGHT ; THIS ENERS [S DELIVERED CoNTINGUSLY
by THE. BN WAVES ; ENedsy OF LIGHT (S (NDEPTT
6F FREAQUENCY



w'/Z{M/S _CMsSKAL THEORY [REDICTS

OMCE LIGHT (S TWLNED ON , THE ELECTRONS

IN CATHOOE START ARSaRBING ENERGY UNTI-

EVENTUWALLY THEY HAVE GAINED ENRUGH To

FREE THEMSELVES FRoH METAL SUAFA<E

Q‘T{'—{zs FUNIMUM ArtounvT IS THE (WOKK-FuNCndN\, w

=/

OF THE Ha—r,ql,>

= (0 THERE SHourLDd BE A DELAY BETVEEN
SWITCHING 8pn) AT AND OBSELVIN G-
CURRENT '

@) LF (NTENVSITY oF LIGHT |S DECAEASED THE

DELAY SHoulLD (NGREASE

@) THE FREQUENCY oF THE LIGHAT SHOULD

NOT MATIEL AT ALL, O AvD @ sHourd
STiLe Pe TRue

TRESE AR= THE FREDICTIONS oF ThE VERY WELL
VERIFIED WAVE. THESRY oF UsHT

TN FACT WHAT HAPPEN

(D THERE 1S N8 _DELAY IN CURRENT fFrow_,
(PELAY < (b~ Sec.>

(i) DECREASING INTENSITY DECREASES SIZE OF
(URRENT  [AT NO EFFECT OTHEAW/SE




iy TIHE FREQUENCY V (S CRUTAL - [F U (S Too

SMALL N6 CURRENT FLowS MNo MATTER Hew LoNG

WE WAIT 0R How HicH |INTENSITY

E(NSTEIN (1905) Exfrfived THESE REsuwTs RY
HYPoTHESIZING THAT

LIGHT sHour> Le REGARDED AS CONSISTING

OF lﬂkaoucuaua/ PARTICLE LiIKE OBITECTS

(PHUTONS) EACH WITH ENeesy

11:“5 APEARS To BF (N TeTAL CINTRAPICTION To (SO

YEARS OF EXPER(MENTS PRovING- LIEHT WAS A

WAVE (Youns, HUYGENS, ...  MAXWELL, HERTZ, FrAMN HOFFER

~-) AND EVEN IN (415" WA PEGARDED As A
RencNPous MISTAKE By EINSTEIN

VMY How , EINSTEIN'S HYPOTHESIS HAD FoLLow (NG (AM;eauEma

TF PHoToN (25) HITs ELECTRONV (e“) (N CATHOPE.
ELEcTRON ABsorES ENEARAsy hv . For e~

To ESCAFE SURFAE |TS ENERGY MUST RE GREATER

THAN
w—Vv



THwS FEINSTEN SAp

() TF Vv FAles Betow (w—v)/l,, NO CURBENT CAN

Flow (I6NoANG UNLIKELY EVvENT OF 2 X 7 HITIING SAME
e
() THERE IS NO DELAY — WE oNLY NEED ONE fHeToN To

HIT SoME ELECRON ON CATHODE [oR CURRENT

(i) PECREBASING INTENSITY DECREASES NUAMBER OF = ’3/
UMIT TIME, HENCE RATE AT WHICH @ % ARE EBJIECTED
HENCE CULRENT

THESE ALL AGREED
AND FURTHER HE PREP)CTED

KEore™ = Fmv? = hu—(w-v)

WHICH (ATER EXPERMENTS BY HILLIkAN (ma} VEeFrED |

A
N
Ei e EXPT oN LITHIUM CATHIDE
VLMV2(¢V>
— SLOPE OF LNE h/e
1 (MEAsuRES | By NEW METHOD)
0-6 +
= ‘f'lg ( W
o-t / Vearr = SFx(© s GHvEs L—Ifrfluﬁ>

4 I
Ll A !

4o So 60 Po ---
V x 107" sec!



goH(t ATod

Borte (132) was feLE To DERIVE BALMER eTc. SERIES FoRkR H

B7 Surfosins @7 IS (N ORAT ARSUND NACLEUS W(TH

QUANTIZED ANGuUL AR HorENTUM NOTE: h HAS
UN(Ts oF
J = Ql« n=1,2,3, . ANG MMM,
2T

AND €7 AN MARE DISCcoNTINUSUS TRANSITIINS FRov oveE

ORBT To ANOTHER  LITH CHANGE (N ENERGY [E-E
AfteArinG  As RADIATION W(TH FREG..

/
v= E-E
h
THIS WAS A VERY imfokTANT BAEAKTHROUGH AS IT SHOWED
QUANTUM HYPOTHESLS WAS MSEFUL FoR AToMs , NoT TuST
HEHT,

BUT ON CLOSER INSPECTION THERE ARE A NUMBER of TRINGS
PHYSICALLY Lu@oNG WITH LoHR ATOM — So WELL WAIT To
Do HYDRoSEN FROPERLY VIA SCHROEDIN SER EQN.



p/}RT; cLES AND WAVES

EINSTEIN AND FLANCK  PRGUED THAT LIGHT HAS PARTICLE — LiKE

PRotELTIES, EVEN THOUGH (T oF CSUASE IT Is Acse

WAVE ~LIKE | As SHown By INTEAFEAENCE EFFPECTS

(‘punG’s SLITS  DIFFRASTION ) AND SU<ESS o Ff MAXWELSS
BEans.

ReALLY LIGHT 1S NEITHER A PARTICLE Nok. A WAVE

guT wMe NEW KIND oF ENTITY THAT HAS

AslecTs ot 8TH (FEYNMAN AW ED THESE

ENTITIES ‘WAVICLES' AS A SERIOUS TOKE...)

DE BroscLie ((923) HAD THE (NS(GHT To fRofoSE

THAT Every o08TeCT — MATTER AS weLL AS LIGHT —

VAS KEALLy ONE OF THESE NEW ENTITES

THUS HE WAS HOTIVATED To ASSSQATE A WAVELENGH N

UITK _FMATTER (THE DE GROGLIE WAVELENGTH )

NHAT SHowwD XN BB °©

RECALL FoR T & E::Hu:%\_c_

uT For PreTens E = pe (see PRoBLEM SET)

So EARAUALLY

—_—

E ,9



AND DE BRoGLiE Tookk Fol MATTEA THE PEFINITION

[ - Jet
>\ P bRocie = —1—4—\
Pe—1"

PARTICLE Mon’M

AD SuceesTED THAT DIFFGACTION EFFECTS FoR MATTEA SHOULD
BE SEARCHED FOR . _.

[HE DAVISSON AND GERNER EXPRRMENT

NOT So [E#¥s7 To SEE DIFFAACTIoN EFFECTS Rk, EG e s

AS N IS MUCH SHORTER.
Ee, beV e HAs N =29A ((A=10""m)

DAVISSeN AND GERMER ((125) WED A NICKEL CRYSTAL
As A OIFFRACTION GRATING
SheV PETECTOR
by

e~ BEAM
= / L/l>\ = alSlme

O O © © o o o (=] © O
N{ CRyYsSTAL &>
ATort SPacinNG

~A2:05S A

~N

AT (S .
PEAIK CoRKESPOVNDS To n=|

THusS bo GET
DIFFRACTION oF MATTER!

‘e

Fivay, OMPTON EFFECT, CoNFRMED PARTICLE NATURE OF LIGHT (SEEfRosras)



QM LECTURE 2

HE:SENBE(&&/SCH RoePINGER

IN 1425/26 DEVELOPED Two TOTALLY
EQUIVALENT FoRMULATIONS ©F

(NoN -RELATIVISTIC) QUANTUM HECHANICS

WEL START WITH SCHROEDINGER . ..

DE BosLie HAD POSTULATED WAVE
ASSOCIATED WITH EVERY FARTICLE,

So SCHROEDINGER INTROPUCED

‘WAVE FuNcTIoN' Y (x, E)

AND Took Y(x,t) Te SATISFY
PARTIAL DIFFERENTIAL EQN.

“cnrosomser EaN" t=bhfrr



A
H 1s Tue "HAMILTONIAN" - THE

PARTIAL DIFFERENTIAL OFPERATOR
FOR THE TATAL ENERsY

FoR A PARTICLE MOVING IN (D
H + V(x)
Zm

WHERE (N QM THE MOMENTUM
OPERATOR 1S

b =—(h D
P oX

THESE ARE HUYPOTHESES OF AM
VERIFIED BY EXPERIMENT



WITH $ AS GVEN ScH. EaN (IN
1D) READS

- h >¢+V(x)“l“=£‘h§i|
2m o LY o
—

TRY SOLUTION VIA SEPARATION OF
VARIABLE S

Yix, E) = AoOTCE)

$o
[ - _L BlxY +V () yS(x) TCE)

2m %

[L‘ﬁ bT(é)] ¢(,¢)

DivioE eo'rH Sioes BY T

| =% 27 +v ]= b AT
[ #l= &3

\—-——'V*-——"’L"\—\J

ONLY FUNCTION OF X ONLY FUNCTIoN
oF &



THE ONLY WAY LHS = 4(xd AND
Rus =3(e) IS IF AcTupLLy BoTW
EGUAL CONSTANT (E)

THUS GET 2 EQNS:

@) IS EAsSY Tb SoLve

— Bt/
T = e X CONSTANT

(T) cAugo THE

MSE SCHROEDWGER EQN' CANW @E VERY HARD
To Sot.VE - DEPENDS oN V(x)

EASY CASE: FREE PARTICLE

V = o



FoR V=0 TISE IS
"‘t\l Az =E¢
2m T;%

WITH SoLuTioNS
LRx — (R x
p~e e
WHERE
iR _ E
2Zm |
THus PuTTive Tie) AND $x) TOGETHER

L (Rx-EE/EY  waA
) ~ : VE IN
Hk) ~e tve X DIR'N

¥y~ € (HTEY - uave i
—Ve X DIR’N
so FiND
ANGULAR FREQ W =E/4

=>|‘E='tw = hv I

S0 AUTOMATICALLY INCORPORATES

EWNSTEIN REL'N




ALSo FoR CLAssIcAL FREE PARTICLE E= ,"/zr;

Se GET

AUTOMATICALLY INCORPORATES
DE BRo6LIE "MATTER WAVE' RELN

WHAT DOES ¥ (x k) MEAN ?

V(% ) CANNOT BE A PHYSICAL.
WAVE LIKE OSALLATING STRING, OR
EM WAVE OF MAXWELL THEORY

TPSE ¢ CoMPLEX EQN (Tue ‘i‘)

SOLUTIONS ARE INHERENTLY

(MALEX  (REAL AND IMAG PARTS
oF %t Do NOT SEPARATELY SoLVE ECN)



SOMETHING WHICH IS COMALEX CANNOT
RE DIRECTLY MEASURED

(ALL EXPERINENTS RETURN
ReaL ResurTs!)

ALSo NOTE THAT FoR A PH7SICAL WAVE
e ‘R(x-v, €)
e PHASE VELOCITY

BuT FoR (&)
Vv €) = ‘("" Et/‘h) _e/‘,;q?x 3

= = /2"’ =.
oV, = E/p LF‘F ) %%

HALE THE SIPEED OF PARTICLE WITH
MOM’M P AND MASS m

ON OTHER HAND GRoup VELOQTY

=dw = d& _ — Ve
QAn I -



THIS 1S VERY DiFFERENT To, E.6.
EM WAVES WHERZ OSCuLATING
E avp & HAVE

VP =Va = C

So WE KNOW WHAT VY (x. t) IS NoT

.. NEXT LECTURE WELL sEe
WHAT Y(x,&) Is ...



LECTuURE 3: Y(x, &) AND PROBARILITY

T0 UNDERSTAND ¥(x, &) MusT INTRoDU(E

—_PRo BAQILITY DENSITY

P(x, &)

BASIC IDEA IS THAT CAN No LONGER
BE CERTAIN OF EXACT foSITION oF
PARTICLE

ONLY THAT PRoB. OF MEASURING IT
BETWEEN X AND X+&x IS

Pre8 (IN X To x+8x) = P(x, &) §x
AND (BoRN, 192.6)
A POSTULATE OF QM |S THAT
Pint) = FH(x6) F(x¢t)
= |Yx0)]|*




TF WE kNow P(x,t) (FRoM A SoLurion
Y(xt) OF TPSE) THEN CAN CALCULATE

AVERAGES 0 EXPECTATION VALUES

6,0 4

1

Y = Z R, P(X;S X
=t

IN LiMIT As §xX—=>0 AND NUMBER OF
SLICEs —> % BECOMES

- ded o
X = xS = X Plx &) dx
— 00

= Jo‘ "\"(X,E)’z JX

X
-vo

®



SiMiLARLY
<x‘>°-lijf x® (%, ey dx
ETc...

OF Coulse, ToTAL PROBABILITY OF

FINVING PARTICLE ANYWHERE HUST
BE 41, So

ri =j?(x,e)Jx =f7¢(x,e)|t4x

-

NORMALIRATION CSNOITIoN
ON ¥(xt)

THIS HusT B IMPSED ON F(x, &) AS

ScHRoEDINGER EBN 1S (EXACTLY —No
AN_APPROXIMATIONV!) LINEAR IN ¥

| TF V sowves HY =ihoV/ok
So DIES Y X CONSTANT




@
THUS VALUE OF UNDETERMINED CONSPNT

1S FIXED (UPTO IRRELEVANT CoNST. PHASE
FACTOR — I6NORE) BY NORMALIRATION
ONDITION

CoMPLICATION FoR PLANE WAVES
(s (Px-EE&
Yix )y = G € 4 CF )

o j_pl‘Hth = Jo.lGlsz —-50°

- 09

REGARDLESS OF G

= PLANE WAVE (S NOT
NoRMALI2pfLE !

KEASON : PLANE WAVES ARE NOT
PUIsIcALLY REALIRAGLE
(T“EY EXIST For ALL TIME

AND ARE SPAEAD OVER ALL
SPACE )




A MoRE PHYSICAL SITUATION IS
A "PLANE WAVE' CONFINED To SoME
EinmTe RECION (FoR EXAMALE, OUR

EXPERIMENTAL APPARATUS)

THE INFINITE SQUARE WELL

Now INVESTIGATE SoLNS To TDSE
IN PoLLOWING (OTENTIAL




®
SINCE V 3= V(E) SoL’N IS OF FoRM

Yok = gy e
WHERE
—‘k J V¢ = ES‘

dx*

o IN REGINS WHERE V=00, @ MusT

B 2ef0 g =0 Fok FINITE E SoL'N,

(As kE 20)

o INSIDE WELL



U

SolL'NS VIA
- BOUNDARY CoNVITION

¢ MUuST BE ConNTiINuous

=0 _-h,‘ *E
- (Ae®™ + e Y) = A
O =

Xeso

AT X=0o~

; —cha

A echtk*. Be .

o= e
e 5*R.c. Gives £=

Smc .

—¢Ro.
O ---'-A(Q""~ —e )
= 2({A sinRa

=CT
=D EITHER A=0 — RETE
oR SsinRo. =0

= R=IT n=127%,..
— A




SUBST. BACK CET

2
E =K Tl on? n=1%2,...

2m at

Possi8LE ENERGiES OF PARTICLE
ARE OQUANTIRED

TYNCAL FOR PARTICLES BOUND IN A
PoTENTIAL WELL (ATors, ... )

ALSo HAVE To NORMALIRE SoL‘N

é()() = A’ Sin NTTX

7§
| = J°.|¢(x>)‘o\x = A’zj sim?Tnx Jdy
-0 : A
- A’Z 4/2

A/=F;'




@
NoTE THAT ¢, ARE ORTHOGONAL

e o
J ¢:(K) ¢m(x\ olx = ij Sin NITX M mTYy Ax
-— Y0 (2 & o & oA,

= i§ n=m

=0 § n#&m
WHAT Do @, look LIKE ?

¢' ‘A"

h=1 (GRounD STATE') HAS NO NODES
STRoNGLY PEAKED IN MIDOLE

X Al

Noot

r

" n=2 FIRST EXCITED STATE , | NODE



@
PUYSICS OF Low n STATES IS VERY DIFFERENT

FRoM CLASSICAL EXPECTATIONS .

o CLASSICALLY
SALL
Pex) = ! /o Boun N G
' |<— ¢ —| BA a</
(C(Nl FORM ! ) EORVARD
o a
So xS = 5 xPtr)dx = —'—Jxa‘x =2
0 Als = 2

<x*> =J°:’ P(wdx = &2/3

QT - QUANTUM (PROBLEM SET)
<x>' = %/, SAME

<x2) - a’ — al D'FFE¢
A 3 e
I' MEANS EVALMATED
N n=| STATE

AS N=>00 FIND XS = CLASSICAL
RESULT, PRo3. DIST'N. BECeMES MONE
sPreAd ouT (EXAMALE oF GEWERAL BEHAWCR)



LECTURE Y : ENERGY EIGENSTATES

WAVE FUNCTION OF FORH Y(x, &)
- ::e v PROPoRTIONA
Y,E) = B(x ). ‘ /J”' ' To SINGLE

‘

- o = -cEé/‘;
IS SPECIAL <

AN ENERGY EIGENSTATE

(o STATIONARY STATE —SAnE
THING )

EQU\VALENTLY
HYxt) = ( % 52. V)‘\Ph(x,é)

= ik YOt) BYToE
2t

= En+(x/ ¢)

o Y(x,t) IS AN EIGENFUNCTION OF
H WITH EIGENVAWWE E,,




PUYSICALLY
ENEREY E(CENSTATE
&> PARTICLE IS IN STATE OF
DEFINITE ENERGY (HEREE) |
& IF ENEREY IS MEASURED
GUARRANTEED RESULT E

-
P’“c(e"Ep):'
SuPERPos) Tiows
- —(Ept
Tx k) = 8,00 e & IS NoOT

MOST GENERAL SoL'N To TOSE

Since TDSE 1S LINEAR EAN (ExACTLY!)
GENERAL SOL'N IS SuM OF ABoVvE

V)= T ooy e ok
o n

3

ARBITRARY COMPLEX (OEFFS



)
E6. SUPERPosITIoN OF 2 E-EIGENSTATES

W% k) = &, $0 e~ B, a, 9‘2(%):"'5‘*/*
ACT WITH ENERGY OPERATOR
-¢ —(Et
HY = a E,4 e 't a g, 4 5P

_#__Const. % Y (x ¢)
BUT Y IS A SoL’W OF TDSE , JuST NoT

AN ENERGY E-STATE As E, #E,

WHAT 1S PHYSICAL SIENIFICANCE ?

For W To 3E VALID WVAVEFUNCTION |T
I'MST BE NORMALIRED

= {147 = jax{ AP
{ de -lEC/f. -tE t/l;’

-ra,_ 1

((E,-E ) A
j‘xz"\'l é l“q.' ¢1 Q 1.e Et"¢)ft

+a dté(e' C )t/ ¢.¢ }



G
BAT &, # ARE ORTHOGONAL AND NORMALIRED

e FIND

| = la,lz-rla‘,' +0+0

ABIG HINT
\,/

LooksS LIKE A SUM OF PRoRGAILTES

THUS : INTERPRETATION OF SuPEfosITioN

IF HEASUREMENT MADE OF ENERGY
OF PARTICLE WITH THIS WAVEFUNCTION
Il GET RESULT

E, WITW AMPLITUDE a, , PRoBABMITY |a,|

2
JEL n 5 Aq , " ‘“L,

THE EXPECTATION VALUE OF ENERGY SHOULD
2
be KHY, = Eila,[" + E, |y

CAV CMECk THIS BY CALCULATIVNG {H>
OwrectLY ...



a. X @
{HS =5 dy ¥ U DEFMITIN OF <H>

" IN STATE
= [ ¥ (¥
- EI . |
- [ fald €t A fary
ta,E ;lze-‘E V?

e ls 2
=, 12,["+ Eyla,] NaNé OR'IHW OFﬂ s
AS ExPECTED V'

NOTE THAT {H IS TINE INDEPENDENT
HOWEVER NOT ALL EXPECTATION YALUES
ARE TIME-INDEP’T FOR ENERGY SUPER OSMA

e« EG .
<P> :de "P*('lk.g. "')

a % (€t
= JJx {Q‘ Sthl_'_)_‘ e /‘..'.41 SNZH
o]

e_eE‘b/tz( ik)2 {q"ﬂ' cos Tl’x -‘Et&

.\-‘ ..-

+a E Cod ‘va —‘E'tu ;



USING TUE INTEGRALS
X“Ax SnTX (v TTX —0 = :, SmaTX CQSZI_F
o o @i (-

&

AND S:" Sin QUK cay TTX = &

a a I
&
Soht ST cos WX = ".Z_
o a. o
GET
(6o -E |
Py=-K2 {a,e\: QL( ')6/*"1[ et
a a 3Irv
% ‘:(EI'E‘I-XG/‘t ,
+a,a,e ra -_23_)}
e K4 2N

- 1t ¢

=-h8 [o X SEENN_ C.c.)

IN SIMPLE CASE WHERE o, AND o, REAL

<p> = Léf“o“z s (&-E,)¢
la +

.MoMM osciuates In TivE. ...



OPERATORS AND OBSERVAPLES

ALREADY SEEN How THE NUMERICAL
VALUES OF CLASSICAL QUANTITIES
(EG. Mom’M , ENERGY) BECOME IN QM
DIFFERENTIAL OPERATORS

X= MOMENTUM 'O = -4 %X

ENERGY ‘_ﬂ_ +Vo) =-h 9 + V(X)
2m ax*

THIS IS A GENERAL PRINCIPLE OF QM

EVERY PHYSICAL OBSERVABLE
CoRESPONDS To AN OPERATOR Q

How ARE THE NUMBERS MEASURED IN EXPT's
RELATED To OPERATOR ?
FoR ENEREY FOUND

H ¢, = E, ¢.



THIS 1S AN EIGENVALUE EQN

H¢n =Eh¢n
A

EI6ENVAWE F
(TusT LIKE EI6ENVALUE BIN FoR A mmox)

(GEN FUNCTION

INGENERAL FOR OPERATOR Q

Q X,(x) =9, K, (x)
;] X

EI6ENFunNCTI0N | EIGENVALUE
(LARELED 8Y n) (Lrgeeso gy n)

THE SET oF ALL 4w IS CALLED
THE SPECTRuM OF Q

A GENERAL PRINGIPLE OF QM 1S

MEASURENENTS OF A PHYSICAL
ORBSERVABLE ALWAYS GIVE A

RESULT WHICH IS ONE OF THE
EIGENVALUES OF (oRRESPorDWE G




e
SINCE EXPT™S ALWAYS RETURN REAL NUMBEKLS

As REsuLTs , CLASS OF ALLOWAGLE OPERATORS
HUST BE SucH AS To HAVE ONLY REAL
EIGENVALUES

THESE ARE HFERMITIAN
OPERATORS

So PNCIPLE OF QM
EVERY OPERATOUR REPRESENTING |
A PHYSICAL OBSERVABLE MUWIT BE
A HERMITIAN OPERATOR

.

DEFINITIoN OF HERMTIAN OP. Q
|FoR 10 AM AN OF Q IS HERMTIAN

- J-NX*Q*{’ dx = LN(Q\X)*“I"JX

FOR ANY FuNCTIONS (x), (%)
WHICH ARE NoRMALIRABLE AND
YANISH AY X =1




WHAT KINDS oF OP. ARE HERMITIAN ?

i) TRE PosSITIoN op

j.tf“x YV dx = }-:(x“x )*'\}« d

= jj;x X)* ¥ dx

$O SINCE x IS A REAL NUMBER

Xt = x  (NoTATien For
HERMITIAN oF)
AND RELATION TRIVIALLY TRUE

i1) THE POTENTIAL ENERGY V(x)
I“ X Vo)V dx = Ju‘(vx)()*\}* dx
« GQ -y

So, AS LONG AS COEFFIUENTS (N

Y(x) ARE REAL)HAVE
Ve = vix)

WHAT WE EXPECT A CoMAEY POTENTIAL
- DoESN’T MAKE SENSE




i) NOMENTun of,

J (-c )?Jxe-ctf x*J‘P dx

WE NEED To GET OF ACTING ON X
So INTEGRATE BY PARTS

RHS = —it{[xx*]“a Jw%*_* Jx}
SINCE xS QEAL %o 18 REAL |
4 o™ 250 = (345"

RS = 1 :(—et%x)*’tk I

s p IS HERMITIAN, NOTE "¢ In
DEE'N_OF P IS VITAL ( %y | NoT
HeRmmAN)

iv) TN PROBLEMS Tou SHow KE. of. -t Y

2m Ix*
1S HERMIMAN (INTEGRATE @Y
PARTS TwICE )

o




v) HAMILTONMIAN of.
SINCE H=T+V AND T AND V
HERMITIAN HY = H ALS®©
(suMs oF HERMITIAN OPf. ARE HERMTUW)

® PRooF OF REALITY OF EVALUES
LET QX, =9n X, , THug jxﬂ*
(2
= jmx.:QX,.Jx =fx: 1~ X ox
-yl -ve

BUT BY AssumPriov Q. IS HERMTIAN So

= S“('l.,. Xw) Ko dx

= S: Qe X Xy dx
S0 PUT THIS TOGETHER WITH RHS
0=({n-10) j %2, dx

bo
-



Nou CHoos€E n=m
0 = (9n-1~) ‘(uo 1) dx
- Y0 .
| 8Y NoRMALIRATION

= q,=9. 9qn IS REAL

o BUT MoRE ...
CHesSE N £ m ANO WSE REALITY oFft's

= (q.- 1..,)5 2%, dx

IF 9m# 9w THEN MUST HAVE
W

O = S 7(,: L™ dx
- yo

L"‘V\-—/
THUS %, AND ¥, ARE ORTHoGoNAL
FANCTIONS

THIS Swourd REMIND You oF THE

¢m =E$cnm OF UFOT'L

O



"))
TINDEED WE kNow RY DIRECT CALCULATON

(" A x =
BUT YET MoRE...

WE kNow FoR ¢m 3 (SIN FuneTIONS )
THAT HAvE FouRIER SERIES

ANY FUunNcTioN CAN BE EXPANOED AS
0Q
*(%) = Z q'. ¢h (X)
h=t

THIS IS TRUE IN GENERAL USING
EiGENFuNcTIoNS OF HERMITIAN oOf.

THELREM :
LET X, (x) BE THE EIGENFUNCTIONS

OF ANY HEAMITIAN OPERAToR . THEN

ANY NORMALIFABLE FUNCTIoN £(x) (AN
1 BE WRITEN RS

$63)= 2 a, X, (x




@
® WE SAY THAT THE K,(x) FoRkM A CoMPLETE

SET oF FuncTionsS (o STATES)

o TT 1S THIS EXPANSION THEOREN THAT ENAGLES

CONNECTION PETWEEN OPERATORS AND
PRoBABILITIES

LETS seE How...

SuPfose. AT A GIVEN TiME (SAY £ =0)
UE HAVE WAVEFUNCTION V¥ (x,0), AND
WE MEASURE @

CAN EXPAND ¥ (x,0) IN E’FuncTiows
oF G

""(!,Q) - Zan Ao (X) ©
4]

FINOING ©,°S IS SIMPLE : HULTIPLY
® 87 X, (x) AVD INTEGRATE

RHs = ("3 x5 a.x, = zj:.,r.:x,
- 9 _W
= 2%, 0pm = Am

N BY ORMMOGONALTY



LHS = j XX O Won, 0) x

Seo dmr_j

PR

X (x) ¥ (x,0) dx

NoWw SUBST EXPANOED W(x,0) IN EQN Foll

<>,

<@, = [(Zanxw) @ (Zemro)
= I(ga.m)*;“w T X

=> oy Cm 9o j b o
h,m

i

PRoBABILITY THAT
RESULT OF SINGLE
MEASUREMENT OF
| QL 6IVES 9.

e/

-’
\5 PessiBLE RESULTS
OF SINGLE MEAS.
oF Q

NOTE: BY INSERTING Q =|
IN AQovE GeT

li:‘:"ao(x = E[q”" = | \/



EXAMPLE.
TINFINITE SQ., PoT4 WELL
kvow H @, =E, ¢, wiITH

r U
é, ’F— SinTax  E, =huh
a O~

2ma?’

NOTE THAT THESE ARE NCT MoMM E’Fks
—itﬁ" = (—it')ji-‘ bf cos m # (onst. x4,

3«1’ EAsy To SEE (MOMN ESTATES)
ﬁr Lc"’xﬁ' SATISFY -«*_ﬂ: =f ¢

Now LUTE ENEREY E'FNns |N TerMS oF ;A,,

¢ {-— L ( K mrxf\/‘t c— { hnxt/a"")

== B - Bop,  LHERE Pu= ik

O~
So IF PARTICLE IS IN ENERSY E‘STATE ¢,
AND WE MEASURE MoH’M WE FiND

. UITH PRoB -’T-l @
" =@




