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This part is largely a reminder of the material in last year’s Vectors & Matrices course. I won’t cover all of
it in my lectures, but will focus on the parts that are most relevant to complex vector spaces, namely the
defintion of inner product and dual space in §2 and the definition of the adjoint operator §3.3. You should
make sure you’re comfortable with everything here though.

1 Linear vector spaces

A linear vector space (or just vector space for short) consists of

• a set V of vectors (the elements of which we’ll usually denote by a, b, ..., ~a, ~b, ... or |a〉, |b〉, ...);
• a field F of scalars (scalars denoted by α, β, a, b,...),
• a rule for adding two vectors to produce another vector,
• a rule for multiplying vectors by scalars,

that together satisfy 10 conditions. The four most interesting conditions are the following.
(i) The set V of vectors is closed under addition, i.e.,

a + b ∈ V for all a, b ∈ V; (1.1)

(ii) V is also closed under multiplication by scalars, i.e.,

αa ∈ V for all a ∈ V and α ∈ F . (1.2)

(iii) V contains a special zero vector, 0 ∈ V, for which

a + 0 = a for all a ∈ V; (1.3)

(iv) Every vector has an additive inverse: for all a ∈ V there is some a′ ∈ V for which

a + a′ = 0. (1.4)

The other six conditions are more technical. The addition operator must be commutative and associative:

a + b = b + a, (1.5)

(a + b) + c = a + (b + c). (1.6)

The multiplication-by-scalar operation must be distributive with respect to vector and scalar addition, con-
sistent with the operation of multiplying two scalars and must satisfy the multiplicative identity:

α(a + b) = αa + αb (1.7)

(α+ β)a = αa + βa (1.8)

α(βa) = (αβ)a (1.9)

1a = a. (1.10)

For our purposes the scalars F will usually be either the set R of all real numbers (in which case we have a
real vector space) or the set C of all complex numbers (giving a complex vector space).

http://www-thphys.physics.ox.ac.uk/people/JohnMagorrian/mm/
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1.1 Basic ideas

In a “raw” vector space there is no notion of the length of a vector or the angle between two vectors.
Nevertheless, there are many important ideas that follow by applying the basic rules (1.1 – 1.10) above to
linear combinations of vectors, i.e., weighted sums such as

α1v1 + α2v2 + · · · . (1.11)

A set of vectors {v1, . . . ,vn} is said to be linearly independent (abbreviated LI) if the only solution to
the equation

α1v1 + α2v2 + · · ·αnvn = 0 (1.12)

is if all scalar coefficients αi = 0. Otherwise the set is linearly dependent. The dimension of a vector space
is the maximum number of LI vectors in the space.

The span of a list of vectors v1, . . . ,vm is the set of all possible linear combinations {α1v1 + · · ·+ αmvm :
α1, . . . , αm ∈ F}. A list e1, e2, . . . en of vectors forms a basis for the space V if the elements of the list are
LI and span V. Then any a ∈ V can be expressed as

a =

n∑
i=1

aiei, (1.13)

and the coefficients (a1, . . . , an) for which (1.13) holds are known as the components or coordinates of a
with respect to the basis vectors ei.

Claim: Given a basis e1, . . . , en the coordinates ai of a are unique.
Proof: suppose that there is another set of coordinates a′i. Then we can express a in two ways:

a = a1e1 + a2e2 + · · ·+ anen

= a′1e1 + a′2e2 + · · ·+ a′nen.
(1.14)

Subtracting,
0 = (a1 − a′1)e1 + (a2 − a′2)e2 + · · ·+ (an − a′n)en. (1.15)

But we are told that the {ei} are a basis. By definition then they must be LI. Therefore the only way
of satisfying the equation above is if all ai − a′i = 0. So a′i = ai: the coordinates are unique.

A subset W ⊆ V is a subspace of V if it satisfies conditions (1.1–1.4). That is: it must be closed under
addition of vectors and multiplication by scalars; it must contain the zero vector; the additive inverse of each
element must be included. Conditions (1.5–1.10) are automatically satisfied because they depend only on
the definition of the addition and multiplication operations.

Let U and W be subspaces of V. Their sum, written U +W, is the subspace of V consisting of all sums
u + w for u ∈ U and w ∈ W. If every element of v ∈ V can be written as v = u + w with unique elements
u ∈ U , w ∈ W for each such v, then V is the direct sum of U and W, written V = U ⊕W.

Exercise: (i) If V = U +W and U ∩W = {0}, show that V = U ⊕W. (ii) If V = U ⊕W show that
dimV = dimU + dimW.

Exercise: Let U and W be any two vector spaces over the same field of scalars F (i.e., they are not
necessarily subspaces of some “larger” space V). Their direct product† U ×W is the set of all pairs
(u,w) for u ∈ U , w ∈ W. Defining addition of such pairs as

(u1,w1) + (u2,w2) = (u1 + u2,w1 + w2) (1.16)

and multiplication by scalars α ∈ F as

α(u,w) = (αu, αw), (1.17)

show that U ×W is a vector space and that dim(U ×W) = dimU + dimW.

† Note that, whereas the direct sum is written U ⊕W, the direct product is denoted U ×W, not U ⊗W. For the meaning of the

latter see §A.3 below.
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1.2 Examples

Example: Three-dimensional column vectors with real coefficients The set of column vectors
(x1, x2, x3)T with xi ∈ R forms a real vector space under the usual rules of vector addition and multiplication
by scalars. This space is usually known as R3.

To confirm that this really is a vector space, let’s check the conditions (1.1–1.10). The usual rules of vector
algebra satisfy conditions (1.5–1.10). For the conditions (1.1–1.4) note that:

(i) For any

 a1

a2

a3

,

 b1
b2
b3

 ∈ R3, the sum

 a1

a2

a3

+

 b1
b2
b3

 ≡
 a1 + b1
a2 + b2
a3 + b3

 ∈ R3.

(ii) Multiplying any vector

 a1

a2

a3

 by a real scalar α gives α

 a1

a2

a3

 ≡
αa1

αa2

αa3

 ∈ R3.

(iii) There is a zero element, (0, 0, 0)T ∈ R3.

(iv) Each vector

 a1

a2

a3

 has an additive inverse

−a1

−a2

−a3

 ∈ R3.

So, all conditions (1.1–1.10) are satisfied. Here are two possible bases for this space:
 1

0
0

 ,

 0
1
0

 ,

 0
0
1

 or


 1
π
1

 ,

 0
1
−1

 ,

 0
2
6

 . (1.18)

Each of these basis sets has three LI elements that span R3. Therefore the dimension of R3 is 3.

Exercise: The set of all 3-dimensional column vectors with real coefficients cannot form a complex
vector space. Why not? (Which of the conditions 1.1–1.10 is broken?)

Example: Rn and Cn Similarly, the set of all n-dimensional column vectors with real (complex)
elements forms a real (complex) vector space under the usual rules of vector addition and multiplication by
scalars.

Example: Arrows on a plane The set of all arrows on a plane with the obvious definitions of addition
of arrows and multiplication (stretching/shrinking) of arrows by scalars forms a real two-dimensional vector
space.

Example: The set of all m×n matrices with complex coefficients forms a complex vector space
with dimension mn. The most natural basis is

 1 0 · · ·
0 0 · · ·
...

... . . .

 ,

 0 1 · · ·
0 0 · · ·
...

... . . .

 , . . . ,

 0 0 · · ·
1 0 · · ·
...

... . . .

 ,

 0 0 · · ·
0 1 · · ·
...

... . . .

 , . . .

 . (1.19)

Example: nth-order polynomials The set of all nth-order polynomials in a complex variable z forms
an n+ 1 dimensional complex vector space. A natural basis is the set of monomials {1, z, z2, . . . , zn}.
Example: Trigonometric polynomials Given n distinct (mod 2π) complex constants λ1, . . . , λn,
the set of all linear combinations of eiλnz forms an n-dimensional complex vector space.

Example: Functions The set L2(a, b) of all complex-valued functions

f : [a, b]→ C (1.20)

for which the integral ∫ b

a

dx|f(x)|2 (1.21)
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exists forms a complex vector space under the usual operations of addition of functions and multiplication of
functions by scalars. This space has an infinite number of dimensions. We postpone the issue of identifying
a suitable basis until §4 later.

Exercise: Consider the set of coupled linear, homogeneous differential equations

ẋ = A(t)x, (1.22)

where x is an n-dimensional vector and A(t) is an n × n matrix whose coefficients might depend on t.
Show that the set of solutions to this equation is a vector space. What is its dimension?

1.3 Linear maps

A mapping A : V → W from one vector space V to another W is a linear map if it satisfies

A
(
v1 + v2

)
= Av1 +Av2,

A
(
αv1

)
= αAv1,

(1.23)

for all v1, v2 ∈ V and scalars α ∈ F . Notice that for this definition to make sense, both vector spaces must
be defined over the same type of scalars F . A linear operator is the special case of a linear map of a vector
space V to itself.

Recall that the image (some times referred to as the range) of A is the set of all possible output vectors,

ImA = {Av : v ∈ V}, (1.24)

while the kernel (or nullspace) of A is the set of all inputs that give zero output:

kerA = {v : Av = 0, v ∈ V}. (1.25)

Both image and kernel are themselves vector spaces: the image is a subspace of W, while the kernel is a
subspace of V. Their dimensions are related by the dimension theorem:

dimV = dim ImA+ dim kerA. (1.26)

The first term, dim ImA is also known as the rank of the map A.

An isomorphism between V and W is a linear map φ : V → W that is invertible (i.e., has zero kernel). By
virtue of φ each element of V is paired up up with precisely one element of W and vice versa, the pairing
satisying the linearity condition (1.23), so that φ(α1v1 + α2v2) = α1φ(v1) + α2φ(v2). The spaces V and W
are isomorphic if we can construct an isomorphism between them.

Exercise: Suppose that V andW are two vector spaces over scalars F . Explain why V andW cannot be
isomorphic unless they have the same dimension. Show that there is an infinite number of isomorphisms
between them if they do have the same dimension.

1.4 Representation of vectors and linear maps by matrices

Any n-dimensional vector space V over scalars F is isomorphic to Fn, the set of n-dimensional column
vectors whose elements are drawn from F . To see this, choose any basis e1,....,en for V and construct the
isomorphism φ by identifying

e1 with


1
0
0
...
0

 , e2 with


0
1
0
...
0

 , . . . , en with


0
0
0
...
1

 . (1.27)
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Then any vector v can be expressed as

v = a1e1 + a2e2 + · · ·+ anen, which corresponds to


a1

a2
...
an

 , (1.28)

and linear combinations of such vectors are paired up with corresponding linear combinations of the corre-
sponding column vectors. So, your deepest thoughts about n-dimensional column vectors carry over directly
to any n-dimensional vector space.

To spell out the connection between linear maps A : V → W and matrices, let n be the dimension of V and
m the dimension of W. Choose any basis eV1 , . . . , e

V
n for V and another, eW1 , . . . , eWm , for W. Any vector

v ∈ V can be expressed as v =
∑n
i=1 aje

V
j . Using the properties (1.23) we have that the image of v under

the linear map A is

Av =

n∑
j=1

aj
(
AeVj

)
. (1.29)

As this holds for any v ∈ V, we see that the map A is completely determined by the images AeV1 , ..., AeVn
of V’s basis vectors. Each of these images AeVi is a vector that lives in W and so can be expressed in terms
of the basis eW1 , . . . , eWm as

AeVj =

m∑
i=1

Aije
W
i , (1.30)

where the coefficient Aij is the ith component in the eW1 , . . . , eWm basis of the vector AeVj . Substituting this
into (1.29),

Av =

m∑
i=1

 n∑
j=1

Aijaj

 eWi . (1.31)

That is, a vector in V with components a1, . . . , an maps under A to another vector inW whose ith component
is given by

∑n
j=1Aijaj . The values of the coefficients Aij depend on the bases chosen for V and W.

Let us again identify eV1 , ..., e
V
n with the natural n-dimensional column vector basis (1.27) and similarly for

eW1 , ..., eWm . Then the map A corresponds to the matrix

A =


A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 , (1.32)

and the vector Av ∈ W to
A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
Am1 Am2 · · · Amn



a1

a2
...
an

 =


A11a1 +A12a2 + · · ·+A1nan
A21a1 +A22a2 + · · ·+A2nan

...
Am1a1 +Am2a2 + · · ·+Amnan

 (1.33)

in accordance with the familiar rules of matrix multiplication.

Linear operators (that is, linear maps of a vector space to itself) are represented by square n× n matrices.
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Further reading

Linear vector spaces are introduced in RHB §8.1 and linear maps in RHB §8.2. DK §II is another good
starting point. You’ve already had a thorough, clear introduction to vector spaces in last year’s “Vectors
and Matrices” course. There you learned to distinguish between linear operators f : V → V and the matrices
that represent those operators, A = ϕ−1 ◦f ◦ϕ, where ϕ(v) =

∑
i viei is an invertible “coordinate map” that

translates column vectors of coordinates into the vectors that the map f understands. I’m not as careful in
these lectures.

Most maths-for-physicists books introduce inner products (see §2 below) at the same time as vector spaces.
Nevertheless, pausing to work out the consequences of the unadorned conditions (1.1–1.10) is an supremely
useful introduction to mathematical reasoning: many of the statements that we take as self-evident from our
experience in manipulating vectors and matrices are not easy to prove without some practice. For more on
this, see the first-year “Vectors and Matrices” course, or, e.g., Linear Algebra by Lang or similar books for
mathematicians.

http://www-thphys.physics.ox.ac.uk/people/AndreLukas/V%26M/V%26Mweb/index.html
http://www-thphys.physics.ox.ac.uk/people/AndreLukas/V%26M/V%26Mweb/index.html
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2 Inner-product spaces

The conditions (1.1–1.10) do not allow us to say whether two vectors are orthogonal, or even what the length
of a vector is. To do these, we need to introduce some additional structure on the space, namely the idea of
an inner product. This is a straightforward generalization of the familiar scalar product.

An inner product is a mapping V × V → F that takes two vectors and returns a scalar and satisfies
the following conditions for all a, b, c ∈ V and α ∈ F :

〈c,a + b〉=〈c,a〉+〈c,b〉; (2.1)

〈c, αa〉= α〈c,a〉; (2.2)

〈a,b〉=〈b,a〉?; (2.3)

〈a,a〉= 0, only if a = 0,

> 0, otherwise. (2.4)

Notice that the inner product is linear in the second argument, but not necessarily in the first.

An inner-product space is simply a vector space V on which an inner product 〈a,b〉has been defined.

Some definitions:
• The inner product of a vector with itself, 〈a,a〉, is real and non-negative. The length or norm of the

vector a is |a| ≡
√
〈a,a〉.

• The vectors a and b are orthogonal if 〈a,b〉= 0.
• A set of vectors {vi} of V is orthonormal if 〈vi,vj〉= δij .

The condition (2.3) is essential if we want lengths of vectors to be real numbers, but a consequence is that
in general the inner product is not linear in both arguments.

Exercise: Use the properties (2.1–2.4) above to show that

〈αa + βb, c〉= α?〈a, c〉+ β?〈b, c〉. (2.5)

Some books use the term “sesquilinear” to describe this property. Under what conditions is the scalar
product linear in both arguments?

Exercise: Show that if 〈a,v〉= 0 for all v ∈ V then a = 0.

2.1 Orthonormal bases

An orthonormal basis for V is a set of basis vectors e1, ..., en that satisfy

〈ei, ej〉= δij . (2.6)

Exercise: Show that any n orthonormal vectors in an n-dimensional inner-product space form a basis.
The converse is not true.

Every n-dimensional vector space V has an orthonormal basis: given any list of n LI vectors v1, ...,vn ∈ V
we can construct an orthonormal basis using the following Gram–Schmidt procedure.

(1) Start with the first vector from the list, v1. The first basis vector e1 is defined via

e′1 = v1,

e1 = e′1/|e′1|.
(2.7)
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(2) Take the next vector v2. Subtract any component that is parallel to the previously constructed basis
vector e1. Normalise the result to get e2.

e′2 = v2 −〈e1,v2〉e1,

e2 = e′2/|e′2|.
(2.8)

(i) Similarly, work along the remaining vi, i = 3, . . . , n, subtracting from each one any component that
is parallel to any of the previously constructed basis vectors e1, . . . , ei−1. That is,

e′i = vi −
i−1∑
j=1

〈ej ,vi〉ej ,

ei = e′i/|e′i|.

(2.9)

It is easy to see that taking the inner product of (2.9) with any ek, k < i, yields the equation
〈ek, ei〉= 0: by construction each new ei is orthogonal to all the preceding ones.

The same procedure can be used to construct an orthonormal basis for the space spanned by a list of vectors
v1, . . . ,vm of any length, including cases where the list is not LI: if vi is linearly dependent on the preceding
v1, . . . ,vi−1 then e′i = 0 and so that particular vi does not produce a new basis vector.

2.2 Representing the inner product by matrices

Consider an n-dimensional inner-product space V for which the vectors e1, ..., en are an orthonormal basis.
Let

a =

n∑
i=1

aiei, and b =

n∑
i=1

biei (2.10)

be any two vectors in V. Using properties (2.1) and (2.2) of the inner product together with the orthonor-
mality of the basis vectors, we have that the projection of a onto the jth basis vector

〈ej ,a〉=
n∑
i=1

ai〈ej , ei〉=
n∑
i=1

aiδji = aj (2.11)

and similarly 〈ej ,b〉= bj . Therefore the inner product of a and b is

〈a,b〉=
n∑
i=1

bi〈a, ei〉=
n∑
i=1

bi〈ei,a〉? =

n∑
i=1

a?i bi. (2.12)

Note that the ith element of a is given by 〈ei,a〉, not 〈a, ei〉.
As in §1.4 we may identify each ei with the n-dimensional column vector (1.27) that has 1 in its ith row and
zeros everywhere else. Then

〈a,b〉= ( a?1 · · · a?n )

 b1
...
bn

 = a†b, (2.13)

where a† is the Hermitian conjugate of the column vector a.
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2.3 Dual space

Every vector space V has a corresponding dual space V?. The elements of V? are linear maps between V and
scalars F . An inner product on V sets up a natural correspondence between elements of V? and elements
of V.

Consider the set V? of all linear maps from vectors v ∈ V to scalars F . Applying any L ∈ V? to an element
v = b1e1 + · · ·+ bnen of V, we have, by the linearity of L, that

L(v) = L

(
n∑
i=1

biei

)
=

n∑
i=1

biL(ei). (2.14)

So, given a basis {e1, . . . , en} for V, any L ∈ V? is completely defined by the n scalar values L(e1),. . . ,L(en).

Comparing (2.14) with (2.13), once V has an inner product then for each a ∈ V there is a corresponding
La ∈ V? : V → F defined by

La(b) ≡〈a,b〉. (2.15)

We can turn V? into a vector space. Define the sum of two maps to be the new map given by

La1+a2(b) = La1(b) + La2(b), (2.16)

and multiplication by scalars through
Lαa(b) = α?La(b). (2.17)

Exercise: Verify that the maps La constructed this way satisfy the conditions (1.1–1.10).

Bases for V? Given any orthonormal basis e1,...,en for V, we can immediately define corresponding dual
vectors Le1

,...,Len
by

Lei
ej = δij . (2.18)

These  Lei
are LI because, given any ej , by virtue of (2.18) the only way of producing (

∑
i αiLei

) ej = 0 is
when all αi = 0. The Lei

also span V?: any L ∈ V? applied to an arbitrary v =
∑
i αiei yields

Lv = L

(
n∑
i=1

αiei

)
=

n∑
i=1

αiL(ei) =

n∑
i=1

αiβi =

n∑
i=1

βiLei
(v), (2.19)

where we have written the result of applying L to ei as βi ≡ Lei. So, any L ∈ V? can be expressed as a
linear combination of the Lei

and these Lei
are LI. Therefore the Le1

, ..., Len
defined by (2.18) constitute

a basis for V?. A vector space V and its dual V? have the same dimension.

Exercise: We have shown that introducing an inner product on V defines a natural mapping between
V? and V. Show that this mapping is an isomorphism: there are many isomorphisms beween V and V?,
but the choice of inner product identifies one as special.

The space V? is the dual to the space V. Elements of V? are known as “dual vectors”, “covectors”, “linear
forms”, “1-forms”, or “bras”.

2.4 Bra-ket notation

Let V be an inner product space. In Dirac’s bra-ket notation, vectors v ∈ V are denoted by |v〉, pronounced
“ket v”. Inhabitants of the vector space V? are “bras” and are written 〈a|, 〈b| etc instead of the La, Lb

notation used above. For every ket |v〉 there is a corresponding bra, written 〈v|, and vice versa. The addition
and multiplication rules (2.16) and (2.17) above mean that

the ket |v〉= α |a〉+ β |b〉
has dual 〈v| = α?〈a|+ β?〈b| .

(2.20)
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This offers a convenient alternative way of carrying out calculations that involve the inner product. For
example, for any a = |a〉=

∑n
i=1 ai |ei〉 and b = |b〉=

∑n
i=1 bi |ei〉, the dual to |a〉 is 〈a| =

∑n
i=1 a

?
i 〈ei| and we

may define

〈a|b〉≡〈a| |b〉=

(
n∑
i=1

a?i 〈ei|

) n∑
j=1

bj |ej〉


=

n∑
i=1

n∑
j=1

a?i bj〈ei| |ej〉=
n∑
i=1

n∑
j=1

a?i bjδij =

n∑
i=1

a?i bi =〈a,b〉,

(2.21)

in agreement with the expression (2.13) from the previous section. It is easy to confirm that this alternative
definition of 〈a|b〉 as the result of operating on the ket vector |b〉 by the bra vector 〈a| ∈ V ? satisfies the
conditions (2.1–2.4) for an inner product.

Connection to matrices Here is a summary of the preceding results. If we have an orthonormal basis
in which we represent kets by column vectors (§1.4),

|v〉= α1 |e1〉+ α2 |e2〉+ · · ·+ αn |en〉

= α1


1
0
...
0

+ α2


0
1
...
0

+ · · ·+ αn


0
0
...
1

 =


α1

α2
...
αn

 ,
(2.22)

then the bra dual to |v〉 is represented by the Hermitian conjugate of this column vector:

〈v| =α?1〈e1|+ α?2〈e2|+ · · ·+ α?n〈en|
=α?1 ( 1 0 . . . 0 ) + α?2 ( 0 1 . . . 0 ) + · · ·+ α?n ( 0 0 . . . 1 )

= (α?1 α?2 . . . α?n ) .

(2.23)

The inner product〈a|b〉of the vectors |a〉= (a1, . . . , an)T and |b〉= (b1, . . . , bn)T is obtained by premultiplying
|b〉by the dual vector to |a〉under the usual rules of matrix multiplication:

〈a|b〉≡〈a| |b〉= ( a?1 a?2 . . . a?n )


b1
b2
...
bn

 =

n∑
i=1

a?i bi. (2.24)

2.5 Example: application of the Gram–Schmidt procedure using bras and kets

Consider the list |v1〉= (0, i, i, 0)T, |v2〉= (0, 2, 2, 1)T, |v3〉= (1, 1, 1, 1)T and |v4〉= (2, 1, 1, 0)T. We want to
construct an orthonormal basis for the space spanned by these vectors.

From |v1〉we immediately have that

|e1〉=
1√
2

(0, i, i, 0)T. (2.25)

The corresponding basis bra is the row vector

〈e1| =
1√
2

(0,−i,−i, 0). (2.26)

The inner product 〈e1|v2〉= −2
√

2i, so

|e′2〉= |v2〉− (−2
√

2i) |e1〉= (0, 0, 0, 1)T = |e2〉. (2.27)
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For |v3〉 the necessary inner products are 〈e1|v3〉= −
√

2i and 〈e2|v3〉= 1. Then

|e′3〉= |v3〉− (−
√

2i) |e1〉− |e2〉
= (1, 0, 0, 0)T = |e3〉.

(2.28)

Finally, notice that |e′4〉= 0 because |v4〉= 2 |e3〉−
√

2i |e1〉. Therefore the four vectors |v1〉, . . . , |v4〉 span a
three-dimensional subspace of the original four-dimensional space. The kets |e1〉, |e2〉 and |e3〉 constructed
above are one possible orthonormal basis for this subspace.

2.6 Some important relations involving the inner product

Recall that |a|2 ≡〈a,a〉. In bra-ket notation, |a|2 ≡〈a|a〉.
Pythagoras if 〈a,b〉= 0 (or, 〈a|b〉= 0) then

|a + b|2 = |a|2 + |b|2 ,∣∣ |a〉+ |b〉∣∣2 =
∣∣ |a〉∣∣2 +

∣∣ |b〉∣∣2 . (2.29)

Parallelogram law

|a + b|2 + |a− b|2 = 2
(
|a|2 + |b|2

)
,∣∣ |a〉+ |b〉∣∣2 +

∣∣|a〉− |b〉∣∣2 = 2
(
||a〉|2 + ||b〉|2

)
.

(2.30)

Triange inequality
|a + b| ≤ |a|+ |b| ,∣∣ |a〉+ |b〉∣∣ ≤ ∣∣ |a〉∣∣+

∣∣ |b〉∣∣ . (2.31)

Cauchy–Schwarz inequality
|〈a,b〉|2 ≤〈a,a〉〈b,b〉,
|〈a|b〉|2 ≤〈a|a〉〈b|b〉.

(2.32)

Proof of (2.32): Let |d〉 = |a〉+ c |b〉, where c is a scalar whose value we choose later. Then 〈d| =
〈a|+ c?〈b|. By the properties of the inner product,

0 ≤〈d|d〉=〈a|a〉+ c?〈b|a〉+ c〈a|b〉+ |c|2〈b|b〉. (2.33)

Now choose c = −〈b|a〉/〈b|b〉. Then c? = −〈a|b〉/〈b|b〉 and (2.33) becomes

0 ≤〈a|a〉− |〈a|b〉|2 /〈b|b〉, (2.34)

which on rearrangement gives the required result.

Further reading

Much of the material in this section is covered in §8 of RHB and §II of DK. For another introduction to
the concept of dual vectors see §1.3 of Shankar’s Principles of Quantum Mechanics. (The first chapter of
Shankar gives a succinct summary of the first half of this course.)

Beware in that most books written for mathematicians the inner product 〈a,b〉 is defined to be linear in the
first argument.
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3 Linear operators

Throughout this section I assume that V is an n-dimensional inner-product space and that |e1〉, . . . , |en〉 are
an orthonormal basis for this space.

Recall that linear operators are mappings of a vector space V to itself that satisfy the conditions (1.23). Let
A be a linear operator and suppose that

|b〉= A |a〉. (3.1)

In §1.4 we saw how this is equivalent to the matrix equation b = Aa, where a and b are the column
vectors that represent |a〉 and |b〉 respectively. Armed with our inner product we can now obtain an explicit
expression for the elements of the matrix representing the operator A. Expanding |a〉=

∑n
k=1 ak |ek〉 and

|b〉=
∑n
i=1 bi |ei〉, equation (3.1) becomes

n∑
i=1

bi |ei〉=
n∑
k=1

akA |ek〉. (3.2)

Now choose any basis bra 〈ej | and apply it to both sides:

〈ej |

(
n∑
i=1

bi |ei〉

)
=〈ej |

(
n∑
k=1

akA |ek〉

)
n∑
i=1

bi〈ej |ei〉︸ ︷︷ ︸
δji

=

n∑
k=1

〈ej |A |ek〉ak.
(3.3)

Therefore equation (3.1) can be represented by the matrix equation

bj =

n∑
k=1

Ajkak, (3.4)

where Ajk ≡〈ej |A |ek〉=〈ej , Aek〉 are the matrix elements of the operator A in the |e1〉, . . . , |en〉basis.

3.1 The identity operator

The identity operator I defined through I |v〉= |v〉 for all |v〉∈ V is clearly a linear operator. Less obviously,
it can be written as

I =

n∑
i=1

|ei〉〈ei| . (3.5)

This is sometimes known as resolution of the identity.

Proof: Any |v〉∈ V can be expressed as |v〉=
∑n
i=1 αi |ei〉. Using the expression (3.5) for I, we have

that

I |v〉=
n∑
i=1

|ei〉〈ei|
n∑
j=1

αj |ej〉

=

n∑
i=1

|ei〉
n∑
j=1

αj〈ei|ej〉︸ ︷︷ ︸
δij

=

n∑
i=1

|ei〉αi = |v〉.

(3.6)
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The individual terms |ei〉〈ei| appearing in the sum (3.5) are known as projection operators: if we apply
Pi ≡ |ei〉〈ei| to a vector |a〉=

∑
j aj |ej〉 the result Pi |a〉= ai |ei〉. Similarly, 〈a|Pi = 〈ei| a?i . We have already

seen a use of projection operators in the Gram–Schmidt procedure earlier (equation 2.9).

3.2 Combining operators

The composition of two linear operators A and B is another linear operator. In case it is not obvious how to
show this, let us write C = AB for the result of applying B first, then A. Now notice that C is a mapping
from V to V and that conditions (1.23)

C
(
|a〉+ |b〉

)
= A

(
B(|a〉+ |b〉)

)
= A

(
B |a〉

)
+A

(
B |b〉

)
= C |a〉+ C |b〉,

C
(
α |A〉

)
= A

(
B(α |a〉)

)
= A

(
αB |a〉

)
= α

(
AB |a〉

)
= αC |a〉

(3.7)

hold for any |a〉, |b〉∈ V and α ∈ F .

Exercise: Show that the matrix representing C is identical to the matrix obtained by multiplying the
matrix representations of the operators A and B.

Exercise: Show that sum of two linear operators is another linear operator.

In general AB 6= BA: the order of composition matters. The difference

AB −BA ≡ [A,B] (3.8)

is another linear operator, known as the commutator of A and B.

Functions of operators

We can construct new linear operators by composition and addition. For example, given a linear operator
A, let us define expA in the obvious way as

expA ≡ lim
N→∞

(
I +

1

N
A

)N
= I +A+

1

2
A2 +

1

3!
A3 + · · ·+ 1

m!
Am + · · · ,

(3.9)

in which I is the identity operator, A0 = I, A1 = A, A2 = AA, A3 = AAA and so on. It might not be
obvious that this expA is a linear operator, but notice that it is a mapping from V to itself and that for any
|a〉, |b〉∈ V and α ∈ F we have that

(expA)(|a〉+ |b〉) = (expA) |a〉+ (expA) |b〉,
(expA)(α |a〉) = α(expA) |a〉.

(3.10)

Example: what is exp(αG), where G =

(
0 1
−1 0

)
?

First note that G2 = −I. Therefore G2m = (−1)mI and G2m+1 = (−1)mG. We can use this to split
the expansion of the exponential into a sum of even and odd terms:

exp(αG) =

∞∑
k=0

1

k!
(αG)k

=

∞∑
m=0

1

(2m)!
α2mG2m +

∞∑
m=0

1

(2m+ 1)!
α2m+1G2m+1

=

∞∑
m=0

1

(2m)!
(−1)mα2mI +

∞∑
m=0

1

(2m+ 1)!
(−1)mα2m+1G

= cosαI + sinαG

=

(
cosα sinα
− sinα cosα

)
.

(3.11)
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For this reason G is known as the generator of two-dimensional rotations: for ε � 1 the operator I + εG
is a rotation by an angle ε; from the definition (3.9) the operator exp(αG) is obtained by chaining together
many such infinitesmal rotations.

3.3 Adjoint of an operator

For any operator A : V → V there is another operator A† : V → V, called the adjoint to A, that satisfies

〈a, Ab〉=
〈
A†a,b

〉
. (3.12)

Using property (2.3) of the scalar product, this is equivalent to

〈a, Ab〉=
〈
b, A†a

〉
?, (3.13)

or, in bra-ket notation
〈a|A |b〉=〈b|A† |a〉?. (3.14)

Now let us show that the adjoint A† exists, is unique, and is linear. Consider the map La : V → F defined
by

La(b) =〈a, Ab〉. (3.15)

As the inner product is linear in its second argument, this La is a linear map from vectors b to scalars F . That
is, it is a dual vector: for each choice of a and A there is a unique a′ ∈ V for which La(b) =〈a, Ab〉=〈a′,b〉.
Following (3.12) we define A† : V → V to be the mapping that returns this a′ given a. So A† exists and is
unique. To show that it is linear, take the complex conjugate of (3.12) and replace a by α1a1 + α2a2:〈

b, A†(α1a1 + α2a2)
〉

=〈Ab, α1a1 + α2a2〉
= α1〈Ab,a1〉+ α2〈Ab,a2〉
= α1

〈
b, A†a1

〉
+ α2

〈
b, A†a2

〉
.

(3.16)

Since this holds for any b we have that A†(α1a1 + α2a2) = α1A
†a1 + α2A

†a2: the A† defined by (3.12) is a
linear operator.

Setting a = ei and b = ej in (3.13) shows that the matrix representating the operator A† has elements
(A†)ij = A?ji: the matrix for the adjoint operator A† is the Hermitian transpose of that for the original
operator A.

Exercise: Show that the dual to the vector A |v〉 is 〈v|A†.

3.4 Hermitian, unitary and normal operators

An operator A is Hermitian if it is self-adjoint: A† = A.

Unitary operators U are those for which 〈Ua, Ub〉=〈a,b〉 for all a,b ∈ V: applying U to any pair of vectors
preserves the inner product. From (3.12) this is equivalent to UU† = U†U = I.

Exercise: Show that the composition of two unitary operators produces another unitary operator.
Does the same result hold for Hermitian operators? If not, find a condition under which it does hold.

Exercise: For real vector spaces, show that hermitian operators correspond to symmetric matrices and
unitary operators to orthogonal matrices.

Hermitian and unitary operators are special cases of the more general class of normal operators for which
[A,A†] = 0.
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3.5 Change of basis

Calculations inevitably involve choosing a basis. Sometimes it is convenient to do parts of a calculation in
one basis and the rest in another. Therefore it is important to know how to transform vector coordinates
and matrix elements from one basis to another.

Suppose we have two different orthonormal basis sets, {|e1〉, . . . , |en〉} and {|e′1〉, . . . , |e′n〉}, which are related
via |e′i〉= U |ei〉, where U is some operator whose properties we leave open for the moment. It follows then
that (exercise: show this!)

|e′i〉=
n∑
j=1

Uji |ej〉. (3.17)

That is, the ith column of the matrix U gives the representation of |e′i〉 in the unprimed basis. The corre-
sponding relationship for the basis bras is

〈e′i| =
n∑
j=1

〈ej |U?ji. (3.18)

The orthonormality of the bases places constraints on the the transformation matrix U :

δij =
〈
e′i|e′j

〉
=

(
n∑
k=1

〈ek|U?ki

)(
n∑
l=1

Ulj |el〉

)
=

n∑
k=1

n∑
l=1

U?kiUlj〈ek|el〉=
n∑
k=1

U?kiUkj =

n∑
k=1

(U†)ikUkj , (3.19)

or, in matrix form, I = U†U : the matrix U describing the coordinate transformation must be unitary:
unitary matrices are the generalization of real orthogonal transformations (i.e., rotations and reflections) to
complex vector spaces.

Transformation of vector components Taking an arbitrary vector |a〉=
∑n
j=1 aj |ej〉=

∑n
j=1 a

′
j

∣∣e′j〉
and using 〈e′i| to project |a〉 along the ith primed basis vector gives

a′i =〈e′i|a〉=
n∑
k=1

〈ek|U?ki
n∑
j=1

aj |ej〉=
n∑
k=1

U?ki

n∑
j=1

aj〈ek|ej〉=
n∑
j=1

U?jiaj =

n∑
j=1

(U†)ijaj . (3.20)

In matrix form, the components in the primed basis are given by a′ = U†a.

Transformation of matrix elements In the primed basis, the operator A has matrix elements

A′ij ≡〈e′i|A
∣∣e′j〉=

(
n∑
k=1

〈ek|U?ki

)
A

(
n∑
l=1

Ulj |el〉

)
=

n∑
k=1

U?ki

n∑
l=1

〈ek|A |el〉Ulj =

n∑
k,l=1

(U†)ikAklUlj , (3.21)

so that A′ = U†AU . What does this mean? When applying the matrix A′ to a vector whose coordinates a′

are given with respect to the |e′i〉 basis, think of U as transforming from a′ to a. Then we apply the matrix
A to the result before transforming back to the primed basis with U†.

[More generally, matrices A and B are said to be similar if they related by B = P−1AP for some invertible
matrix P . That is, they represent the same linear operator under two different (possibly non-orthonormal)
bases, with P being the matrix that effects the change in basis.]

Exercise: Derive the change-of-basis formulae (3.20) and (3.21) by resolving the identity (3.5). That
is, write

a′i =〈e′i|a〉=〈e′i| I |a〉
A′ij =〈e′i|A

∣∣e′j〉=〈e′i| IAI
∣∣e′j〉 (3.22)
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and use the fact that I can be expressed as I =
∑
k |ek〉〈ek| =

∑
l |el〉〈el|. You should find that

a′i =
∑
j

〈e′i|ej〉aj ,

A′ij =
∑
k

〈e′i|ek〉
∑
l

〈ek|A |el〉
〈
el|e′j

〉
,

(3.23)

where 〈e′i|ej〉 is the projection of |ej〉 onto the |e′i〉 basis – that is, a matrix whose jth column expresses
|ej〉 in the primed basis. How is this matrix related to U introduced above?

Example: Two-dimensional rotations

|a〉

|e1〉

|e2〉

|e′1〉

|e′2〉

α

Suppose that the (|e′1〉, |e′2〉) basis is related to the (|e1〉, |e2〉) basis by a ro-
tation through an angle α. From the diagram, the basis vectors are related
through

|e′1〉= cosα |e1〉+ sinα |e2〉
|e′2〉= − sinα |e1〉+ cosα |e2〉

⇒
(
|e′1〉
|e′2〉

)
= UT

(
|e1〉
|e2〉

)
, (3.24)

with

UT =

(
cosα sinα
− sinα cosα

)
, so that U =

(
cosα − sinα
sinα cosα

)
. (3.25)

The ith column of U expresses |e′i〉 in the |ej〉 basis: Uji = 〈ej |e′i〉. Clearly
the coordinates a, a′ of a vector |a〉 in the two bases are related through
a′ = UTa.

3.6 Trace

The trace trA of an n× n matrix A is the sum of its diagonal elements:

trA =

n∑
i=1

Aii. (3.26)

The trace satisfies

tr(AB) = tr(BA) (3.27)

because

tr(AB) =

n∑
i=1

 n∑
j=1

AijBji


︸ ︷︷ ︸

(AB)ii

=

n∑
j=1

(
n∑
i=1

BjiAij

)
︸ ︷︷ ︸

(BA)jj

= tr(BA). (3.28)

Taking A = A1, B = A2A3 · · ·Am we see that tr(A1A2 · · ·Am) = tr(A2 · · ·AmA1): the trace is invariant
under cyclic permutations.

Exercise: Show that the trace is independent of basis. Explain then how, given a 3×3 rotation matrix,
one can find the rotation angle directly from the trace.
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3.7 Determinant

Suppose V1, ...,Vk are vector spaces over a common field of scalars F . A map f : V1 × · · · × Vk → F is
multilinear, specifically k-linear, if it is linear in each variable separately:

f(v1, ..., αvi + α′v′i, ...,vk) = αf(v1, ...,vi, ...,vk) + α′f(v1, ...,v
′
i, ...,vk). (3.29)

For the special case k = 2 the map is called bilinear. The inner product of two real vectors is an example of
a bilinear map.

Exercise: Given two k-linear maps, f1 and f2, show that any linear combination, α1f1 + α2f2, is also
k-linear.

A multilinear map is alternating if it returns zero whenever two of its arguments are equal:

f(v1, ...,vi, ...,vi, ...,vk) = 0. (3.30)

Exercise: Use conditions (3.29) and (3.30) to show that the output of a multilinear alternating map
changes sign when two of its arguments are exchanged.

The determinant is the (unique) mapping from n×n matrices to scalars that is n-linear alternating in the
columns, and takes the value 1 for the identity matrix. Some immediate consequences of this definition are
that

(i) If two columns of A are identical then detA = 0.
(ii) Swapping two columns of A changes the sign of detA.
(iii) If B is obtained from A by multiplying a single column of A by a factor c then detB = cdetA.
(iv) If one column of A consists entirely of zeros then detA = 0.
(v) Adding a multiple of one column to another does not change detA.

Before showing how to construct this unique mapping, we develop some ideas to simplify keeping track of
the sign changes that occur when columns are swapped.

Permutations A permutation of the list (1, 2, . . . ,m) is another list that contains each of the numbers 1,
2, . . .m exactly once. In other words, it is a straightforward shuffling of the order of the elements. There
are m! permutations of an m-element list.

Given a permutation P we write P (1) for the first element in the shuffled list, P (2) for the second, etc. Then
P can be written as (P (1), P (2), . . . , P (m)). An alternative notation is

P =

(
1 2 . . . m

P (1) P (2) . . . P (m)

)
, (3.31)

which emphasises that P is a mapping from the set (1, . . . ,m) (top row) to itself (values given on bottom
row). From any two permutation mappings P and Q we can compose a new one PQ defined through
(PQ)(i) = P (Q(i)). There is an identity mapping (for which P (i) = i) and every P has an inverse

P−1 =

(
P (1) P (2) . . . P (m)

1 2 . . . m

)
, (3.32)

which is well defined because each number 1, 2, . . . ,m appears exactly once in the top row of (3.32).

Any permutation (P (1), P (2), . . . , P (m)) can be constructed from (1, 2, . . . ,m) by a sequence of pairwise
element exchanges. Even (odd) permutations require an even (odd) number of exchanges. The sign of a
permutation is defined as

sgn(P ) =

{
+1, if P is an even permutation of (1, 2, . . . ,m),
−1, if P is an odd permutation of (1, 2, . . . ,m).

(3.33)
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Given two permutations P , Q, we have sgn(PQ) = sgn(P ) sgn(Q). The identity permutation is even.
Therefore +1 = sgn(P−1P ) = sgn(P−1) sgnP , showing that sgn(P−1) = sgnP .

The following table shows all 6 permutations of the 3-elements list (1, 2, 3):

P (1) P (2) P (3) sgn(P )

P1 1 2 3 +1
P2 2 1 3 -1
P3 2 3 1 +1
P4 3 2 1 -1
P5 3 1 2 +1
P6 1 3 2 -1

Leibniz’ expansion of the determinant Now we obtain an explicit expression for the determinant and
show that it is unique. We can express each column vector Aj of the matrix A as a linear combination
Aj =

∑
iAijei of the column’s basis vectors e1 = (1, 0, 0, ..)T , ..., en = (0, .., 0, 1)T . For any k-linear map δ

we have that, by definition,

δ(A1, ...,Ak) = δ

(
n∑

i1=1

Ai1,1ei1 , ...,

n∑
ik=1

Aik,keik

)
=

n∑
i1=1

· · ·
n∑

ik=1

Ai1,1 · · ·Aik,kδ(ei1 , ..., eik), (3.34)

showing that the map is completely determined by the nk possible ways of applying δ to the basis vectors.
Imposing the condition that δ be alternating means that that δ(ei1 , ..., ein) vanishes if two or more of the
ik are equal. Therefore we need consider only those (i1, ..., in) that are permutations P of (1, ..., n). The
change of sign under pairwise exchanges implied by the alernating condition means that δ(eP (1), ..., eP (n)) =
sgn(P )δ(e1, ..., en). Finally the condition that det I = 1 sets δ(e1, ..., en) = 1, completely determining δ.
The result is that

detA =
∑
P

sgn(P )AP (1),1AP (2),2 · · ·AP (n),n. (3.35)

For example, for the case n = 3

detA = A11A22A33 −A21A12A33 +A21A32A13 −A31A22A13 +A31A12A23 −A11A32A23, (3.36)

where in the sum (3.35) I have taken the permutations P in the order given in the table above.

Reasoning about the properties of determinants can be sometimes be simplified if we increase the number
of terms in (3.35) from a mere n! up to a more substantial nn by writing (3.35) as

detA =

n∑
l1=1

· · ·
n∑

ln=1

εl1···lnAl1,1 · · ·Aln,n, (3.37)

where the Levi-Civita (or alternating) symbol

εl1,...,ln ≡
{

sgn(l1, ..., ln), if (l1, ..., ln) is a permutation of (1, ..., n),
0, otherwise,

(3.38)

kills off the nn − n! choices of (l1, ..., ln) in which one or more indices are repeated.

Rows versus columns For each term in (3.35) let Q be the inverse of P : if P (i) = j then Q(j) = i. Then
AP (i),i = Aj,Q(j) and we have that the product

∏n
i=1AP (i),i =

∏n
j=1Aj,Q(j). Since sgn(P ) = sgn(Q) and

there is precisely one P for each Q and vice versa, we can rearrange the order of the terms in the sum to
obtain

detA =
∑
Q

sgn(Q)A1,Q(1)A2,Q(2) · · ·An,Q(n)

=
∑
Q

sgn(Q)(AT )Q(1),1(AT )Q(2),2 · · · (AT )Q(n),n

= detAT ,

(3.39)
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using (3.35). That is, the determinant is also multilinear alternating in the rows of A and the properties
(i)–(v) listed above apply with the word “column” replaced by “row”.

Determinant of products Another important property is that det(AB) = detA detB. This takes a
little more work to show than properties (i)–(v) above. First note that applying a permutation Q to the
columns in the Leibniz expansion (3.35) gives

sgn(Q) detA =
∑
P

sgn(P )AP (1),Q(1) · · ·AP (n),Q(n). (3.40)

Now apply the Leibniz expansion to (AB)ij =
∑
k AikBkj :

det(AB) =
∑
P

∑
k1

· · ·
∑
kn

sgn(P )AP (1),k1Bk1,1 · · ·AP (n),knBkn,n

=
∑
P

∑
Q

sgn(P )AP (1),Q(1)BQ(1),1 · · ·AP (n),Q(n)BQ(n),n,
(3.41)

introducing the sum over permutations Q after observing that the right-hand side of the first line vanishes
unless the ki are distinct. Then take the BQ(i),i factors outside the sum over P and use (3.40):

det(AB) =
∑
Q

BQ(1),1 · · ·BQ(n),n

∑
P

sgn(P )AP (1),Q(1) · · ·AP (n),Q(n)

=
∑
Q

BQ(1),1 · · ·BQ(n),n sgn(Q) det(A)

= detA det(B).

(3.42)

Laplace expansion of the determinant You are probably more familiar with another expression for the
determinant. Given an n×n matrix A, let A(i,j) be the (n−1)× (n−1) matrix obtained by omitting the ith

row and jth column of A. Suppose that we are given a function δ(n−1) which is an alternating (n− 1)-linear
map on such (n− 1)× (n− 1) matrices. Then, for any choice of i = 1, ..., n, the new function

δ
(n)
i (A) =

n∑
j=1

Aij(−1)i+jδ(n−1)(A(i,j)) (3.43)

is an alternating n-linear map on the columns of n× n matrices.

Proof: (Multilinearity) By construction, A(i,j) is independent of the jth column of A; it is therefore

an (n− 1)-linear function of each column of A, except for the jth. Hence Aijδ
(n−1)(A(i,j)) is an n-linear

function of the columns of of n × n matrices. Any linear combination of n-linear functions is itself

n-linear. Therefore the sum δ
(n)
i (A) defined by (3.43) is n-linear.

(Alternating) Suppose that columns k and k + l (assume l > 0) of A are equal. Then the submatrices
A(i,j) for j 6= k or k+ l have two equal columns, which means that applying the alternating map δ(n−1)

produces 0: that is, δ(n−1)(A(i,j)) = 0 unless j = k or j = k + l. Eq. (3.43) reduces to

δ
(n)
i (A) = Aik(−1)i+kδ(n−1)(A(i,k)) +Ai,k+l(−1)i+k+lδ(n−1)(A(i,k+l)). (3.44)

But since columns k and k+l of A are equal we have that Aik = Ai,k+l and the matrix A(i,k+l) can be ob-

tained from A(i,k+l) by (l−1) pairwise column exchanges. Then δ(n−1)(A(i,k+l)) = (−1)l−1δ(n−1)(A(i,k))
and so (3.44) vanishes: the mapping defined by (3.43) is alternating.

If we define the map δ(1)(A) on 1×1 matrices to return the single element A11, then the δ
(n)
j defined by (3.43)

returns 1 when fed the n × n identity matrix. So, in addition to the Leibniz expansion (3.35) of detA as
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a sum of permutations of A’s rows/columns, we have another i = 1, ..., n explicit expressions for the same
quantity, given recursively in terms of lower-order submatrices:

detA =

n∑
j=1

Aijcij

=

n∑
j=1

Aij (adjA)ji,

(3.45)

where cij = (−1)i+j det(A(i,j)) is known as the cofactor matrix of A and its transpose, adjA, is the adjugate
matrix or classical adjoint of A.

A useful generalisation of (3.45) is that

δij detA =

n∑
k=1

Aikcjk =

n∑
k=1

ckiAkj (3.46)

or, in matrix notation,
(detA)I = A adjA = (adjA)A, (3.47)

where I is the n× n identity matrix and the adjugate matrix or classical adjoint is the transpose of the
cofactor matrix: (adjA)ji = (−1)i+j det(A(i,j)). From this follows the expression A−1 = 1

detAadjA for the
inverse of A and Cramer’s rule.

Proof of (3.46): Consider element (i, j) of the product (adjA)A. Using the Leibniz expansion of the
rows of the cofactor matrix A(i,k) we find

n∑
k=1

ckiAkj =

n∑
k=1

(−1)j+k

[∑
P

sgn(P )A1,P (1) · · ·Ak−1,P (k−1)Ak+1,P (k+1) · · ·AnP (n)

]
Akj

=

n∑
k=1

(−1)j+k
∑
P

sgn(P )A1,P (1) · · ·Ak−1,P (k−1)AkjAk+1,P (k+1) · · ·AnP (n)

(3.48)

in which the permutation P maps the ordered list of integers {1, ..., n} − {k} to {1, ..., n} − {i}. We
can combine the sum over k and the permutations P into a sum over permutations P ′ from the list
(k, 1..., k − 1, k + 1, ..., n) to the list (j, 1, ..., i − 1, i + 1, ..., n). Note that the latter has a repeated
element if i 6= j. Clearly sgn(P ) = sgn(P ′). It takes (−1)k+1 pairwise exchanges to put the domain
of P ’ into the order (1, ..., n) and (−1)j+1 to put its range in the order (1, ..., i − 1, j, i + 1, ..., n). So,
the permutation P ′ can be written as a permutation Q of (1, ..., n) to (1, ..., i− 1, j, i + 1, ..., n) having
sgn(Q) = (−1)j+k sgn(P ′) = (−1)j+k sgn(P ). Writing (3.48) as a sum over such Q,

n∑
k=1

ckiAkj =
∑
Q

sgn(Q)A1,Q(1) · · ·An,Q(n)

=

{
detA, if i = j,
0, otherwise.

(3.49)

The proof for A adjA is similar.

Exercise: Use the properties above together with results derived in §3.5 to show that the determinant
is independent of (orthonormal) basis.

Exercise: Use the Laplace expansion to show that

∂ detA

∂Aij
= (adjA)ij . (3.50)
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Hence show that for matrices A(α) whose elements depend on a parameter α we have that

d

dα
detA = (detA) tr

(
A−1 dA

dα

)
. (3.51)

Geometrical meaning of the determinant In n-dimensional Euclidean space the block spanned by the
n vectors v1, ...,vn is the set of points λ1v1 + · · ·+ λnvn for 0 ≤ λ1, ..., λn ≤ 1. Let us write Vol(v1, ...,vn)
for the volume of space occupied by this block and define the oriented volume of the block to be

Vol0(v1, ...,vn) = ±Vol(v1, ...,vn), (3.52)

the sign being chosen according to the sign of det(v1, ...,vn), the determinant of the matrix whose ith column
is vi.

Claim: Vol0(v1, ...,vn) = det(v1, ...,vn).

Justification: We need to show that the oriented volume (LHS) is multilinear, alternating and takes
the value +1 when fed the vectors vi = ei (RHS). If the vi are linearly dependent then the volume
is zero and so too is the determinant. For the LI case, consider first the case vi = ei. The block B
is then the unit cube, which has Vol0 = +1, in agreement with RHS. The definition (3.52) of Vol0

is clearly alternating. All that remains is to prove that Vol0 is linear in each argument. This last
step is intuitively plausible, but the proof is more involved than we need. See, e.g., XX,§4 of Lang’s
Undergraduate analysis for the details.

Therefore the determinant, detA, of a linear operator A is simply the change in (oriented) volume effected
by the operator. In particular, detA = +1 if A preserves volume and orientation, while detA = −1 if A
preserves volume but flips the orientation (i.e., reflects).

3.8 Reduction to triangular matrices

Recall that any matrix can be put in to upper (or lower) triangular form by carrying out a sequence of
elementary row operations:
• swap two rows;
• multiply one row by a non-zero constant;
• add a multiple of one row to another.

Each such operation produces a new matrix whose columns are linear combinations of the columns of the
original matrix. A simple way of calculating the rank of a matrix is to use elementary row operations to
reduce it to either an upper triangular matrix or a lower triangular matrix and counting the number
of LI columns in the result.

Examples:

rank

 1 0 0
0 1 0
0 0 3

 = 3, rank

 0 0 0
0 1 −1
0 1 1

 = 2, rank

 0 0 0
0 2 1
0 2 1

 = 1. (3.53)

Every elementary row operation can be expressed as an elementary matrix. For example, starting with
a 3 × 3 matrix A and adding α times row 3 to row 2, then swapping the first two rows gives a new matrix
E2E1A, where the elementary matrices E1 and E2 are

E1 =

 1 0 0
0 1 α
0 0 1

 , E2 =

 0 1 0
1 0 0
0 0 1

 . (3.54)

This reduction to triangular form is usually the sanest simple way of carrying out real calculations.
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Solving linear equations To solve the linear equation Ax = b apply elementary row operations E1, E2,
. . . to A to reduce it to upper triangular form. That is,

Ax = b

⇒ (Em · · ·E2E1)Ax = (Em · · ·E2E1)b

⇒



A′11 A′12 A′13 · · · A′1,n−1 A′1n
0 A′22 A′23 · · · A′2,n−1 A′2n
0 0 A′33 · · · A′3,n−1 A′3n
...

...
...

. . .
...

...
0 0 0 · · · An−1,n−1 An−1,n

0 0 0 · · · 0 An,n





x1

x2

x3
...

xn−1

xn

 =



b′1
b′2
b′3
...

b′n−1

b′n

 ,

(3.55)

where A′ij = (Em · · ·E2E1A)ij and b′i = (Em · · ·E2E1b)i. Then the xi can be found by backsubstitution.

Matrix inverse To find the inverse (assuming that it exists), of a square matrix A, apply elementary
row operations to reduce A → E1A → E2E1A → Em · · ·E2E1A = I while simultaneously applying the
same operations to the identity I: I → E1I → E2E1I → Em · · ·E2E1I. Then (Em · · ·E1)A = I, so that
A−1 = (Em · · ·E1)I.

Determinant Similarly, following on from the example immediately above, the determinant of A is given
by (detA)−1 = (detEm) · · · (detE1). This is useful because calculating the determinants of an elementary
matrix is trivial. The resulting expression involves multiplying just O(n) numbers instead summing of the
n! terms that appear in the Leibniz and Laplace expansions of the determinant.

3.9 Eigenvectors and diagonalisation

Recall that |v〉 6= 0 is an eigenvector of an operator A with eigenvalue λ if it satisfies the eigenvalue
equation

A |v〉= λ |v〉. (3.56)

To find |v〉we first find λ by rewriting eq above as

A |v〉− λ |v〉= (A− λI) |v〉= 0. (3.57)

Clearly A− λI can’t be invertible: if it were, then we could operate on 0 with (A− λI)−1 to get |v〉. So, we
must have that

det(A− λI) = 0, (3.58)

which is known as the characteristic equation for A. The characteristic equation is an nth-order poly-
nomial in λ which can always be written in the form (λ − λ1)(λ − λ2) · · · (λ − λn) = 0, where the n roots
(i.e., eigenvalues) λ1, . . . , λn are in general complex and not necessarily distinct. If a particular value of λ
appears k > 1 times then that eigenvalue is said to be k-fold degenerate. (The integer k is also sometimes
called the multiplicity of the eigenvalue.)

Exercise: Let A be a linear operator with eigenvector |v〉 and corresponding eigenvalue λ. Show that
|v〉 is also an eigenvector of the linear operator exp(αA), but with eigenvalue exp(αλ).

Example: find the eigenvalues and eigenvectors of

A =

 1 0 1
0 2 0
1 0 1

 . (3.59)

The characteristic equation is (1− λ)(2− λ)(1− λ)− (2− λ) = 0, which, when factorised, is (λ− 2)2λ = 0.
Therefore the eigenvalues are λ = 0, 2, 2: the eigenvalue λ = 2 is doubly degenerate.
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To find the eigenvector |v1〉 corresponding to the first eigenvalue with λ = λ1 = 0, take |v1〉= (x1, x2, x3)T

and substitute into eigenvalue equation (3.56) to find x1 = −x3 and x2 = 0. Any vector |v〉 that satisfies
these constraints is an eigenvector of A with eigenvalue 0. For example, we could take |v1〉= (1, 0,−1)T or
(−π, 0, π)T or even (i, 0,−i)T (assuming we have a complex vector space). It is usually most convenient,
however, to choose them to make |v〉normalized. Therefore we choose |v1〉= 1√

2
(1, 0,−1)T.

Taking λ = λ2 = λ3 = 2 and substituting v = (x1, x2, x3)T into the eigenvalue equation yields the constraints
−x1 + x3 = 0 and x1 − x3 = 0. So, we must set x1 = x3, but we are free to choose anything for x2. For |v2〉
let us take x1 = x3 = 1/

√
2 and x2 = 0, while for |v3〉we choose x1 = x3 = 0 and x2 = 1. To summarise, we

have found the following eigenvalues and eigenvectors for the matrix A:

λ1 = 0, |v1〉=
1√
2

 1
0
−1

 , λ2 = 2, |v2〉=
1√
2

 1
0
1

 , λ3 = 2, |v3〉=

 0
1
0

 . (3.60)

Diagonalisation Notice that for the 3 × 3 matrix A above we were able to find three eigenvectors |v1〉,
|v2〉, |v3〉. These three eigenvectors turn out to be orthogonal. Therefore they can be used as a basis for the
3-dimensional vector space on which A operates. In this eigenbasis the matrix representing the operator A
takes on a particularly simple form: it is diagonal, with matrix elements

〈vi|A |vj〉= λiδij . (3.61)

3.10 The complex spectral theorem?

A fundamental problem of linear algebra is to find the conditions under which a given matrix A can be
diagonalised, i.e., whether there exists an invertible coordinate transformation P for which P−1AP becomes
diagonal. For our purposes, we need only accept that a sufficient condition is that A be Hermitian (see next
section).

If you don’t like to accept such things, let A be an operator on a complex inner-product space V. It is relatively easy
to show that V has an orthonormal basis consisting of eigenvectors of A if and only if A is normal. Recall that normal
matrices satisfy AA† = A†A: Hermitian and unitary matrices are special cases of normal matrices.

Here is an outline sketch of the proof. Let v1, ...,vn be the eigenvectors of A and λ1, ..., λn the corresponding eigenvalues.

First suppose that V has an orthonormal basis consisting of the eigenvectors vi. In this basis the matrix representing A is

diagonal with matrix elements Aij =〈vi, Avj〉. The matrix representing A† has elements (A†)ij =
〈
vi, A

†vj

〉
=〈vj , Avi〉?,

which is also diagonal. Diagonal matrices commute. Therefore AA† = A†A: A is normal.

Now the converse: we need to show that if A is normal then V has an orthonormal basis consisting of eigenvectors of A. Any
matrix can be reduced to upper triangular form by applying an appropriate set of elementary row operations (see §3.8).
In particular, there is an orthonormal basis e′1, ..., e

′
n in which the matrix representing A becomes

〈
e′i, Ae

′
j

〉
=

 a′11 . . . a′1n
. . .

...

0 a′nn

 . (3.62)

From (3.62) we see that ∣∣Ae′1∣∣2 = |a′11|
2 and∣∣A†e′1∣∣2 = |a′11|
2 + |a′12|

2 + · · ·+ |a′1n|
2.

(3.63)

But A is normal, so
∣∣Ae′1∣∣ =

∣∣A†e′1∣∣. This means that all entries in the first row of the matrix in the RHS of (3.62) vanish,

except possibly for the first.

Similarly, from equation (3.62) we have that∣∣Ae′2∣∣2 = |a′22|
2 + |a′12|

2

= |a′22|
2, and∣∣A†e′1∣∣2 = |a′22|
2 + |a′23|

2 + · · ·+ |a′1n|
2,

(3.64)



Maths Methods Week 1: Vector Spaces I–24

using the result that a′12 = 0 from the previous paragraph. Because A is normal we have that
∣∣Ae′2∣∣ =

∣∣A†e′2∣∣: the whole

second row must equal zero, except possibly for the diagonal element a′22.

Repeating this procedure for Ae′3 to Ae′n shows that all of the off-diagonal elements in (3.62) must be zero. Therefore the
orthonormal basis vectors e′1,...,e′n are eigenvectors of A.

The corresponding result for real vector spaces is harder to prove. It states that a real vector space V has an orthonormal
basis consisting of eigenvectors of A if and only if A is symmetric (which is equivalent to Hermitian for the special case of
a real vector space).

3.11 Hermitian operators

Hermitian operators are particularly important. Here are two central results. If A is Hermitian then:
(1) its eigenvalues are real
(2) its eigenvectors are orthogonal (and therefore form a basis of V)

Proof of (1): the eigenvalues of a Hermitian operator are real Let |v〉 be a eigenvector of A with
eigenvalue λ. Then the eigenvalue equation (3.56) and its dual are

A |v〉= λ |v〉
〈v|A† = λ?〈v| .

(3.65)

As A is Hermitian we have A† = A. Operate on the first of (3.65) with 〈v| and use the second to operate on
|v〉. Subtracting, the result is

0 = (λ− λ?)〈v|v〉. (3.66)

But 〈v|v〉> 0. Therefore λ = λ?: the eigenvalues are real.

Proof of (2): the eigenvectors of a Hermitian operator are orthogonal Let |v1〉 and |v2〉 be two
eigenvectors with corresponding eigenvalues λ1, λ2. The eigenvalue equations are

A |v1〉= λ1 |v1〉,
A |v2〉= λ2 |v2〉

(3.67)

For simplicity, let us first consider the case λ1 6= λ2. Operating on the first of (3.67) with 〈v2| and on the
second with 〈v1| results in

〈v2|A |v1〉= λ1〈v2|v1〉,
〈v1|A |v2〉= λ2〈v1|v2〉.

(3.68)

Taking the complex conjugate of the second of these gives

〈v1|A |v2〉? = λ?2〈v1|v2〉?

⇒ 〈v2|A |v1〉= λ2〈v2|v1〉,
(3.69)

since λ2 = λ?2 and 〈v1|A |v2〉? =〈v2|A† |v1〉=〈v2|A |v1〉. Now subtract (3.69) from the first of (3.68):

0 = (λ1 − λ2)〈v1|v2〉. (3.70)

Under our assumption that λ1 6= λ2 we must have 〈v1|v2〉 = 0: the eigenvectors are orthogonal. If all n
eigenvalues are distinct, then it is clear that the eigenvectors span V and therefore form a basis.

If λ1 = λ2 then we can use the Gram–Schmidt procedure to construct an orthonormal pair from |v1〉 and
|v2〉: the complex spectral theorem (§3.10) guarantees that a Hermitian operator on an n-dimensional space
always has n orthogonal eigenvectors and so there must exist appropriate linear combinations of |v1〉and |v2〉
that are orthogonal.
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Exercise: Show that (i) the eigenvalues of a unitary operator are complex numbers of unit modulus
and (ii) the eigenvectors of a unitary operator are mutually orthogonal.

How to diagonalise a Hermitian operator Let A be a Hermitian operator with normalised eigenvectors
|v1〉, ..., |vn〉. When the matrix representing A is expressed in terms of its eigenbasis then the matrix elements
are

〈vi|A |vj〉= λiδij , (3.71)

where λi is the eigenvalue corresponding to |vi〉. In our standard |e1〉, ..., |en〉basis, we have that the matrix
elements of A are given by

〈ei|A |ej〉=〈ei| IAI |ej〉

=

n∑
k=1

n∑
l=1

〈ei|vk〉〈vk|A |vl〉〈vl|ej〉,
(3.72)

resolving the identity (3.5) through I =
∑
k |vk〉〈vk| =

∑
l |vl〉〈vl|. Written as a matrix equation, this is

A = U diag(λ1, ..., λn)U†, (3.73)

where Uji =〈ej |vi〉 so that the ith column of U expresses |vi〉 in terms of the |e1〉, ..., |en〉basis.

Exercise: Using UU† = U†U = I show the following:

U†AU = diag(λ1, . . . , λn),

Am = U diag(λm1 , . . . , λ
m
n )U†,

trA =

n∑
i=1

λi,

detA =

n∏
i=1

λi.

(3.74)

Simultaneous diagonalisation of two Hermitian matrices Let A and B be two Hermitian operators.
There exists a basis in which A and B are both diagonal if and only if [A,B] = 0. Some comments before
proving this:

(1) Because the eigenvectors of Hermitian operators are orthogonal, any basis in which such an operator
is diagonal must be an eigenbasis.

(2) An equivalent statement is therefore that “A and B both have the same eigenvectors if and only if
[A,B] = 0.”

(3) In this eigenbasis the only difference between A and B is the values of their diagonal elements (i.e.,
their eigenvalues).

Proof: We first show that if there is basis in which A and B are both diagonal then [A,B] = 0. This is
obvious: diagonal matrices commute.

The converse is that if [A,B] = 0 then there is a basis in which both A and B are diagonal. To prove this,
note that because A is Hermitian we can find a basis in which A = diag(a1, . . . , an), where the ai are the
eigenvalues of A. In this basis B will be represented by some matrix

B =

B11 B12 . . . B1n
...

...
. . .

...
Bn1 Bn2 . . . Bnn

 . (3.75)

The commutator

AB −BA =


0 (a1 − a2)B12 (a1 − a3)B13 . . .

(a2 − a1)B21 0 (a2 − a3)B23 . . .
(a3 − a1)B31 (a3 − a2)B32 0 . . .

...
...

...
...

 . (3.76)
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By assumption [A,B] = 0. From the matrix (3.76) we see that this means that Bij = Bji = 0 for all indices
(i, j) for which ai 6= aj : if all of A’s eigenvalues are distinct then B must be diagonal.

If some of the {ai} aren’t distinct we have just a little more work to do. Take, for example, the case a1 = a2.
Then we have that

B = B† =


B11 B12 0 0 . . .
B?12 B22 0 0 . . .
0 0 B33 0 . . .
0 0 0 B44 . . .
...

 =

(
B̄2

B̄n−2

)
, (3.77)

using B̄2 =

(
B11 B12

B?12 B22

)
and B̄n−2 = diag(B33, ..., Bnn) to denote block submatrices of B. Now introduce

a unitary change-of-basis matrix

U =


U11 U12 0 . . .
U21 U22 0 . . .
0 0 1 . . .
...

 =

(
U2 0
0 Īn−2

)
. (3.78)

Then in this new basis B will be represented by the matrix

U†BU =

(
Ū†2 B̄2Ū2

B̄n−2

)
. (3.79)

Notice that U changes only the upper-left corner of B. We can always choose Ū2 to make Ū†2 B̄2Ū2 =
diag(b1, b2), so that the matrix U†BU becomes diagonal. The basis change U has no effect on the matrix
representing A because Ā2 = diag(a1, a2) = a1 diag(1, 1) is proportional to the identity, we have that

U†AU =

(
Ū†2 Ā2Ū2

Ān−2

)
=

(
Ā2

Ān−2

)
= A. (3.80)

3.12 An application: coupled linear first-order ODEs

Let x(t) be a vector in an n-dimensional vector space that evolves with time t according to

d

dt
x(t) = Ax(t), (3.81)

where A(t) is a (possibly time-dependent) linear operator on x. The full time evolution of this set of n
coupled ODEs is completely determined given the n values x(t0) at some initial time t0. An example of such

an equation is the damped harmonic oscillator d2x
dt2 + k dx

dt +ω2x = 0: introducing the auxilliary variable ẋ(t)
and defining x = (x, ẋ)T it can be rewritten as

d

dt

(
x(t)
ẋ(t)

)
=

(
0 1
−ω2 k

)(
x(t)
ẋ(t)

)
, (3.82)

in which the coefficients of the 2× 2 matrix A do not depend explicitly on time t.

If A is independent of time then the solution to (3.81) is x(t) = exp[tA]x(0). Now consider an initial
condition x(0) and n nearby points displaced by ∆x1(0), ...,∆xn(0). This set of n + 1 points defines an
n-dimensional parallelepiped having (oriented) volume V (0) = det(∆x1(0), ...,∆xn(0)). From the solution
x(t) = exp[tA]x(0) it follows that the (oriented) volume of the parallelepiped evolves as

V (t) = det (exp[tA]) = et trA. (3.83)

This is known as Liouville’s formula. A direct consequence is that if trA = 0 then the evolution operator
exp[tA] preserves volume. Returning to the harmonic oscillator example, the ODE (3.83) defines a flow on
the (x, ẋ) plane, which preserves area if there is no damping (k = 0). Adding damping (k > 0) makes the
flow contract, in this case towards (x, ẋ) = (0, 0).
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3.13 Odds and ends

Quadratic forms Expressions such as ax2 + 2bxy + cy2, or, more generally,

n∑
i=1

Aiix
2
i + 2

n∑
i=1

∑
j<i

Aijxixj =

n∑
i=1

n∑
j=1

Aijxixj (3.84)

are known as (homogeneous) quadratic forms. They can be written in matrix form as xTAx, where A is a
symmetric matrix with elements Aij = Aji. For example,

4x2 + 6xy + 7y2 = (x y )

(
4 3
3 7

)(
x
y

)
. (3.85)

Exercise: Explain why under a certain change of basis x → x′ the quadratic form (3.84) can be
expressed as λ1x

′2
1 + · · ·+λnx

′2
n , where the λi are the eigenvalues of A. What is the relationship between

x and x′? Do you need to make any assumptions about the elements Aij or xi?

Lorentz transformations Our definition of scalar product includes a condition (2.4) that scalar products
are positive unless one of the vectors involved is zero. This condition is relaxed in the special theory of
relativity, where the scalar product of two four-vectors x = (ct, x, y, z) and x̄ = (ct̄, x̄, ȳ, z̄) is defined to be

x̄ · x = ( ct̄ x̄ ȳ z̄ )


1
−1

−1
−1



ct
x
y
z

 = x̄Tηx, (3.86)

where the metric η = diag(1,−1,−1,−1). The (square of the) “length” of a spacetime interval dx =
(cdt,dx, dy,dz) is then

(ds)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2, (3.87)

which can be positive, negative or zero, depending on whether the interval is time-like, space-like or light-like.

A Lorentz transformation is a change of basis x→ x′, x̄→ x̄′ that preserves the scalar product (3.86). An
example familiar from the first-year course is x′ = Λx, where

Λ =


γ −βγ
−βγ γ

1
1

 , (3.88)

with β = v/c and γ = 1/
√

1− β2. It is easy to confirm that ΛTηΛ = η.

Jordan normal form Not all matrices can be diagonalised, but it turns out that for every matrix A there
is an invertible transformation P for which P−1AP takes on the block-diagonal form

P−1AP =


A1

A2

. . .

An

 , (3.89)

where the blocks are

Ai =


λi 1

λi 1
. . .

λi 1
λi

 , (3.90)
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having ones immediately above the main diagonal. Each λi here is an eigenvalue of A with multiplicity given
by the number of diagonal elements in the corresponding Ai.

Singular value decomposition A generalisation of the eigenvector decomposition we have been applying
to square matrices holds to any m× n matrix A: any such A can be factorized as

A = UDV †, (3.91)

where U is an m × m unitary matrix, D is an m × n diagonal matrix consisting of the so-called singular
values of A, and V is an n× n unitary matrix.

Further reading

See RHB§8, DR§II.
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Having dealt with finite-dimensional vector spaces, we now show how certain classes of functions can be
treated as members of an infinite-dimensional vector space. Provided we’re careful about the sort of function
we admit, such function spaces share many of the properties of finite-dimensional vector spaces.

4 Functions as vectors

The set of all functions f : [a, b]→ C for which the integral∫ b

a

|f(x)|2w(x) dx (4.1)

converges is a vector space under the natural rules of addition of functions and multiplication of functions by
scalars. Each such space is defined by the choices of a, b and the function w(x). The weight function w(x)
measures how densely we think points should be sampled along [a, b]. Therefore we impose the condition
that w(x) > 0 for x ∈ (a, b). Given two functions f(x) and g(x) from this space, we define their inner
product to be

〈f |g〉≡ 〈f, g〉 =

∫ b

a

f?(x)g(x)w(x) dx, (4.2)

which satisfies all of the conditions (2.1–2.4). Similarly, the bra corresponding to the ket f(x) is the linear
mapping

〈f | • =

∫ b

a

dxw(x)f?(x) • . (4.3)

This inner-product space is sometimes known as L2
w(a, b). It will be the focus of most of the rest of this

course.

In addition to continuous functions on [a, b], this space includes piecewise-continuous functions that undergo finite-sized
jumps. For example, the function f : [−1, 1]→ C defined by

f(x) =

{
1, if |x| < 1

2
,

0, otherwise,
(4.4)

is continuous except at x = ± 1
2

. The integral (4.1) converges for w(x) = 1 and so this f(x) is a member of the space

L2
1(−1, 1).

Completeness A (possibly) interesting technical point is that we must include functions with finite jump discontinu-
ities in the vector space L2

w(a, b); we cannot restrict our vector space V to the set of continuous functions. Consider a
sequence of functions |fk〉∈ V that satisfies the condition

lim
k,l→∞

D2(|fk〉, |fl〉) = 0. (4.5)

It is not hard to show that this condition means that the sequence converges to some well-defined |f〉: the sequence |fk〉
is said to “converge in the mean” to |f〉. For example, the sequence fk : [−1, 1]→ R of continuous functions defined by

fk(x) =


0, x < − 1

k
,

1
2

(kx+ 1), − 1
k
< x < 1

k
,

1, x > 1
k

,

(4.6)

satisfies the condition (4.5). The limit f(x) = limk→∞ fk(x) is not continuous, however: it has a jump discontinuity
at x = 0.

It is natural to require that our function space V admit all such limiting |f〉. If all sequences |fn〉 ∈ V that satisfy the
condition (4.5) have limits |f〉 that themselves are members of V then V is said to be complete. The example just
given shows that the set of all continuous functions is not complete. On the other hand, it can be shown that the space
L2
w(a, b) is complete (Riesz–Fischer theorem).

http://www-thphys.physics.ox.ac.uk/people/JohnMagorrian/mm/
mailto:john.magorrian@physics.ox.ac.uk
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4.1 Generalized Fourier series

A natural question to ask about L2
w(a, b) is: what kind of basis “vectors” does it have? Before answering

that, however, we need to identify how we expect our basis function expansion should work.

Suppose then that we have some f(x) ∈ L2
w(a, b) and we often want to approximate it by some finite linear

combination fn(x) =
∑n
i=0 aiei(x) of simpler functions ei(x). The most natural way of quantifying how

“good” such an approximation is by using the norm of f(x) − fn(x) to measure the distance D of fn(x)
from f(x). As for finite-dimensional spaces, this D is given by

D2(f, fn) ≡ 〈f − fn, f − fn〉 =

∫ b

a

|f(x)− fn(x)|2w(x) dx. (4.7)

If two functions f(x) and g(x) have D2(f, g) = 0 then we say that f(x) and g(x) are equal (almost
everywhere).

D2(f, g) = 0 can occur only if f(x) = g(x) for all but a set of isolated points xi ∈ [a, b]. In the rest of these notes, I abuse
notation and take the statements f = g or |f〉= |g〉 to mean that the distance D2(f, g) = 0: any two functions f and g
for which f(x) = g(x) everywhere except for a finite set of isolated points xi ∈ [a, b] will be “equal” according to this
definition. For example, the diagram below shows two piecewise-continuous functions f(x) and g(x) that are identical
except at the points x = x1 and x = x2. They are “equal” to one another because the distance D2(f, g) = 0.

x

f(x)

a bx2

=

x

g(x)

a bx1 x2

Orthonormal bases Now suppose that the functions ei(x) appearing in the approximations fn(x) =∑n
i=0 aiei(x) are orthonormal: 〈ei, ej〉 = δij . The set {ei(x)} constitutes an orthonormal basis for L2

w(a, b) if
for any f ∈ L2

w(a, b) we can find some n and expansion coefficients a1, ..., an that make D2(f, fn) arbitrarily
small. Then any f ∈ L2

w(a, b) can be expanded as

f(x) = lim
n→∞

fn(x) =

∞∑
i=0

aiei(x), (almost everywhere)

with ai = 〈ei, f〉 =

∫ b

a

e?i (x)f(x)w(x) dx.

(4.8)

Such an expansion is known as a generalized Fourier series. The coordinates ai = 〈ei, f〉 that give the
position of the vector f(x) in the space with respect to the basis e1(x), e2(x), ... are often known as Fourier
coefficients.

Proof that ai = 〈ei, f〉: we have

D2(f, fn) =

(
〈f | −

n∑
i=0

a?i 〈ei|

)(
|f〉−

n∑
j=0

aj |ej〉

)

=〈f |f〉−
n∑

j=0

aj〈f |ej〉−
n∑

i=0

a?i 〈ei|f〉+
n∑

i=0

n∑
j=0

a?i aj〈ei|ej〉

=〈f |f〉+
n∑

i=0

|ai −〈ei|f〉|2 −
n∑

i=0

|〈ei|f〉|2,

(4.9)
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which is clearly minimised by the choice ai =〈ei|f〉, independent of the value of n ≥ i. Because the ei(x) (by assumption)
form a basis, the distance D2 → 0 as n→∞ and so the “equals” sign in the expansion (4.8) is justified.

Notice from either (4.8) or from (4.9) that the (squared) norm of f is given by

‖f‖2 ≡〈f |f〉=
∞∑
i=0

|ai|2, (4.10)

where ai = 〈ei|f〉 is the coefficient of the ith term in the expansion (4.8). This result, known as Parseval’s
identity, is essentially Pythagoras’ theorem for spaces of functions.

4.2 Basis

Claim: The monomials x0, x1, x2,... are a basis for the space L2
w(a, b).

Comment: the monomials are countable.

The Weierstrass approximation theorem states that any continuous function f : [a, b] → C can be approximated to
arbitrary accuracy by a sufficiently high-order polynomial. That is, for any desired accuracy ε > 0, there is always a
polynomial,

g(x) =

n∑
i=0

aix
i, (4.11)

of some finite order n for which D2(f, g) < ε. (In general this n→∞ as ε→ 0, but n is finite for any ε > 0.) This means
that the infinite set of monomials {x0, x1, x2, ...} is a basis for the space of continuous functions on the finite interval
[a, b] to C: the monomials are LI and in the limit n→∞ they span the space.

The space L2
w(a, b) includes piecewise-continuous functions: i.e., functions with a number of finite-sized jump disconti-

nuities. These can be approximated to any desired accurarcy ε by continuous functions. Therefore the monomials are a
basis for both continuous and piecewise-continuous functions.
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4.3 The Gram–Schmidt procedure for functions

We can use the Gram–Schmidt algorithm (§2.1) to construct an orthonormal basis for L2
w(a, b) from the

monomials given choices of a, b and w(x). The procedure is almost the same as for the case of a finite-
dimensional vector space; the only difference is that there is now an infinite number of basis elements. As
an example, consider the case (a, b) = (−1, 1) and w(x) = 1. Applying the procedure to the list x0, x1, x2,
... in that order results in:

e′0(x) = x0

‖e′0‖
2

=

∫ 1

−1

|x0|2 dx = 2

⇒ e0(x) =
1√
2
.

e′1(x) = x1 −
〈
e0|x1

〉
e0(x)

= x−
[∫ 1

−1

x
1√
2

dx

]
1√
2

= x

‖e′1‖
2

=

∫ 1

−1

x2 dx =
2

3

⇒ e1(x) =

√
3

2
x.

e′2(x) = x2 −
〈
e0|x2

〉
e0(x)−

〈
e1|x2

〉
e1(x)

= x2 −

[∫ 1

−1

x2

√
3

2
x dx

]√
3

2
x−

[∫ 1

−1

x2 1√
2

dx

]
1√
2

= x2 − 1

3

‖e′2‖
2

=

∫ 1

−1

(
x2 − 1

3

)2

dx =
8

45

⇒ e2(x) =

√
5

8
(3x2 − 1).

e′3(x) = x3 −
〈
e0|x3

〉
e0(x)−

〈
e1|x3

〉
e1(x)−

〈
e2|x3

〉
e2(x), etc.

(4.12)

The next two elements of this infinite list of orthonormal basis functions turn out to be

e3(x) =

√
7

8
(5x3 − 3x), e4(x) =

3

8
√

2
(35x4 − 30x2 + 3). (4.13)

These are normalised versions of the Legendre Polynomials, which we will encounter later when we
discover much easier ways of finding orthogonal bases for any (a, b, w). The first few ei(x) are plotted on
Figure 4-1.

Example: Triangle function Consider the triangular function f : [−1, 1]→ C defined by

f(x) = 1− |x|. (4.14)

The Fourier coefficients of this function are given by (4.8)

al =〈el|f〉=
∫ 1

−1

e?l (x)f(x) dx. (4.15)
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-2

-1

0

+1

+2

e0 (x)

-1 0 +1
x

-2

-1

0

+1

+2

e1 (x)

e2 (x)

-1 0 +1
x

e3 (x)

e4 (x)

-1 0 +1
x

e5 (x)

Figure 4-1. The first few orthonormal basis functions for the space L2
1(−1, 1) constructed

using the Gram–Schmidt procedure (§4.3).

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x)

f4 (x)

f10(x)

Figure 4-2. Fourier–Legendre approximation to the function f(x) = 1 − |x| using the or-
thonormal basis (Figure 4-1) constructed in §4.3 and including terms up to order 4 (solid blue
curve) and 10 (dashed red curve) in the expansion (4.8).

Notice that f(x) is an even function of x, whereas the odd- (even-) numbered basis functions el(x) are odd
(even) functions of x. Therefore all odd al = 0. The first few even al are a0 = 2−1/2, a2 = −

√
5/32,

a4 = 2−7/2. Figure 4-2 illustrates the reconstruction of f(x) using the generalized Fourier series (4.8) with
these coefficients multiplying the basis functions el(x).
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4.4 Fourier Series

We have so far been considering functions defined on an interval [a, b] of the real line. A very important
special case is that of functions f : S → C, where S is the unit circle around which we label points by their
angular coordinates θ ∈ [−π, π]. Such functions are periodic with f(θ) = f(θ + 2π). They clearly form a
vector space. A basis for this space is

em(θ) =
1√
2π

eimθ, m ∈ Z. (4.16)

These em(θ) are orthonormal with 〈em|en〉= δmn for weight function w(θ) = 1.

DK III§11 presents one way of proving that the em(x) defined in (4.16) form a basis. The monomials xmyn are a basis
for the square [−1, 1] × [−1, 1]. Therefore any piecewise-continuous f(x, y) can written as f(x, y) =

∑
mn

amnxmyn.

Let x = cos θ, y = sin θ be the Cartesian coordinates of points along the unit circle. Then, around this circle, f(θ) =∑
mn

amn cosm θ sinn θ, which can rewritten as a single sum over e0(θ), e±1(θ), ....

Using (4.8) with the basis (4.16), any piecewise-continuous periodic function f : [−π, π]→ C can be expanded
as

f(θ) =
1√
2π

∞∑
n=−∞

cneinθ,

with coefficients cn =〈en|f〉=
1√
2π

∫ π

−π
e−inθf(θ)dθ.

(4.17)

This is the complex Fourier expansion of the function f .

It is often more convenient to use real basis functions. Let

cn(θ) =

{
e0(θ) = 1√

2π
, n = 0,

1√
2

[en(θ) + e−n(θ)] = 1√
π

cosnθ, n = 1, 2, 3, ...,

sn(θ) =
1√
2i

[en(θ)− e−n(θ)] =
1√
π

sinnθ, n = 1, 2, 3, ...

(4.18)

be a new basis constructed by taking appropriate linear combination of the em(θ). Rewriting the expan-
sion (4.17) in terms of this new basis, we have

Any piecewise-continuous periodic function f : [−π, π]→ C or R can be expanded as

f(θ) =
a0

2
+

∞∑
n=1

[an cosnθ + bn sinnθ] , (?)

with an =
1

π

∫ π

−π
f(θ) cosnθ dθ,

bn =
1

π

∫ π

−π
f(θ) sinnθ dθ.

(4.19)

This known as the Fourier expansion of the function f .

Comments:
• If f(θ) is continuous at the point θ = θ0 then both expansions converge to f(θ0) at θ = θ0. If not,

they converge to 1
2 (f(θ0 − ε) + f(θ0 + ε)).

• The coordinates θ = −π and θ = π correspond to the same point on the circle. Therefore at these
points the expansions converge to 1

2 (f(−π) + f(π)).
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• If f(θ) is an even function, then all bn = 0 in (4.19) and (?) becomes a Fourier cosine series. On
the other hand, if f(θ) is odd then all an = 0 and (?) becomes a Fourier sine series.

Substituting θ = 2πx/L in (4.19), we see that any piecewise continuous function f(x) that has period L, so
that f(x+ L) = f(x), can be expressed as

f(x) =
a0

2
+

∞∑
n=1

[
an cos

(
2πn

L
x

)
+ bn sin

(
2πn

L
x

)]
,

with an =
2

L

∫ L/2

−L/2
f(x) cos

(
2πn

L
x

)
dx,

bn =
2

L

∫ L/2

−L/2
f(x) sin

(
2πn

L
x

)
dx.

(4.20)

Additional comments:
• f(x) is assumed to be periodic. Therefore the limits of the integrals for an and bn can be changed

from (−L/2, L/2) to, e.g., (0, L).
• Although the derivation of (4.20) comes from considering functions that map from the unit circle to

scalars, it can be used to expand any function f : [−L/2, L/2] → C or R that satisfies f(−L/2) =
f(L/2). Similarly, it can be used to expand any f [0, L]→ C or R that satisfies f(0) = f(L).

Example: Triangle function Let us consider the function (4.14) defined for x ∈ [−1, 1] as

f(x) = 1− |x|. (4.21)

Take L = 2 and notice that f(−L/2) = f(L/2). All bn = 0 because f(x) is even. The an are given by

an = 2

∫ 1

0

(1− x) cos(nπx) dx =


1, n = 0,

2
n2π2 (1− cosnπ) =

{
4

n2π2 , odd n,
0, even n > 0.

(4.22)

Therefore f(x) can be expressed as the Fourier cosine expansion

f(x) = 1− |x| = 1

2
+

∞∑
k=1

4
(2k+1)2π2 cos((2k + 1)πx). (4.23)

Figure 4-3 illustrates how well this series converges.

�2 �1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

f(x)

f4(x)

f10(x)

Figure 4-3. Fourier expansion of the function f(x) = 1− |x| including terms up to 4th (solid
blue curve), 10th order (dashed red curve) in the series (4.20) with L = 2.
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Example: Sawtooth Here is an example of how (generalized) Fourier series expansions behave at
discontinuities. The function

f(x) = x (4.24)

defined on [−1, 1] has Fourier coefficients (4.20) an = 0 (because the function is odd) and

bn =

∫ 1

−1

x sin(nπx) dx =
1

π2

∫ π

−π
y sinny dy

=
1

π2

[[
− 1

n
y cosny

]π
−π

+
1

n

∫ π

−π
cosny dy

]

=
2

nπ
(−1)n+1.

(4.25)

So, the function f(x) = x defined on [−1, 1] can be represented as the Fourier sine series

x =

∞∑
n=1

2

nπ
(−1)n+1 sin (nπx) . (4.26)

Figure 4-4 illustrates the convergence of this series. Notice that the truncated series rings at the points
x = ±1: this Fourier expansion is based on the assumption that f(x) is periodic with f(x) = f(x + 2) and
so sees a discontinuity in f(x) at the point x = ±1. This is an example of a Gibbs phenomenon.

�1.0 �0.5 0.0 0.5 1.0
x

�1.0

�0.5

0.0

0.5

1.0

f(x) =x

f4(x)

f10(x)

f30(x)

Figure 4-4. Fourier expansion of the function f(x) = x including terms up to 4th (solid blue
curve) and 10th (dashed red curve) and 30th order in the series (4.20) with L = 2.

Further reading

DK III§§1-9 give a deeper introduction to the ideas I have only outlined here. The classic reference for this
material is Courant & Hilbert’s Methods of Mathematical Physics, Vol I, ch. 2. You might need to brush up
on the various notions of sequences and their convergence (e.g., uniform convergence) before you can benefit
fully from either of these. None of this is essential reading, but many of you will find it interesting.

More importantly, RHB§12 has plenty of examples of the use of Fourier series.
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5 Fourier transforms

Recall that any well-behaved function f : [−π, π]→ C can be expanded as (4.17)

f(x′) =
1√
2π

∞∑
n=−∞

cneinx′
,

with cn =
1√
2π

∫ π

−π
e−inx′

f(x′)dx′.

(5.1)

Let us stretch out the [−π, π] domain to [−L/2, L/2] by introducing x = (L/2π)x′ and let us label the
Fourier coefficients cn by the wavenumber k = 2πn/L instead of n. Then kx = nx′ and dx′ = (2π/L)dx,
so that

cn(k) =
2π

L

1√
2π

∫ L/2

−L/2
e−ikxf(x)dx. (5.2)

We define

F (k) ≡ L

2π
cn(k) =

1√
2π

∫ L/2

−L/2
e−ikxf(x)dx, (5.3)

in terms of which

f(x) =
1√
2π

∞∑
k=−∞

2π

L
F (k)eikx. (5.4)

Note that the spacing between successive values of kn = 2πn/L in the sum (5.4) is ∆k = kn+1− kn = 2π/L.

Taking the limit L→∞ we define the Fourier transform of a function f : R→ C as

F (k) ≡ 1√
2π

∫ ∞
−∞

e−ikxf(x)dx. (5.5)

Having F (k) we can recover the original f(x) by the taking the inverse transform,

f(x) =
1√
2π

∫ ∞
−∞

F (k)eikx dk. (5.6)

5.1 Examples

Example: Sharply truncated sine/cosine wave Consider the function

f(x) =

{
eiωx, |x| < l/2,
0, otherwise.

(5.7)

Its Fourier transform is given by

F (k) =
1√
2π

∫ l/2

−l/2
e−ikxeiωx dx =

1√
2π

∫ l/2

−l/2
ei(ω−k)x dx

=
1√
2π

1

i(ω − k)

[
ei(ω−k)l/2 − e−i(ω−k)l/2

]
=

1√
2π

2

ω − k
sin

(
(ω − k)

l

2

)
=

l√
2π

sinc

(
(ω − k)

l

2

)
.

(5.8)



Maths Methods Week 2: Functions as vectors II–10

As l→∞ this tends to a sharp spike k = ω, the area under the spike remaining constant.

Example: Gaussian The normalised Gaussian of dispersion (or standard deviation) a is

g(x) =
1√
2πa

exp

[
−1

2

(x
a

)2
]
. (5.9)

Its Fourier transform is given by

G(k) =
1

2πa

∫ ∞
−∞

exp

[
− x2

2a2
− ikx

]
dx

=
1

2πa

∫ ∞
−∞

exp

[
− (x+ ika2)2

2a2
− k2a2

2

]
dx

=
1√
2πa

exp

[
−k

2a2

2

]
1√
2π

∫ ∞
−∞

exp

[
− (x+ ika2)2

2a2

]
dx

=
1√
2πa

exp

[
−k

2a2

2

]
1√
2π

∫ ∞+ika2

−∞+ika2
exp

[
− x2

2a2

]
dx

=
1√
2πa

exp

[
−k

2a2

2

]
1√
2π

∫ ∞
−∞

exp

[
− x2

2a2

]
dx︸ ︷︷ ︸

a

=
1√
2π

exp

[
−k

2a2

2

]
.

(5.10)

[See notes for Short Option S1 to understand how the fifth line of (5.10) follows from the fourth.] So, the
FT of a Gaussian of dispersion a is 1/a times another Gaussian of dispersion 1/a.

5.2 Properties of Fourier transforms

The following table gives some important relationships between a function f(x) and its Fourier transform
F (k):

function Fourier transform

f(ax) 1
aF (k/a) scale

f(a+ x) eikaF (k) phase shift
eiqxf(x) F (k − q) phase shift

df
dx ikF (k) derivative

xf(x) i d
dkF (k) derivative

To prove the first of these, let Fa(k) be the Fourier transform of f(ax), so that

Fa(k) =
1√
2π

∫ ∞
−∞

e−ikxf(ax) dx

=
1√
2π

∫ ∞
−∞

e−iky/af(y)
dy

a

=
1

a

1√
2π

∫ ∞
−∞

e−i(k/a)yf(y) dy =
1

a
F (k/a),

(5.11)

using the substitution y = ax to go from the first to the second line. Similarly, the second follows on
substituting y = x+ a.
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The third follows by replacing k in the definition (5.5) of F (k) by k − q.
To prove the second last one, note that the Fourier transform of df/dx is

1√
2π

∫ ∞
−∞

e−ikx df

dx
dx =

1√
2π

[
f(x)e−ikx

]∞
−∞︸ ︷︷ ︸

0

+ik
1√
2π

∫ ∞
−∞

e−ikxf(x) dx

= ikF (k),

(5.12)

using integration by parts. The final one is left as an exercise.

5.3 Multi-dimensional Fourier transforms

The Fourier transform of a three-dimensional function f(x, y, z) is another function F (kx, ky, kz) obtained
by first Fourier transforming in z, then Fourier transforming the result in y and finally Fourier transforming
in z. That is,

F (kx, ky, kz) =
1√
2π

∫ ∞
−∞

dx e−ikx 1√
2π

∫ ∞
−∞

dy e−iky 1√
2π

∫ ∞
−∞

dz e−ikzf(x, y, z)

=
1

(2π)3/2

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dze−i(kxx+kyy+kzz)f(x, y, z).

(5.13)

Notice that the order in which the transforms are carried out does not matter. In vector notation, we may
write

F (k) =
1

(2π)3/2

∫
d3x e−ik·xf(x), (5.14)

where x = (x, y, z) and k = (kx, ky, kz). The generalisation to a function f(x) = f(x1, ..., xn) over an
n-dimensional space is obvious:

F (k) =
1

(2π)n/2

∫
dnx e−ik·xf(x); f(x) =

1

(2π)n/2

∫
dnk eik·xF (k). (5.15)

5.4 Convolution theorem

The convolution of two functions g(x) and h(x) is a new function f = g ∗ h given by

f(x) = (g ∗ h)(x) =

∫ ∞
−∞

h(x− x′)g(x′) dx′. (5.16)

That is, f is obtained by “smearing” one function by the other.

Exercise: Show that g ∗ h = h ∗ g and that f ∗ (α1g1 + α2g2) = α1f ∗ g1 + α2f ∗ g2.

Let G(k) and H(k) be the Fourier transforms of the functions g(x) and h(x), respectively. Then the Fourier
transform of their convolution f = g ∗ h = h ∗ g is simply

F (k) =
√

2πH(k)G(k). (5.17)

Proof

F (k) =
1√
2π

∫ ∞
−∞

dx e−ikx

∫ ∞
−∞

h(x− x′)g(x′) dx′

=
1√
2π

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ e−ik(x−x′)e−ikx′
h(x− x′)g(x′).

(5.18)



Maths Methods Week 2: Functions as vectors II–12

Now change variables to u = x′, v = x− x′. Then dxdx′ = dudv, which each of u and v spanning the whole
real line. So,

F (k) =
1√
2π

∫ ∞
−∞

du

∫ ∞
−∞

dv e−ikve−ikuh(v)g(u)

=
1√
2π

∫ ∞
−∞

dv e−ikvh(v)

∫ ∞
−∞

du e−ikug(u) =
√

2πH(k)G(k).

(5.19)

The generalisation to functions on n-dimensional space is straightforard:

f(x) = (g ∗ h)(x) = (h ∗ g)(x) ≡
∫
h(x− x′)g(x) dnx, (5.20)

which has Fourier transform (2π)n/2H(k)G(k).

5.5 Some applications of the Fourier transform

You’ll encounter uses of the Fourier transform in both quantum mechanics and optics this year. Here are
some brief examples of how it can be applied.

Example: An integral equation Given the functions f0(x) and g(x), what f(x) satisfies

f(x) = f0(x) +

∫ ∞
−∞

dy g(x− y)f(y) (5.21)

subject to the boundary conditions that f(x) vanishes as |x| → ∞? Taking the Fourier transform of (5.21),
recognising that the integral on the RHS is a convolution, gives

F (k) = F0(k) +
√

2πG(k)F (k)

⇒ F (k) =
F0

1−
√

2πG
,

(5.22)

where F (K), F0(k), G(k) are the Fourier transforms of f(x), f0(x) and g(x), respectively. The problem
reduces to one of finding the inverse Fourier transform of this F (k).

Example: Poisson’s equation In Cartesian coordinates Poisson’s equation is

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 4πGρ(x, y, z), (5.23)

with both Φ and ρ vanishing at infinity. It is easy to show that the (3d) Fourier transform of ∂f/∂x is
−ikxΦ̄, where Φ̄ is the 3d Fourier transform of Φ(x, y, z). So, taking the (3d) Fourier transform of (5.23) we
have that

−k2Φ̄ = 4πGρ̄, (5.24)

where ρ̄(k) is the (3d) Fourier transform of ρ(x). Therefore Φ̄ = −4πGρ̄/|k|2.

Further reading

See RHB§13.1 for more discussion of Fourier transforms and exercises.
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6 Dirac delta

The Dirac delta “function” δ(x) has the following properties: †

δ(x) = 0, x 6= 0∫ ∞
−∞

δ(x) dx = 1,∫ ∞
−∞

f(x)δ(x) dx = f(0).

(6.1)

No such function exists! Nevertheless, we can understand

δ(x) = lim
ε→0

δε(x) (6.2)

as the limit of a sequence of kernel functions δε(x) that in the limit ε→ 0 satisfies
∫∞
−∞ f(x)δε(x) dx→ f(0).

Some choices for δε(x) include:

δε(x) =
1√
2πε

exp

[
− x2

2ε2

]
(Gaussian),

or δε(x) =
1

π

ε

(x2 + ε2)
(Cauchy–Lorentz).

(6.3)

These share the properties that (i)
∫
δε(x)dx = 1 , (ii) dk

dxk δε exists and tends to 0 faster than any power
of 1/|x| as x → ±∞ and (iii) δε(x) becomes more and more concentrated towards x = 0 as ε → 0: that is,
for any choice of X and mass m < 1 enclosed within |x| < X, there is always some εmax for which, for any
ε < εmax, we have that ∫ X

−X
δε(x) dx > m. (6.4)

I adopt the first (a normalised Gaussian of dispersion ε) in the examples that follow.

Exercise: Show that the Dirac delta is the “identity” element for the convolution operation (5.21).
That is, δ ∗ f = f ∗ δ = f .

6.1 Justification

It is clear that the choice

δε(x) =
1√
2πε

exp

[
− x2

2ε2

]
(6.5)

satisfies the first two of conditions (6.1). Here we show that it satisfies∫ ∞
−∞

f(x)δ(x− a) dx = f(a), (6.6)

which is a slight generalisation of the final condition of (6.1).

According to our interpretation of the meaning of δ(x), we need to replace the δ(x− a) in (6.6) by δε(x− a)
and take the limit as ε→ 0 of the whole integral. Doing this, the LHS of (6.6) becomes∫ ∞

−∞
f(x)δ(x− a) dx = lim

ε→0

∫ ∞
−∞

f(x)δε(x− a) dx. (6.7)

† The second property is a special case of the third, but is listed separately to emphasise that the Dirac delta has unit “mass”.
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Taylor expanding the integrand in the RHS of (6.7) we obtain∫ ∞
−∞

f(x)δε(x− a) dx =

∫ ∞
−∞

[
f(a) + (x− a)f ′(a) +

1

2
f ′′(a) + · · ·

]
δε(x− a) dx

= f(a)

∫ ∞
−∞

δε(x− a) dx

+ f ′(a)

∫ ∞
−∞

(x− a)δε(x− a) dx

+
1

2
f ′′(a)

∫ ∞
−∞

(x− a)2δε(x− a) dx+ · · · .

(6.8)

Substitute y = x− a and note that the integrals in each of the terms of this series are all of the form

In =

∫ ∞
−∞

ynδε(y) dy, (6.9)

which is just the nth moment of the Gaussian δε(x). When n is odd In = 0 because the integrand is an
odd function. The first two even moments are easy: I0 = 1 because our Gaussian δε is correctly normalized;
I2 = ε2 since I2 is just the variance of δε. More generally, it is easy to see that I2n ∝ ε2n. (In equation (6.9)
use the expression (6.5) for δε(y) then change variables to y′ = y/ε.)

Substituting these results into the RHS of equation (6.7) we have finally that∫ ∞
−∞

f(x)δ(x− a) dx = lim
ε→0

[
f(a) +

1

2
f ′′(a)ε2 +O(ε4)

]
= f(a),

(6.10)

as required.

6.2 Properties

The Dirac delta has the following properties:

f(x)δ(x− a) = f(a)δ(x− a). (6.11)

δ(ax) =
1

|a|
δ(x). (6.12)

δ(−x) = δ(x). (6.13)

δ(x2 − a2) =
1

2|a|
[δ(x+ a) + δ(x− a)]. (6.14)

δ(f(x)) =
∑
i

1

|f ′(xi)|
δ(x− xi), where f(xi) = 0. (6.15)

δ′(x)f(x) = −δ(x)f ′(x). (6.16)

The simplest way of proving any of these is to multiply both sides by an arbitrary function g(x) and then
integrate, using the properties (6.1) together with possible a change of variables to show that both sides are
equal.
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For example, here is how to prove (6.15) that

δ[f(x)] =
∑
i

δ(x− xi)
|f ′(xi)|

, (6.17)

where the xi are the locations of the zeroes of f(x) (i.e., f(xi) = 0). We need to show that∫ ∞
−∞

g(x)δ[f(x)] dx =

∫ ∞
−∞

g(x)
∑
i

δ(x− xi)
|f ′(xi)|

dx (6.18)

for any well-behaved g(x). The integrand in the LHS is nonzero only for tiny regions around each of the xi.
Therefore we can split the full integral into a sum of smaller integrals around each of these ranges:∫ ∞

−∞
g(x)δ[f(x)] dx =

∑
i

∫ xi+∆x

xi−∆x

g(x)δ[f(x)] dx, (6.19)

where ∆x > 0 is chosen to be small enough to ensure that each integral includes only one of the zeros of
f(x). Each of the integrals in the RHS of (6.19) is of the form∫ b

a

g(x)δ[f(x)] dx, (6.20)

in which a = xi −∆x and b = xi + ∆x. Notice that a < b because ∆x > 0. Substituting y = f(x), we have
that dy = f ′(x)dx, and so ∫ b

a

g(x)δ[f(x)] dx =

∫ f(b)

f(a)

g(x(y))δ(y)
dy

f ′(x)
, (6.21)

where the x(y) that appears in the integrand on the RHS is understood to mean the x ∈ [xi −∆x, xi + ∆x]
that solves y = f(x): there will be precisely one such x as long as f ′ 6= 0 and ∆x is small enough.

If f ′(xi) > 0 we have that f(b) > f(a) and the RHS of (6.21) becomes∫ f(b)

f(a)

g(x)δ(y)
dy

f ′(x)
=

g(xi)

f ′(xi)
=

g(xi)

|f ′(xi)|
(if f(xi) > 0). (6.22)

On the other hand, if f ′(xi) < 0, then f(b) < f(a) and so∫ f(b)

f(a)

g(x)δ(y)
dy

f ′(x)
= −

∫ f(a)

f(b)

g(x)δ(y)
dy

f ′(x)
= − g(xi)

f ′(xi)
=

g(xi)

|f ′(xi)|
(if f(xi) < 0). (6.23)

Combining these two results and substituting into equation (6.19) we have that∫ ∞
−∞

g(x)δ[f(x)] dx =
∑
i

g(xi)

|f ′(xi)|

=
∑
i

∫ ∞
−∞

g(x)
δ(x− xi)
|f ′(xi)|

dx

=

∫ ∞
−∞

g(x)
∑
i

δ(x− xi)
|f ′(xi)|

dx,

(6.24)

which is just the equation (6.18) that we have set out to prove. Since this holds for any g(x) we are justified
in claiming (6.15). Notice that we have needed to assume that f ′(xi) 6= 0 to obtain this result.
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6.3 Multidimensional Dirac delta

Let r = (x, y, z) and introduce the three-dimensional delta function,

δ(3)(r) ≡ δ(x)δ(y)δ(z). (6.25)

It is easy to show that this satisfies (compare to 6.1)

δ(r) = 0, x 6= 0∫
δ(3)(r) d3r = 1∫

f(r)δ(3)(r− r0) d3r =

∫
dx

∫
dy

∫
dzf(x, y, z)δ(x− x0)δ(y − y0)δ(z − z0)

= f(x0, y0, z0) = f(r0).

(6.26)

Similarly δ(n)(x1, ..., xn) ≡ δ(x1) · · · δ(xn).

6.4 Fourier-space representation of the Dirac delta

Let us adopt the Gaussian form (6.5) for δε(x). From (5.10) its Fourier transform is

∆ε(k) =
1√
2π

e−
1
2 ε

2k2 . (6.27)

Inverting this, we have that

δε(x) =
1

2π

∫ ∞
−∞

dk eikxe−
1
2 ε

2k2 , (6.28)

so that, taking ε→ 0 and remembering that k is a dummy variable,

δ(x) =
1

2π

∫ ∞
−∞

dk eikx =
1

2π

∫ ∞
−∞

dk e−ikx. (6.29)

This representation of the Dirac delta looks strange, but let us check that it works:∫ ∞
−∞

dx f(x)δ(x− a) =

∫ ∞
−∞

dx f(x)
1

2π

∫ ∞
−∞

dk e−ik(x−a)

=
1√
2π

∫ ∞
−∞

dk eika 1√
2π

∫ ∞
−∞

dx e−ikxf(x)

=
1√
2π

∫ ∞
−∞

dk eikaF (k)

= f(a),

(6.30)

where F (k) is the Fourier transform of f(x). So, we can represent the Dirac delta as a superposition of
plane waves in k space, eikx, with a uniform distribution of amplitudes.
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6.5 A basis for Fourier space

The complex Fourier series for a function f : [−L/2, L/2]→ C uses the discrete orthonormal basis

en(x) =
1√
L

einπx/L, n ∈ Z. (6.31)

Recall that we constructed the Fourier transform of functions f : R → C by replacing the discrete index n
by k = 2πn/L and letting L→∞ so that k becomes continuous. This procedure works, but can we identify
a basis for this space? Notice that the individual en(x)→ 0 as L→∞, which means that they are no longer
useful.

The results of the previous subsection suggest a basis

ek(x) =
1√
2π

eikx, (6.32)

because then

〈ek|ep〉=
1

2π

∫ ∞
−∞

dx ei(p−k)x = lim
ε→0

1

2π

∫ 1/ε

−1/ε

dx ei(p−k)x = δ(p− k), (6.33)

using the representation (6.29) for δ(p− k). This relation replaces the orthonormality relation 〈ek|ep〉= δkp
when k and p are continuous.

6.6 Resolution of the identity, revisited

The following section introduces some formal notation that can be useful, particularly in quantum mechanics.
We can think of f(x0) as being the projection of the vector |f〉 along the (generalized) function δ(x− x0),

f(x0) =〈x0|f〉

=

∫ ∞
−∞

dx δ(x− x0)f(x).
(6.34)

Claim: For the present case of functions f : R → C with unit weight function w(x) = 1, we can formally
write the identity operator as

I =

∫ ∞
−∞

dx |x〉〈x| . (6.35)

Proof: For any two vectors |f〉, |g〉we have that 〈f |x〉=〈x|f〉? = f?(x) and 〈x|g〉= g(x). Therefore

〈f | I |g〉=〈f |
[∫ ∞
−∞

dx |x〉〈x|
]
|g〉

=

∫ ∞
−∞

dx 〈f |x〉〈x|g〉

=

∫ ∞
−∞

dx f?(x)g(x)

=〈f |g〉.

(6.36)

So, with the understanding that 〈x|f〉means f(x) and 〈f |x〉means f?(x), we can slip (6.35) into any scalar
product such as 〈f |g〉=〈f | I |g〉and obtain a formal expression for it in terms of the “x-basis” for the objects
|f〉 and |g〉.
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Similarly, we can think of the value of the Fourier transform F (k0) at k = k0 as being equal to the projection
of the function |f〉 along the basis vector |ek0〉 given by (6.32):

F (k0) =〈k0|f〉=〈ek0 |f〉

=
1√
2π

∫ ∞
−∞

dx e−ik0x f(x).
(6.37)

Claim: We can also express the identity as

I =

∫ ∞
−∞

dk |ek〉〈ek| . (6.38)

Proof: for any two |f〉, |g〉we have that

〈f | I |g〉=
∫ ∞
−∞

dk 〈f |ek〉〈ek|g〉

=

∫ ∞
−∞

dk
1√
2π

∫ ∞
−∞

dx eikxf?(x) dx
1√
2π

∫ ∞
−∞

dx′ e−ikx′
g(x′) dx′

=

∫ ∞
−∞

dxf?(x)

∫ ∞
−∞

dx′ g(x′)
1

2π

∫ ∞
−∞

dk eik(x−x′)

=

∫ ∞
−∞

dx f?(x)

∫ ∞
−∞

dx′ g(x′)δ(x− x′)

=

∫ ∞
−∞

dx f?(x)g(x) =〈f |g〉,

(6.39)

using (6.29) to go from the third to the fourth line and remembering that
∫∞
−∞ really means liml→0

∫ l
−l,

or, equivalently, limε→0

∫ 1/ε

−1/ε
.

As a sanity check, notice that

ek(x) =
1√
2π

eikx =〈x|ek〉 (6.40)

and therefore the Fourier transform

F (k) =〈ek|f〉=〈ek| I |f〉=
∫ ∞
−∞

dx〈ek|x〉〈x|f〉=
1√
2π

∫ ∞
−∞

dx e−ikxf(x). (6.41)

Similarly,

f(x) =〈x|f〉=〈x| I |f〉=
∫ ∞
−∞

dk〈x|ek〉〈ek|f〉=
1√
2π

∫ ∞
−∞

dk eikxF (k). (6.42)

[Notice that there is an ambiguity in expressions such as 〈x|ek〉. Does it mean the projection of the function
|ek〉 onto the x basis (i.e., what we’d normally call ek(x))? Or does it mean the projection of ek(x) onto the
function f(x) = x? Here, of course, it means the former. Usually the meaning is clear from the context.]

Exercise: Show that ∫ ∞
−∞

f?(x)g(x)dx =

∫ ∞
−∞

f̃?(k)g̃(k)dk, (6.43)

where f̃(k) =〈k|f〉and g̃(k) =〈k|g〉are the Fourier transforms of f(x) and g(x) respectively. This result
is known as Parseval’s formula. It shows that the Fourier transform preserves the inner product: it
is unitary.
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Exercise: Let |en〉with n ∈ Z be a (discrete) orthonormal basis for the space L2
w(a, b). Explain why

the identity operator can be expressed as

I =
∑
n

|en〉〈en| (6.44)

and also, applying the formal notation introduced in this subsection, as

I =

∫ b

a

dxw(x) |x〉〈x| . (6.45)

Hence show that
1√

w(x)w(x0)
δ(x− x0) =

∑
n

〈x|en〉〈en|x0〉

=
∑
n

en(x)e?n(x0).
(6.46)

Further reading

DK III§13 explains how the Dirac delta can be viewed as an example of a generalized function or distribution;
see also §21 of Kolmogorov & Fomin’s Introductory real analysis. DK III§14.7 gives a fuller justification for
the formal f(x) =〈x|f〉 etc notation just introduced.
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7 Linear differential operators

We have seen how functions from the space L2
w(a, b) share many of the familiar properties of vectors from

finite-dimensional spaces. Now we turn to the properties of certain special linear operators on such functions.
Recall that an operator A is linear if A(u + v) = Au + Av and A(αu) = αAu, where u(x) and v(x) are
any members of the class of function that A admits and α is any scalar constant. If A and B are two such
operators then A+B, αA and the compositions AB and BA are also linear operators.

Most of undergraduate physics involves second-order linear differential equations of the form Au = g, where
u(x) is some unknown function and A is a linear operator of the form

A• = a2(x)
d2•
dx2

+ a1(x)
d•
dx

+ a0(x)•, (7.1)

in which a0(x), a1(x) and a2(x) are smooth, real-valued functions. We focus on such operators for the rest
of the course, but not without noting that there are interesting linear operators that are not of this form.
For, example:

• the multiplication operator La defined by (Laf)(x) ≡ a(x)f(x) for some given a(x);

• the integration operator Lk defined by (Lkf)(x) ≡
∫ b
a
k(x, x′)f(x′)dx′ for some choice of kernel func-

tion k(x, x′).

The convolution operator g ? • in (5.16) is an example of the latter with k(x, x′) = g(x − x′), provided the
domain of g extends sufficiently far beyond the interval [a, b].

After reviewing some of the basic properties of ODEs Au = g with A given by (7.1), we first specify the class
of boundary conditions we which to apply to our solutions u(x). Then we construct the adjoint operator A†

and obtain the conditions under which A = A†, making A Hermitian. We show that many of the ordinary
differential equations encountered in physics problems can be cast as eigenvalue equations, Au = λu, where
A is an operator of the form (7.1) that is also Hermitian. We discuss various properties of the soutions to
such equations (i.e., the eigenfunctions of A), before showing various ways of obtaining explicit expressions
for them.

7.1 Recap: second-order ODEs

Recall that the second-order ODE Au = g can be turned into a pair of coupled first-order ODEs by in-
troducing an auxiliary function u′(x) (which will just happen to be equal to du/dx) and rewriting Au = g
as (

a0(x) a1(x) + a2(x) d
dx

d
dx 0

)(
u(x)
u′(x)

)
=

(
g(x)
u′(x)

)
. (7.2)

This is a first-order ODE for the vector (u u′ )
T

.

Once we’ve specified the value (u0 u′0 )
T

of the vector (u(x) u′(x) )
T

at some initial location x = x0, we
can integrate equation (7.2) forwards or backwards along the x axis to construct u(x). Thus there are in
general two LI solutions u1(x) and u2(x) to the equation (7.2), which are parametrised by the values chosen
for u0 = u(x0) and u′0 = u′(x0).

As we march along the x axis, we might encounter points x = x0 at which either a1(x)/a2(x)→∞ or a0(x)/a2(x)→∞
as x→ x0. The most obvious example is any point x0 at which a2(x) vanishes. These are known as singular points

http://www-thphys.physics.ox.ac.uk/people/JohnMagorrian/mm/
mailto:john.magorrian@physics.ox.ac.uk
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and are important in classifying the solutions to the ODE. For this course though we can simply ignore them, even if
we do encounter one.

The solution to the inhomogeneous equation Au = g is given by u(x) = α1u1(x) + α2u2(x) + up(x), where
u1(x) and u2(x) are the LI solutions to the homogeneous problem Au = 0 and the particular integral
up(x) is any solution to Au = g.

Exercise: Write down the condition for a pair of functions u1(x) and u2(x) to be LI. Use this to show
that u1(x) and u2(x) are linearly dependent if the Wronskian determinant

W (u1, u2) = det

(
u1 u2

u′1 u′2

)
(7.3)

is identically zero.

Exercise: Suppose we’ve found one solution, u1(x), to the homogeneous equation Au = 0. The
method of variation of parameters is a standard way of finding a second LI solution, u2(x). Let
u2(x) = h(x)u1(x). Show that this h(x) is given by

dh

dx
=

constant

u2
1(x)

exp

[
−
∫ x

a

c1(x′)

c2(x′)
dx′
]
, (7.4)

and show that the Wronskian W (u1, u2) = u2
1h(x).

This method of variation of parameters can also be used to find a particular integral up(x) for the inho-
mogeneous equation second-order differential equation Au = g. A much more powerful way of tackling
inhomogeneous problems is by using the method of Green’s functions (§9 below).

7.2 The operator and its diet

Here we are going to consider operators of the form

A• =
1

w(x)

[
c2(x)

d2•
dx2

+ c1(x)
d•
dx

+ c0(x)•
]
, (7.5)

in which the ci(x) are smooth real functions ci : [a, b]→ R with c2(x) 6= 0 for any x ∈ (a, b) and w(x) is the
weight function that appears in our definition (4.2) of inner product. Notice that this is identical to (7.1)
before apart from the 1/w(x) factor, which we absorb into A for later convenience.

We restrict the diet of functions u(x) that this operator is allowed to eat. In particular, we impose the
condition that these u(x) can be
• any sufficiently smooth function drawn from L2

w(a, b) that
• satisfy a pair of homogeneous boundary conditions of the form

α11u(a) + α12u
′(a) + β11u(b) + β12u

′(b) = 0,

α21u(a) + α22u
′(a) + β21u(b) + β22u

′(b) = 0,
(7.6)

in which the constants (αij , βij) are chosen, by us, beforehand.

An example of such boundary conditions is the pair u(a) = u(b) and u′(a) = u′(b). Another is the pair
u(a) = u(b) = 0.

These boundary and differentiability constraints mean that our domain of allowed functions u(x) is a re-
strcited subset of L2

w(a, b). Nevertheless, these u(x) are dense in the space L2
w(a, b): even though L2

w(a, b)
contains piecewise continuous functions that A would choke on, we can always approximate such indigestible
functions to arbitrary accuracy by functions u(x) that satisfy the constraints above (see §4.2).
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7.3 The adjoint operator

Recall from §3.3 that the dual A† to an operator A is defined by requiring that 〈v,Au〉 = 〈A†v, u〉 for all
admissible choices of u(x) and v(x). Notice that A acts only on the function u, which we assume satisies
the homogeneous bcs (7.6). The adjoint A† acts only on v. For now let us keep an open mind about the bcs
satisfied the objects v that A† operates on.

Using the definition (4.2) of inner product, the condition 〈v,Au〉 = 〈A†v, u〉 becomes

∫ b

a

dx v?
[
c2

d2u

dx2
+ c1

du

dx
+ c0u

]
=

∫ b

a

dxw
[
A†v

]?
u. (7.7)

The LHS is a sum of three terms, two of which involve derivatives of u, whereas on the RHS u appears
as only a simple multiplicative factor in the integrand. Let us integrate the LHS by parts to remove the
derivatives of u. We have that∫ b

a

dx v?c2u
′′ = [v?c2u

′]
b
a −

∫ b

a

dx (v?c2)′u′

= [v?c2u
′]
b
a − [(v?c2)′u]ba +

∫ b

a

dx (v?c2)′′u,∫ b

a

dx v?c1u
′ = [v?c1u]ba −

∫ b

a

dx (v?c1)′u,

(7.8)

so that

LHS = [v?c2u
′ − (v?c2)′u+ v?c1u]

b
a +

∫ b

a

dxu [(c2v
?)′′ − (c1v

?)′ + c0v
?] . (7.9)

Comparing this to the RHS, we see that, provided we impose the condition that the boundary term vanish,
namely

[v?c2u
′ − (v?c2)′u+ v?c1u]

b
a = 0, (7.10)

then the adjoint A† is given by the linear differential operator

A†• =
1

w(x)

[
d2

dx2
(c2•)−

d

dx
(c1•) + c0•

]
=

1

w(x)

[
c2

d2

dx2
+ (2c′2 − c1)

d

dx
+ (c′′2 − c′1 + c0)

]
•,

(7.11)

The messy condition (7.10) sets the bcs that v(x) must satisfy: the pair of homogeneous bcs (7.6) on u(x)
mean that we can eliminate two of the four quantities u(a), u(b), u′(a) and u′(b) from the it. The coefficients
in front of the two remaining quantities will have the form

αi1v
?(a) + αi2v

′?(a) + βi1v
?(b) + βi2v

′?(b). (7.12)

for i = 3, 4. Setting these coefficients to zero gives two homogenenous BCs for the function v(x). The
resulting conditions are the adjoint boundary conditions. This is easier to see with a concrete example.

Example: Adjoint of the simplest possible linear differential operator

Take [a, b] = [0, 1] with weight function w(x) = 1. Consider the operator A = d
dx , so that c0 = c2 = 0, c1 = 1.

We restrict this A to functions u(x) that satisfy the bc u(1) = 0. Then equation (7.11) gives A† = − d
dx ,

while the boundary term (7.10) becomes v(1)u?(1)− v(0)u?(0) = 0. Therefore the adjoint bc is v(0) = 0.
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7.4 Hermitian operators

An operator A is Hermitian if (i) A = A† and (ii) A and A† admit the same functions. Comparing (7.5)
and (7.11) we see that A = A† if c1 = c′2 Setting c1 = c′2, the condition (7.10) becomes

[c2(v?u′ − (v?)′u)]ba = 0, (7.13)

which must also hold with u(x) and v(x) swapped. Both u(x) and v(x) should also satisfy the homogeneous
bcs (7.6), but we are free to choose those as we see fit. In contrast, the condition (7.10) is non-negotiable.

Putting this together, and, making one final rewrite of the operator A, we have the following.

The second-order differential operator

ASL• =
1

w(x)

[
d

dx

(
p(x)

d•
dx

)
+ q(x)•

]
, (7.14)

is Hermitian provided it is restricted to functions u(x), v(x) that satisfy the boundary condition[
v?p

du

dx

]b
a

= 0. (7.15)

Here p(x) and q(x) are smooth, real functions with p(x) 6= 0 for x ∈ (a, b).

The “SL” subscript stands for “Sturm–Liouville”, after the pair who in the 1830s worked out most the
theory of this kind of Hermitian operator. The simplified boundary condition (7.15) suffices to satisfy (7.13).

Exercise: Show that any differential operator

A = a2(x)
d2

dx2
+ a1(x)

d

dx
+ a0(x) (7.16)

can be written in Sturm–Liouville form (7.14) by choosing

p(x) = exp

[∫ x

a

a1(t)

a2(t)
dt

]
,

w(x) =
p(x)

a2(x)
=

1

a2(x)
exp

[∫ x

a

a1(t)

a2(t)
dt

]
,

q(x) = a0(x)w(x).

(7.17)

Therefore any operator of the form (7.1) can be taken to be Hermitian provided the boundary condi-
tions (7.15) are satisfied. The condition that the ci(x) are real with c2(x) > 0 ensures that w(x) > 0
for x ∈ (a, b). What must we do to ensure w(x) > 0 if c2(x) < 0 for x ∈ (a, b)?

7.5 Eigenfunctions

The eigenvalue equation,
ASLen(x) = λnen(x), (7.18)

in which ASL is given by (7.14) and the eigenfunctions are required to satisfy the SL boundary condi-
tions (7.15), is known as a Sturm–Liouville equation.

NB: Many books omit the 1/w(x) factor in the definition of the operators (7.5) and (7.14),
only to have the weight function reappear in the Sturm–Liouville equation, which becomes
ASLen = λnw(x)en(x).
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Some eigenproperties of ASL:
(i) The eigenvalues λn are real.
(ii) The eigenfunctions ei(x), ej(x) corresponding to different eigenvalues λi, λj are orthogonal:

〈ei|ej〉≡
∫ b

a

e?i (x)ej(x)w(x) dx = 0. (7.19)

(iii) The eigenfunctions are a complete set (basis): any function f ∈ L2
w(a, b) can be expressed as the

generalised Fourier series

f(x) =
∑
i

aiei(x),

with ai =〈ei|f〉=
∫ b

a

e?i (x)f(x)w(x) dx,

(7.20)

assuming the eigenfunctions ei(x) have been normalised so that 〈ei|ei〉= 1. If the weight of tradition
means that 〈ei|ei〉 6= 1, we need to divide the RHS of the expression for ai in (7.20) by 〈ei|ei〉.

By construction ASL satisfies the condition 〈u|ASL |v〉=〈v|ASL |u〉?, which means that the proofs of (i) and
(ii) are identical to the corresponding proofs for finite-dimensional Hermitian operators in §3.11. The proof
of (iii) is far too intricate for us, but you should remember the result and be prepared to invoke it fearlessly.

An aside: The analysis of the properties of the eigenfunctions of ASL is made easier if some additional conditions are
imposed, namely:

(i) the interval [a, b] is finite;
(ii) neither p(x) nor w(x) vanish at x = a or x = b;

(iii) the bcs are of the restricted form

α0u(a) + α1u
′(a) = 0,

β0u(b) + β1u
′(b) = 0,

(7.21)

where at least one of α0 and α1 is nonzero and similarly for β0 and β1.

If these conditions are imposed then the SL problem is said to be regular. Eigenfunctions of regular SL problems can
be shown to have lots of nice properties, such as:

(iv) there is only one LI eigenfunction for each eigenvalue: the eigenvalues are singly degenerate.
(v) there is an infinite number of eigenvalues, which, if arranged in order λj < λj+1, have λj →∞ as j →∞ (that

is, only a finite number of λj are negative).

(vi) the jth eigenfunction has exactly j zeros on [a, b].

Many of these properties happen to be shared by eigenfunctions of particular SL problems that aren’t regular.

7.6 Examples

Fourier series A simple but important example of a Sturm–Liouville equation is

d2en
dx2

= λnen. (7.22)

Let us take the domain of the en(x) to be [a, b] = [−π, π] and impose the pair of boundary conditions
en(−π) = en(π), e′n(−π) = e′n(π). Then the SL condition (7.15) becomes[

e?m
den
dx

]π
−π

= 0, (7.23)

which is satisfied automatically. The d2/dx2 operator on the LHS is can be written as the ASL of (7.14) with
p(x) = w(x) = 1 and q(x) = 0. There are two LI solutions to (7.22) for any choice of λn: e+

n (x) =
exp(i

√
−λnx) and e−n (x) = exp(−i

√
−λnx). To satisfy the boundary conditions en(−π) = en(π) and
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e′n(−π) = e′n(π) we require that sin(
√
−λnπ) = 0, which restricts the eigenvalues for both e+

n (x) and
e−n (x) to λn = −n2, where n = 0, 1, 2, 3, .... This is a generic feature of SL problems:

boundary conditions⇒ quantization of eigenvalues.

The full set of eigenfunctions is then e+
0 (x) = e−0 (x) = 1, e+

1 (x) = eix, e+
2 (x) = e2ix, ..., plus e−1 (x) = e−ix,

e−2 (x) = e−2ix, ...., which we can normalise and combine into the single set

ek(x) =
1√
2π

eikx, k = 0,±1,±2, ..., (7.24)

that we encountered in §4.4. We have already seen that these eigenfunctions are orthogonal and complete.

Legendre’s differential equation Solving Laplace’s equation ∇2V = 0 in spherical polar coordinates
for axisymmetric systems (∂φ = 0) by substituting V (r, θ) = R(r)Θ(θ) and separating variables leads to the
following equation for Θ(θ):

1

sin θ

d

dθ

[
sin θ

d

dθ

]
Θ = λΘ, (7.25)

where λ is a separation constant. Substituting x = cos θ, this becomes[
d

dx

(
(1− x2)

d

dx

)]
Θ = λΘ, (7.26)

which is known as Legendre’s differential equation. It is a Sturm–Liouville equation (7.18),

ASLΘl = λlΘl, (7.27)

with w(x) = 1, p(x) = 1 − x2 and q(x) = 0 in ASL (equation 7.14). The natural limits on x = cos θ are
a = −1 and b = 1. Notice then that p(−1) = p(1) = 0 and so the boundary condition (7.15) is naturally
satisified for any Θ(x). The eigenfunctions of this ASL are Legendre polynomials, Θl(x) = Pl(x) with
corresponding eigenvalues λl = −l(l + 1), where l = 0, 1, 2, ... Section §8.1 explains how to explain explicit
expressions for Pl(x) and why the eigenvalues have the form λl = −l(l + 1).

The table below lists some common examples of Sturm–Liouville equations. Notice that in most cases
p(a) = p(b) = 0, which means that the boundary condition (7.15) is automatically satisfied.

name equation p(x) q(x) w(x) a, b λn en(x)

Fourier u′′ = λu 1 0 1 −π, π −n2 e±inx

Legendre (1− x2)u′′ − 2xu′ = λu 1− x2 0 1 −1, 1 −n(n+ 1) Pn(x)

Assoc. Legendre (1− x2)u′′ − 2xu′ − m2

1−x2u = λu 1− x2 − m2

1−x2 1 −1, 1 −n(n+ 1) Pmn (x)

Laguerre xu′′ + (1− x)u′ = λu xe−x 0 e−x 0,∞ −n Ln(x)

Hermite u′′ − 2xu′ = λu e−x
2

0 e−x
2 −∞,∞ −2n Hn(x)

Bessel x2u′′ + xu′ + (x2 − ν2)u = 0 x −ν
2

x x (Bessel’s special) Jν(x)

Table: Some examples of ODEs in Sturm–Liouville (7.14) form, along with their eigenvalues λn and
eigenfunctions en(x), where n = 0, 1, 2, .... Explicit expressions for many of the eigenfunctions listed here
are obtained in the next section. Bessel’s equation is peculiar – see §8.4.
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7.7 Construction of eigenfunctions

In the next section we explain how to find explicit expressions for the eigenvalues and eigenfunctions of
specific Sturm–Liouville equations by using the following methods.

(i) Series solution is the most direct method. Substituting en(x + a) = xσ
∑∞
k=0 ck(x + a)k into

the Sturm–Liouville equation and equating powers of x leads a recurrence relation for the series
coefficients ck. The series converges only for certain values of λ. This gives the spectrum of eigenvalues
λn and the associated eigenvectors en(x).

(ii) Rodrigues’ formula works in some special cases. In particular, if (i) q(x) = 0 and (ii) s(x) ≡
p(x)/w(x) is a quadratic (at most) polynomial with real roots, then the eigenfunctions are given by

un(x) ∝ 1

Knw(x)

dn

dxn
[wsn] , (7.28)

provided u1 ∝ x and w(a)s(a) = w(b)s(b) = 0. The Kn are normalisation constants. Each such un(x)
is an nth-order polynomial that satisfies the Sturm–Liouville equation (7.18) with eigenvalue

λn = n

[
1

2
(n− 1)s′′ +K1u

′
1

]
(7.29)

for n = 0, 1, 2, . . .. See DK III§10.2 for more on this method.
(iii) Generating functions are by far the most powerful method, but are much less direct. For example,

Legendre polynomials can be defined by the function

G(x, t) =
1√

1− 2xt+ t2
=

∞∑
l=0

Pl(x)tl, (7.30)

in which each Pl(x) is defined to be the coefficient of tl in the Taylor-series expansion of (1 − 2xt +
t2)−1/2. Legendre’s differential equation can actually be derived from this G(x, t), as can various
useful recurrence relations among the Pl.

A proper understanding how methods (ii) and (iii) work requires familiarity with the material in the S1:
Functions of a complex variable short option course and more. You don’t need to acquire this, but you
should be familiar with the most basic properties of the eigenfunctions in the next section. You should also
have at least a vague awareness that, just as sines and cosines satisfy various trigonometric identities, there
are are similar relations among the eigenfunctions of other differential operators.
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8 Example Sturm–Liouville problems

This section explains how to derive explicit expressions for the eigenfunctions and eigenvalues of some of
the more frequently encountered Sturm–Liouville equations (7.18). You need only be able to identify the
particular ODEs involved and be broadly familiar with the properties of the solutions and how they are
obtained.

The methods presented here can easily be applied to other Sturm–Liouville problems.

8.1 Legendre’s differential equation

Legendre’s differential equation is
(1− x2)u′′ − 2xu′ = λu. (8.1)

This is a Sturm–Liouville equation with p(x) = 1 − x2, q(x) = 0 and w(x) = 1. The boundaries on x are
a = −1, b = 1. It is a special case of the associated Legendre equation to be discussed later.

Series solution Let us look for solutions of the form

u(x) =

∞∑
k=0

akx
k, (8.2)

where the coefficients ai depend on the choice of the eigenvalue λ in (8.1). Substituting the series (8.2) into
the differential equation (8.1) gives

(1− x2)

∞∑
k=2

k(k − 1)akx
k−2 − 2

∞∑
k=0

kakx
k = λ

∞∑
k=0

akx
k. (8.3)

Changing the index label of the first sum from k to j = k − 2, this becomes

∞∑
j=0

(j + 2)(j + 1)aj+2x
j −

∞∑
k=0

k(k − 1)akx
k − 2

∞∑
k=0

kakx
k = λ

∞∑
k=0

akx
k, (8.4)

in which all terms involve x raised to the power of some summation index. Notice too that all four sums
have the same limits (0 and ∞) on their index. Rewriting all four sums so that they use a common label (k)
for their index and gathering together into a single sum, we have that

∞∑
k=0

{(k + 2)(k + 1)ak+2 − [k(k + 1) + λ]ak}︸ ︷︷ ︸
0

xk = 0. (8.5)

The quantity in curly brackets here must be zero because the xk are LI. So, we have derived a recurrence
relation,

ak+2 =
k(k + 1) + λ

(k + 2)(k + 1)
ak, (8.6)

for the coefficients of the series solution (8.2). Notice that ak+2/ak → 1 as k → ∞, which means that the
series will in general diverge as x→ ±1. The only way of avoiding this is if the series terminates: there must
be some value of k for which the coefficient

k(k + 1) + λ

(k + 2)(k + 1)
= 0, (8.7)

so that ak+2 = ak+4 = · · · = 0. This means that the eigenvalues λ must be of the form λl = −l(l+ 1), where
l = 0 or 1 or 2 or 3 or ....
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If we choose l to be an even (odd) number, then all of the odd- (even-)numbered ak must be zero to avoid
a divergent series. Therefore, if l is even (odd) the eigenfunctions are even (odd) functions of x. The most
natural starting point for the recurrence relation is (a0, a1) = (1, 0) if l is even, or (a0, a1) = (0, 1) if l is odd.
The first few ul(x) constructed in this way are

u0(x) = 1, u1(x) = x, u2(x) = −3x2 + 1, u3(x) = −5

3
x3 + x. (8.8)

If we normalise these ul(x) so that ul(1) = 1 we obtain the first few Legendre polynomials,

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x). (8.9)

Note that this weighty historical convention that Pl(1) = 1 means that the Pl(x) are not orthonormal.
Instead they satsify the orthogonality relation

〈Pl|Pm〉≡
∫ 1

−1

P ?l (x)Pm(x) dx =
2

2l + 1
δlm. (8.10)

The Pl(x) are a basis for the space L2
1(−1, 1) because they are eigenfunctions of a Sturm–Liouville opera-

tor (7.14) that has a = −1, b = 1 and w(x) = 1. Therefore we can express any well-behaved f : [−1, 1]→ C
as a Fourier–Legendre series,

f(x) =

∞∑
l=0

alPl(x) (8.11)

with coefficients

al =
2l + 1

2

∫ 1

−1

Pl(x)?f(x) dx. (8.12)

[The ? in the integrands of (8.12) and (8.10) is redundant because the Pl are real, but I leave it in to remind
you that all this is making use of the inner product (4.2) that appears in the generalised Fourier series (4.8).]
We have already encountered this series in §4.3, when we used the Gram–Schmidt procedure to construct
an orthonormal basis for this space starting from the list of monomials 1, x, x2.... The en(x) we constructed
there happen to be normalised Legendre polynomials.

Rodrigues’ formula Legendre’s differential equation satisfies the conditions for Rodrigues’ formula
(equation 7.28) to apply: q(x) = 0; s(x) = p(x)/w(x) = 1 − x2 is quadratic with real roots and with
s(−1) = s(1) = 0; the first P1(x) ∝ x. Substituting this s(x) and w(x) = 1 into equation (7.28) we obtain
Rodrigues’ formula for the Pl(x),

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l, (8.13)

which satisfies Legendre’s differential equation (8.1) with eigenvalue λl = −l(l + 1). The prefactor in this
expression is chosen to maintain the convention that Pl(1) = 1.

Generating function Finally, we note that Pl(x) can be defined in terms of the generating function

G(x, t) =
1

(1− 2xt+ t2)1/2
=

∞∑
l=0

Pl(x)tl. (8.14)

Carrying out a Taylor expansion, we have that[
1− 2xt+ t2

]−1/2
= 1− 1

2

(
−2xt+ t2

)
+

1

2!

1

2

3

2

(
−2xt+ t2

)2 − 1

3!

1

2

3

2

5

2

(
−2xt+ t2

)3
+ ...

= t0 + xt1 +
1

2
(3x2 − 1)t2 +

1

2
(5x3 − 3x)t3 + ...,

(8.15)

in agreement with the first few Pl(x) found above in (8.9). The innocent-looking expression (8.14) also
encodes Legendre’s differential equation, the normalisation properties of the Pl(x), recurrence relations and
much more. See homework for some examples.
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8.2 Associated Legendre equation

The associated Legendre equation,

(1− x2)
d2u

dx2
− 2x

du

dx
− m2

1− x2
u = λu, (8.16)

appears when using separation of variables to solve equations that involve the Laplacian ∇2 in spherical
polar coordinates (r, θ, φ). The variable x = cos θ, so that the natural boundaries are a = −1, b = 1. The
equation is an example of a Sturm–Liouville problem with p(x) = 1−x2, q(x) = −m2/(1−x2) and w(x) = 1.
Legendre’s differential equation corresponds to the special case m = 0.

The eigenfunctions that satisfy (8.16) are the associated Legendre functions,

Pml (x) ≡ (1− x2)m/2
dm

dxm
Pl(x), (m ≥ 0). (8.17)

The eigenvalue corresponding to the eigenfunction Pml (x) is λl = −l(l + 1), where l = 0, 1, 2, ....

One way of showing this is by differentiating Legendre’s equation (8.1),

(1− x2)P ′′l − 2xP ′l = −l(l + 1)Pl, (8.18)

m times to obtain
(1− x2)u′′ − 2x(m+ 1)u′ −m(m+ 1)u = −l(l + 1)u, (8.19)

where we have introduced

u(x) ≡
dm

dxm
Pl(x). (8.20)

If we now rewrite (8.19) in terms of

v(x) = (1− x2)m/2u(x), (8.21)

the result, after much manipulation, is

(1− x2)v′′ − 2xv′ −
m2

1− x2
v = −l(l + 1)v, (8.22)

which is the associated Legendre equation (8.16). This proves the statement around equation (8.17).

We have so far assumed that m ≥ 0. Using Rodrigues’ formula (8.13) for Pl(x) in (8.17), we have that

Pml (x) =
1

2ll!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l, (8.23)

which is used to define Pml (x) for both positive and negative m. Clearly Pml (x) = 0 unless |m| ≤ l.
Exercise: By applying Leibnitz’ formula to (x+ 1)l(x− 1)l, show that

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pml (x). (8.24)

These Pml (x) are used in the definition of spherical harmonics, which are a natural basis for two-
dimensional functions f(θ, φ) defined on the surface of a sphere (see §12.4 later). For reference, we note
here that the associated Legendre functions satisfy the orthogonality relation∫ 1

−1

Pmk (x)Pml (x) dx =
2

2l + 1

(l +m)!

(l −m)!
δkl. (8.25)
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8.3 Hermite’s differential equation

Hermite’s differential equation,
u′′ − 2xu′ = λu, (8.26)

can be reexpressed in Sturm–Liouville form by using equation (7.17) to rewrite it as

ex
2 d

dx

[
e−x

2 du

dx

]
= λu, (8.27)

in which w(x) = p(x) = exp(−x2) and q(x) = 0. The natural limits to choose in order to make p(a) = p(b) = 0
so that the boundary conditions (7.15) hold are a→ −∞, b→∞.

Series solution Let us find the eigenfunctions and eigenvalues of Hermite’s differential equation by
determining the coefficients of the series solution u(x) =

∑∞
n=0 anx

n that satisfies (8.26). Substituting this
into (8.26), we have

∞∑
n=2

n(n− 1)anx
n−2 − 2

∞∑
n=1

nanx
n − λ

∞∑
n=0

anx
n = 0. (8.28)

Introduce a new label k = n + 2 in the first sum, and replace the index n by k in the second and third
sums. Notice that we can safely change the lower limit of the second sum from k = 1 to k = 0. Then
equation (8.28) becomes

∞∑
k=0

(k + 2)(k + 1)ak+2x
k − 2

∞∑
k=0

kakx
k − λ

∞∑
k=0

akx
k = 0, (8.29)

or, when written in terms of a single sum,

∞∑
k=0

{(k + 2)(k + 1)ak+2 − 2kak − λak}xk = 0. (8.30)

The quantity in curly brackets must be zero because the xk are LI. Therefore the recurrence relation for the
coefficients ak is

ak+2 =
2k + λ

(k + 2)(k + 1)
ak. (8.31)

Recall from (4.1) that we require that
∫∞
−∞ e−x

2 |u(x)|2 dx be finite. If the recurrence relation (8.31) does not

terminate then it is easy to show that for large x the resulting series u(x) =
∑
k akx

k increases faster than
exp(+x2/2): the Maclaurin expansion of the latter has ak+2/ak = 1/(k+2). So, the recurrence relation (8.31)
must terminate if the integral (4.1) is to converge. That means that λ is restricted to values λn = −2n,
where n = 0, 1, 2, .... By the same argument used earlier for Legendre polynomials, the eigenfunctions are
polynomials involving even (odd) powers of x if n is even (odd). Starting from either (a0, a1) = (1, 0) (even
n) or (a0, a1) = (0, 1) (odd n), the recurrence relation gives the first few eigenfunctions un(x) as

u0(x) = 1, u1(x) = x, u2(x) = −2x2 + 1, u3(x) = −2

3
x3 + x. (8.32)

If we wanted to, we could normalise these un(x) and anoint them as our “standard” eigenfunctions for Her-
mite’s differential equation. Choosing this normalisation would mean throwing away centuries of accumulated
wisdom, however.

Generating function Instead, let us follow tradition and introduce the generating function

G(x, t) = ex
2

e−(t−x)2 =

∞∑
n=0

Hn(x)
tn

n!
, (8.33)
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which defines the Hermite polynomials Hn(x). The factor of 1/n! is included to make the Hn satisfy the
orthogonality relation

〈Hm|Hn〉=
∫ ∞
−∞

e−x
2

H?
m(x)Hn(x) dx = 2nπ1/2n! δmn. (8.34)

The fact that the Hn(x) are eigenfunctions of (8.26) with eigenvalue λ = −2n is encoded in the generating
function (8.33), as are various recurrence relations among the Hn(x). For reference, the first few Hn(x)
extracted by expanding the generating function as a power series in t are

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12, (8.35)

in agreement (apart from normalisation) with the results (8.32) obtained from the recurrence relation.

Rodrigues’ formula Another way of defining Hermite polynomials is by the Rodrigues’ formula

Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)
. (8.36)

Exercise: Show that (8.36) follows from the generating function (8.33) by differentiating G(x, t) n
times with respect to t and then setting t = 0.

The completeness property of Hermite polynomials means that they are a basis for the space of functions
defined on the real line with weight function e−x

2

. Any well-behaved function f : R → C can be expressed
as the generalised Fourier series

f(x) =

∞∑
n=0

anHn(x), (8.37)

where the coefficients

an =
1

2n
√
πn!

∫ ∞
−∞

H?
n(x)f(x)e−x

2

dx, (8.38)

the prefactor coming from the orthogonality relation (8.34). The ? in the integrand here is redundant, but
is left in as a reminder that equations (8.37) and (8.38) are simply special cases of equation (4.8).

8.4 Bessel’s equation

Bessel’s equation,

x2u′′ + xu′ + (x2 − ν2)u = 0, (8.39)

often appears in problems involving cylindrical polar coordinates (R,φ, z), with the variable x being some
multiple of the radius R and the constant ν set by the details of the problem. Equation (8.39) can be
squeezed into Sturm–Liouville form by introducing a new independent variable x̄ = x/λ, in which case it
can be written as

1

x̄

[
d

dx̄

(
x̄

d

dx̄

)
− ν2

x̄

]
u = −λ2u, (8.40)

so that w(x̄) = x̄, p(x̄) = x̄, q(x̄) = −ν2/x̄ and the definition of the independent variable x̄ = x/λ depends
on the eigenvalue −λ2. Unlike the other examples in this section, the boundary conditions in applications
of Bessel’s equation normally depend on the details of the problem (see §13 later for an example).

Series solution For simplicity we consider only the case where ν = m ≥ 0, a non-negative integer.
Substituting u(x) =

∑∞
n=0 anx

n into (8.39) gives

∞∑
n=2

n(n− 1)anx
n +

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n+2 −m2

∞∑
n=0

anx
n = 0. (8.41)
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Writing k = n in the first, second and fourth sums and k = n+ 2 in the third, this becomes

∞∑
k=2

k(k − 1)akx
k +

∞∑
k=1

kakx
k +

∞∑
k=2

ak−2x
k −m2

∞∑
k=0

akx
k = 0, (8.42)

which, gathering together powers of xk, is

−m2a0 + (1−m2)a1x+

∞∑
k=2

{
(k2 −m2)ak + ak−2

}
xk. (8.43)

As the xk are LI, we immediately have the reccurence relation

ak = − ak−2

k2 −m2
, (8.44)

which relates the even coefficients to one another and the odd coefficients to one another. Clearly, if m = 0
then a1 = 0, all odd coefficients ak vanish and we may choose a0 6= 0 to start the recurrence. If m = 1, then
a0 = 0, all even coefficients vanish and we may start with a1 6= 0. More generally, given m ≥ 0 we need to
set a0 = · · · = am−1 = 0 and can then choose am 6= 0 to start. The conventional choice is am = 1/(2mm!).
The resulting eigenfunctions are the (integer-order) Bessel functions,

Jm(x) =

∞∑
n=0

(−1)n

n!(m+ n)!

(x
2

)m+2n

. (8.45)

Generating function More generally, Bessel functions of integer order can be defined through

G(x, t) = exp

[
1

2
x

(
t− 1

t

)]
=

∞∑
n=−∞

Jn(x)tn. (8.46)

Further reading

Almost any book with “mathematical methods” and “physics” in its title will cover the topics we have
merely skimmed over in this section. See, for example, RHB§18. Arfken & Weber’s Mathematical Methods
for Physicists provides good overviews of how the various methods used to define special functions (differential
equation, generating functions, Rodrigues and more) are related to one another.

The Sturm–Liouville equation is a second-order ODE, which of course has two LI solutions. Here we have
focused on finding the “well-behaved” solutions that satisfy certain boundary conditions. (We did not
explicitly state our assumptions about the boundary conditions for the solution to Bessel’s equation, but the
form of the series we assumed was an implicit boundary condition.) The books mentioned above give more
details on how to find the second, LI solutions that are less well behaved, but sometimes useful.
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9 Inhomogeneous ODEs: Green’s functions

Suppose that we want to solve the inhomogenous differential equation

Axu(x) = f(x), (9.1)

where Ax is a second-order linear differential operator of the form ASL from equation (7.14) and the subscript
x merely emphasises we’re going to consider it doing its thing to functions of x. We impose the condition
that the solution u(x) ∈ L2

w(a, b) should satisfy the pair of homogeneous boundary conditions (7.6).

If we can find a function G(x, y) for which

AxG(x, y) =
1

w(x)
δ(x− y) (9.2)

that satisfies these boundary conditions, then we would have that

Ax

[∫ b

a

G(x, y)f(y)w(y)dy

]
=

∫ b

a

AxG(x, y)f(y)w(y)dy

=

∫ b

a

1

w(x)
δ(x− y)f(y)w(y)dy = f(x).

(9.3)

That is, the solution to (9.1) would be simply

u(x) =

∫ b

a

G(x, y)f(y)w(y)dy. (9.4)

The function G(x, y) that satisfies (9.2) and the appropriate boundary conditions is the Green’s function
for the problem. In terms of this G(x, y), the “inverse” of Ax, assuming the given boundary conditions, is
therefore the operator

A−1
x • =

∫ b

a

dy w(y)G(x, y) • . (9.5)

9.1 Properties of Green’s functions

Here are the most important properties satisfied by Green’s functions G(x, y):
(0) Boundary conditions matter! G(x, y) depends on both the operator Ax and on the choice made for

the pair of boundary conditions (7.6).
(1) As we are considering Hermitian operators Ax, then 〈G(x, y), AxG(x, y′)〉 = 〈G(x, y′), AxG(x, y)〉?.

Writing out both sides as integrals and using the definition (9.2) results in G?(y′, y) = G(y, y′). That
is,

G(y, x) = G?(x, y). (9.6)

(2) AxG(x, y) = 0, except at x = y.
(2) G(x, y) must be a continuous function of x,
(3) but its first derivative with respect to x is discontinuous at x = y: substituting the form (7.14) for

ASL into (9.2) and integrating from x = y− ε to x = y+ ε, then taking the limit ε→ 0, we have that

∂G(x, y)

∂x

∣∣∣∣
x=y+ε

− ∂G(x, y)

∂x

∣∣∣∣
x=y−ε

=
1

p(y)
. (9.7)

Let en(x) be the nth normalised eigenfunction of Ax, with corresponding eigenvalue λn. Since these en(x) are
complete, we can expand G(x, y) for fixed y as G(x, y) =

∑
n an(y)en(x). Substituting this G(x, y) into (9.2)

and taking the inner product with em(x), we find that am(y)λm = e?m(y). That is,

G(x, y) =
∑
n

en(x)e?n(y)

λn
. (9.8)
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9.2 Examples of constructing Green’s functions

Having established these properties, the procedure for constructing G(x, y) is straightforward, at least in
principle:

(1) Ignoring the boundary conditions, find two LI solutions u1(x) and u2(x) to the homogeneous equation
Axui(x) = 0.

(2) Treating y as a constant, G(x, y) must be one linear combination of u1(x) and u2(x) when x < y, and
another when x > y. So, write

G(x, y) =

{
B1(y)u1(x) +B2(y)u2(x), when x < y,
C1(y)u1(x) + C2(y)u2(x), when x > y.

(9.9)

(3) The boundary conditions on G(x, y) give two equations among the four unknown functions Bi(y) and
Ci(y). Continuity of G and the discontinuity of its first derivative provide another two. Solve to find
Bi and Ci.

Forced harmonic oscillator The displacement x(t) of the oscillator is described by the ODE

ẍ+ x = f(t), (9.10)

where f(t) is the forcing. Find an expression for x(t) in terms of f(t) given that x(0) = ẋ(0) = 0.

We have At = d2

dt2 + 1, which is of the form ASL with p(x) = q(x) = w(x) = 1. The solutions to the
homogeneous equation Atx = 0 are x = cos t and x = sin t. Superposing these on either side of t = t′,

G(t, t′) =

{
A(t′) cos t+B(t′) sin t, if t < t′

C(t′) cos t+D(t′) sin t, if t > t′.
(9.11)

The boundary condition G(0, t′) = Ġ(0, t′) = 0 means that A = B = 0. So,

G(t, t′) =

{
0, if t < t′

C(t′) cos t+D(t′) sin t, if t > t′.
(9.12)

At t = t′ the continuity of G and discontinuity of Ġ require that

C(t) cos t+D(t) sin t = 0,

−C(t) sin t+D(t) cos t = 1,
(9.13)

respectively. So, C(t′) = − sin t′ and D(t′) = cos t′. Then Green’s function is, finally,

G(t, t′) =

{
0, if t < t′

− sin t′ cos t+ cos t′ sin t = sin(t− t′), if t > t′,
(9.14)

and the solution to (9.10) subject to the initial conditions x(0) = ẋ(0) = 0 is

x(t) =

∫ t

0

dt′ sin(t− t′)f(t′). (9.15)

Spherical charge distribution The potential V (r) due to a spherical distribution of charge ρ(r) satisfies
Poisson’s equation,

1

r2

d

dr

(
r2 dV

dr

)
= − 1

ε0
ρ(r). (9.16)

Find V (r) subject to the condition that dV/dr → 0 as r → 0 and V → 0 as r →∞.
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This Ar is of Sturm–Liouville form with w(r) = p(r) = r2 and q(r) = 0. The two LI solutions to the
homogeneous equation ArV = 0 are V (r) = 1 and V (r) = 1/r. Superposing,

G(r, r′) =

{
B+(r′) + C+(r′)/r, if r < r′,
B−(r′) + C−(r′)/r, if r > r′.

(9.17)

The boundary conditions imply that B− = C+ = 0, so

G(r, r′) =

{
B(r′), if r < r′,
C(r′)/r, if r > r′.

(9.18)

Continuity of G(r, r′) at r = r′ requires that B(r) = C(r)/r, while the discontinuity of ∂G/∂r there
requires −C(r)/r2 = 1/p(r) = 1/r2. So, C(r′) = −1, B(r′) = −1/r′ and the Green’s function is

G(r, r′) = −
{

1/r′, if r < r′,
1/r, if r > r′.

(9.19)

Using (15.4) and remembering that w(r′) = r′2, the potential satisfying these boundary conditions is
therefore

V (r) = 1
ε0

[
1

r

∫ r

0

ρ(r′)r′2 dr′ +

∫ ∞
r

ρ(r′)r′ dr′
]
. (9.20)



Maths Methods Week 4–: PDEs

http://www-thphys.physics.ox.ac.uk/people/JohnMagorrian/mm

john.magorrian@physics.ox.ac.uk

10 PDEs: introduction

Most undergraduate physics problems boil down to solving differential equations, often partial differential
equations. For example, Laplace’s equation,

∇2ψ = 0, (10.1)

occurs in electrostatics, steady-state hydrodynamics and heat flow. The time-dependent diffusion equation,

∂ψ

∂t
= ∇ · (D∇ψ), (10.2)

occurs in problems involving heat flow, nuclear reactions, approximations of random walks, among others.
In many problems the diffusion coefficient D(ψ, r) is constant and (10.2) becomes the heat equation

∂ψ

∂t
= D∇2ψ. (10.3)

Using separation of variables ψ(r, t) = φ(r)T (t) in the familiar wave equation,

c2∇2ψ − ∂2ψ

∂t2
= 0, (10.4)

leads to one sign choice in the Helmholtz equation,

∇2φ± k2φ = 0. (10.5)

Finally, Schrödinger’s equation,

− ~2

2m
∇2ψ + V (r)ψ = i~

∂ψ

∂t
, (10.6)

is familiar from quantum mechanics.

These equations are all linear, second-order homogenous PDEs: they can all be written in the form

D̂ψ = 0, (10.7)

where D̂ is a linear second-order differential operator in (x, t). Linear homogenous equations have the
convenient property that we can superpose solutions: if ψ1(x, t) and ψ2(x, t) are two solutions, then so too
is α1ψ1 + α2ψ2.

The next few sections will give some examples that illustrate how to solve such PDEs in practice. The
general procedure is:

(0) Identify the boundary conditions (physics);
(0’) Decide on a suitable coordinate system for the problem;
(1) Obtain the general solution for the PDE to be solved;
(2) Find the specific solution that satisfies the boundary conditions.

In these lectures we ignore steps (0) and (0’) and concentrate on steps (1) and (2).

Equations of the form D̂ = g in which g 6= 0 are inhomogenous. An example of an inhomogenous equation
is Poisson’s equation, ∇2ψ = −ρ/ε0. Such equations can be solved using the method of Green’s functions
for PDEs (§15 below).

http://www-thphys.physics.ox.ac.uk/people/JohnMagorrian/mm/
mailto:john.magorrian@physics.ox.ac.uk
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11 The method of characteristics for PDEs?

Before going on to the detailed examples, note that there are many important PDEs that are not second-order
linear equations. For example, the continuity equation,

∂ρ

∂t
+∇ · (ρu) = 0, (11.1)

is a linear first-order equation if we happen to know u(r, t), but nonlinear if neither ρ nor u are known. The
momentum equation

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p− ρ∇Φ, (11.2)

is an obviously non-linear first-order inhomogenous PDE for u(r, t). We can gain insight into such first-order
equations by examining their characteristic curves. The method of characteristics is extremely important
in understanding the mechanics of fluids. It also offers a way of classifying second-order linear PDEs, with
implications for the type of boundary conditions needed to specify the solution uniquely.

11.1 Characteristics for first-order quasilinear PDEs

Consider the first-order inhomogeneous quasilinear PDE for u(t, x),

a(t, x, u)
∂u

∂t
+ b(t, x, u)

∂u

∂x
= g(t, x, u). (11.3)

This is linear in the derivatives of u, but not necessarily in u itself. There is a simple geometrical way of
looking at this equation. Introduce rectilinear coordinates (t, x, u) and consider surfaces of constant

f(t, x, u) ≡ U(t, x)− u. (11.4)

In this space the vector
n ≡ ∇f = (∂tf, ∂xf, ∂uf) = (∂tU, ∂xU,−1) (11.5)

is perpendicular to such surfaces. The PDE (11.3) can be written as c · n = 0, where c = (a, b, g), and its
solution as u = U(t, x), which corresponds to the surface f = 0. We can remain on this solution surface by
making a displacement ds = (dt, dx,du) that is parallel to c: the components (dt, dx, du) should then vary
together as

dt

a
=

dx

b
=

du

g
. (11.6)

This ODE is known as the characteristic equation for the PDE (11.3). Integrating it yields the char-
acteristic curves (or simply the characteristics) for the PDE. By starting at, say t = 0, with different
values of x, we can follow the characteristic curves to (attempt to) build up the full solution u(t, x) from the
initial values u(t = 0, x).

Example: The function u(x, y) satisfies the PDE

y
∂u

∂x
− x∂u

∂y
= 0. (11.7)

Find u(x, y) subject to the boundary condition u(x, 0) = sin(πx/a) for 0 < x < a.

The characteristic equation is
dx

y
= −dy

x
=

du

0
. (11.8)

? Bonus material
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This says that u is constant along the curve xdx = −ydy, which integrates to x2 + y2 = c2, where c is a
constant. Following these characteristic curves starting from the given u(x, 0) = sin(πx/a), the solution
is therefore u(x, y) = sin(πr/a) for r2 ≡ x2 + y2 < a2. Outside that circle the solution is undetermined,
as no boundary conditions have been given there.

Example: One dimensional pressureless fluid in gravitational field Euler’s equation for the
velocity u(t, x) of a one-dimensional, pressureless fluid in a gravitational field g is

∂u

∂t
+ u

∂u

∂x
= g. (11.9)

The characteristic equation is

dt =
dx

u
=

du

g
, (11.10)

which tells us that along the trajectory dx
dt = u the velocity u varies as du

dt = g. For simplicity, let us remove
the gravitational field by setting g = 0. Then the general solution is given implicitly by u(t, x) = f(x− ut),
where f is an arbitrary function of one variable. If our initial conditions (the function u = f(x), evaluated
at t = 0), result in characteristic curves that cross (meaning u(t, x) becomes multivalued) then we have
a shock, signifying that the PDE (11.9) is inadequate and we need to return to examine the physics of
the system. Nevertheless, the characteristic equations (11.10) are key in understanding how information
propagates away from the shock.

Exercise: Sketch the characteristic curves for the contrived initial condition u(t = 0, x) = − sinx.
Show that they cross at t = π

2 .

11.2 Classification of second-order PDEs

The same idea can be generalised to the case of n coupled first-order PDEs for n functions uk(x, y), k =
1, ..., n. Consider the n equations (i = 1, ..., n)

n∑
k=1

[
Xik

∂uk
∂x

+ Yik
∂uk
∂y

]
= Hi, (11.11)

in which Xik, Yik and Hik are functions of x, y, the uk and their first derivatives. We can’t hope to make the
contents of each square bracket above vanish individually; the best we can do is to extract n independent
coupled ODEs for the n functions uk. To try to find such coupled ODEs, let’s look for linear combinations
of the equations (11.11) in which the LHS turns into a sum of total derivatives,

duk =
∂uk
∂x

dx+
∂uk
∂y

dy, (11.12)

of the uk. That is, we want to be able to find dsi for which

n∑
i=1

dsiXik = Lkdx and

n∑
i=1

dsiYik = Lkdy (11.13)

simultaneously for some Lk. Then, multiplying (11.11) by dsi and summing over i, we’d have

n∑
k=1

Lkduk =

n∑
i=1

Hidsi. (11.14)

If we could find n independent such equations (i.e., n independent choices of dsi and corresponding Lk) then
we’d have n simultaneous ODEs for the n functions uk. From (11.13) the condition for this is that there be
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n independent solutions dsi to the equation
∑
i dsi(Xikdy−Yikdx) = 0. A necessary and sufficient condition

for this to be true is that
det(Xikdy − Yikdx) = 0. (11.15)

With this in hand, we can now turn to using the method of characteristics to examine the second-order PDE

A
∂2Φ

∂x2
+ 2B

∂2Φ

∂x∂y
+ C

∂2Φ

∂y2
= D (11.16)

for the function Φ(x, y) in which A, B, C are functions of (x, y) and D may depend on ∂Φ/∂x and ∂Φ∂y as
well. Writing

u1 =
∂Φ

∂x
, u2 =

∂Φ

∂y
, (11.17)

this reduces to the coupled first-order PDEs

∂u2

∂x
− ∂u1

∂y
= 0, A

∂u1

∂x
+B

(
∂u1

∂y
+
∂u2

∂x

)
+ C

∂u2

∂y
= D. (11.18)

Plugging X12 = −Y11 = 1 and Y21 = A, Y21 = X22 = B, Y22 = D into (11.15), the condition for existence of
nontrivial dsi is

det

(
dx dy

Ady −Bdx Bdy − Cdx

)
= 0, (11.19)

which when expanded out gives the pair of characteristic curves(
dy

dx

)
±

=
B ±

√
B2 −AC
A

. (11.20)

So, the second-order PDE (11.16) can be classified according to the sign of B2 −AC:
(1) If B2 − AC > 0 then two real characteristics exist and the equation is hyperbolic. The prototypical

example is the wave equation,
∂2Φ

∂t2
− c2 ∂

2Φ

∂x2
= 0, (11.21)

which has characteristics x = const ± ct. The full solution Φ(x, t) can be found by marching along
characteristic curves given appropriate initial conditions, such as the value of Φ along some open curve
in the (t, x) plane and its derivative normal to the curve. This curve should not be a characteristic.

(2) If B2 −AC = 0 then there is a single real characteristic. The equation is parabolic. The prototypical
example is the diffusion equation,

∂Φ

∂t
= D

∂2Φ

∂x2
. (11.22)

Although the equation cannot be solved by following characteristic curves, the solution can still be
built up by oozing away from given initial conditions: either the value of Φ along an open curve or
its normal derivative.

(3) If B2 − AC < 0 then there are no real characteristics and the equation is called elliptic. The
prototypical example is Laplace’s equation,

∂2Φ

∂x2
+
∂2Φ

∂y2
= 0. (11.23)

This cannot be solved by marching off from an open initial condition curve in the (x, y) plane. But
its solution is unique if we specify either Φ or its normal derivative ∂Φ/∂n along a closed curve.

This classification assumes that the sign of B2 −AC does not change with (x, y).

Some terminology you might encounter: a Dirichlet boundary condition gives the value of Φ along a curve
in the (x, y) plane, while a Neumann boundary condition gives its derivative normal to the curve. A Cauchy
boundary condition gives both.

Exercise: For an elliptic second-order linear PDE, explain why we may give either Neumann or Dirichlet
boundary conditions along the closed boundary curve, but not both simultaneously. [Hint: break the
boundary curve into two segments.]
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12 Laplace’s equation by separation of variables

The derivations presented in the next few sections are slow and (mostly) careful, proceeding only in baby
steps. They’ll probably put you to sleep. Nevertheless, they might prove useful if there are details of the
procedure you don’t understand.

12.1 Example: Laplace’s equation in Cartesian co-ordinates

The steady-state temperature distribution T (x, y) within a semi-infinite metal sheet of width L satisfies
Laplace’s equation, ∇2T = 0, with boundary conditions

(i) the temperature at the edges T (0, y) = T (L, y) = 0,
(ii) T (x, y)→ 0 as y →∞, and
(iii) T (x, 0) = T0.

What is T (x, y) within the plate?

General solution We try a solution of the form

T (x, y) = X(x)Y (y), (12.1)

in which case Laplace’s equation becomes

Y
d2X

dx2
+X

d2Y

dy2
= 0. (12.2)

Dividing both sides by XY gives
1

X

d2X

dx2
+

1

Y

d2Y

dy2
= 0, (12.3)

in which the first term depends only on x, and the second only on y. Therefore we must have

1

X

d2X

dx2
= − 1

Y

d2Y

dy2
= −k2, (12.4)

where −k2 is (in general) some complex constant. We could write this separation constant as +k2 or even
just k, but choosing −k2 simplifies the following.

We are left with two ODEs (both eigenvalue equations)

d2X

dx2
= −k2X,

d2Y

dy2
= +k2Y,

(12.5)

for which the (k-dependent) general solutions are

Xk(x) =

{
A0 +B0x, if k = 0,
Ak cos kx+Bk sin kx, otherwise,

Yk(y) =

{
C0 +D0y, if k = 0,
Ckeky +Dke−ky, otherwise,

(12.6)

where Ak, Bk, Ck and Dk are some (possibly complex) constants.

Laplace’s equation is linear and homogeneous. Therefore a more general solution to ∇2T = 0 is

T (x, y) =
∑
k

Xk(x)Yk(y) = [A0 +B0x][C0 +D0y] +
∑
k 6=0

[Ak cos kx+Bk sin kx][Ckeky +Dke−ky]. (12.7)
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Comments:
(i) If we had chosen +K2 instead of −k2 as our separation constant then XK(x) would be a sum of

exponentials and YK(y) would involve sines and cosines. Both sets of solutions are equivalent because
k = ±iK. Looking at the bcs, we guess that T will decay exponentially as y →∞ and has to vanish
at x = 0 and x = L, suggesting trigonometric series in x. Therefore to keep the subsequent algebra
as simple as possible, we label our constant −k2.

(ii) The separation constant is −k2. This means that if we include a term with, say k = 2 in (12.7) we
do not need the term with k = −2: any A−2 can be absorbed into A2, any C−2 into D2 etc. We
therefore assume that for any XkYk 6= 0 in the series (12.7) the corresponding X−kY−k = 0: in other
words, each possible value of −k2 appears at most once.

(iii) The Xk(x) and the Yk(y) are then LI. That is, the only solution to
∑
k ckXk(x) = 0 or

∑
k ckYk(y) = 0

is if all ck = 0.

Application of boundary conditions First, let us use the condition that the temperature at the
edges T (0, y) = T (L, y) = 0. Setting x = 0 in equation (12.7) gives

0 =
∑
k

Xk(0)Yk(y) =
∑
k

AkYk(y), (12.8)

which, since the Yk(y) are LI, is satisfied only if all Ak = 0. For x = L we have that

0 =
∑
k

Xk(L)Yk(y) =
∑
k

Bk sin(kL)Yk(y), (12.9)

which, by the same reasoning, requires that B0 = C0 = D0 = 0 and that Bk sin(kL) = 0 for k 6= 0. We
satisfy the latter condition by imposing k = nπ/L, where n is an integer. (If we were to choose any k 6= nπ/L
we would have to set the corresponding Bk = 0 in order to satisfy the bc, so we have simply that Xk(x) = 0
when k 6= nπ/L.) As our separation constant in (12.4) is actually k2, we need only include n > 0.

Substituting these results into (12.7), the solution subject to the bcs on x = 0 and x = L is

T (x, y) =

∞∑
n=1

Bn sin
(nπx
L

) [
Cnenπy/L +Dne−nπy/L

]
=

∞∑
n=1

sin
(nπx
L

) [
Cnenπy/L +Dne−nπy/L

]
,

(12.10)

where in the last line we have absorbed the constant Bn into Cn and Dn. We will show later that this is
in fact the most general solution to ∇2T = 0 subject to the condition that T vanishes on the edges of the
sheet, T (0, y) = T (L, y) = 0.

Next we use the bc that T (0, y)→ 0 as y →∞. From (12.10),

0 = lim
y→∞

∞∑
n=1

sin
(nπx
L

) [
Cnenπy/L +Dne−nπy/L

]
=

∞∑
n=1

sin
(nπx
L

)
lim
y→∞

[
Cnenπy/L +Dne−nπy/L

]
=

∞∑
n=1

sin
(nπx
L

)
lim
y→∞

[
Cnenπy/L

]
,

(12.11)

giving all Cn = 0, because the functions sin(nπx/L) are LI.

Finally, we apply the condition that T = T0 on the y = 0 end. Using (12.10) again,

T0 = T (x, 0) =

∞∑
n=1

Dn sin
(nπx
L

)
. (12.12)
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In geometrical terms, this says that the coefficients {Dn} are the co-ordinates of the function T = T0

expressed in terms of the orthogonal basis sin(nπx/L). To find, say, Dm we simply take the scalar product
of (12.12) with sin(mπx/L):∫ L

0

sin
(mπx

L

)
T0 dx =

∞∑
n=1

Dn

∫ L

0

sin
(mπx

L

)
sin
(nπx
L

)
dx

−T0L

mπ

[
cos
(mπx

L

)]L
0

=

∞∑
n=1

Dn
L

2
δmn

T0L

mπ
[1− (−1)m] =

L

2
Dm

Dm =

{
4T0

πm m odd,
0 m even.

(12.13)

Substituting this into (12.10), our final solution subject to all the bcs is

T (x, y) =

∞∑
m=1

4T0

π(2m− 1)
sin

[
(2m− 1)πx

L

]
exp

[
− (2m− 1)πy

L

]
, (12.14)

in which n = 2m− 1.

Alternative method Just in case you’re curious, here’s one way of showing that (12.10) is indeed the
most general solution to our problem. You could use the following method as an alternative to separation
of variables when solving problems, but I don’t recommend it: see the comments below for why.

The problem: we want to find T (x, y) in the sheet 0 < x < L, 0 ≤ y <∞. Using the property of completeness
of Fourier series, we can take a horizontal slice, y = const, across the sheet and write the temperature profile
along the slice as

T (x, y) =
a0

2
+

∞∑
n=1

an(y) cos
(nπx
L

)
+

∞∑
n=1

bn(y) sin
(nπx
L

)
, (12.15)

in which the coefficients an and bn depend on which horizontal slice we’re looking at. The values of an
and bn at different heights are related through Laplace’s equation ∇2T = 0. Substituting this T (x, y) into
Laplace’s equation we obtain

0 = ∇2T =

∞∑
n=1

[
d2an
dy2

− n2π2

L2
an

]
cos
(nπx
L

)
+

∞∑
n=1

[
d2bn
dy2

− n2π2

L2
bn

]
sin
(nπx
L

)
= 0. (12.16)

The contents of each of the square brackets must vanish because the sines and cosines are LI. So we have

d2an
dy2

− n2π2

L2
an = 0, (12.17)

which means an(y) = Fn exp(nπy/L) + Gn exp(−nπy/L), where Fn and Gn are constants of integration.
Similarly, bn(y) = Hn exp(nπy/L) + In exp(−nπy/L). Therefore our general solution to ∇2T = 0 for
0 < x < L is

T (x, y) = constant+

∞∑
n=1

[
Fn exp

(nπy
L

)
+Gn exp

(
−nπy

L

)]
cos
(nπx
L

)
+

∞∑
n=1

[
Hn exp

(nπy
L

)
+ In exp

(
−nπy

L

)]
sin
(nπx
L

)
.

(12.18)

Applying the bc T = 0 at x = 0 and x = L – remember that the constant and the exponentials form an LI
set – gives eq (12.10).
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Comments
1. Recall that the usual Fourier-series expansion assumes periodicity (i.e., that the function is defined

along the circumference of a circle). Therefore we would have been in trouble had our bc required
that T (x, 0) 6= T (x, L). Take a look at §21.2 of RHB to see one way of circumventing this.

2. To avoid this problem we could try to be clever and expand the temperature along our constant-y
slice as, e.g., a Legendre series:

T (x, y) =

∞∑
l=0

al(y)Pl

(
x+ L

2L

)
, (12.19)

where the argument (x+L)/2L to the Legendre polynomial Pl lies in the range [−1, 1]. It is far from
easy, however, to solve for al(y) when this T (x, y) is substituted into Laplace’s equation. In constrast,
the method of separation of variables (usually) reduces the problem to familiar ODEs that we know
how to solve.

12.2 Laplace’s equation in plane polar co-ordinates

In polar co-ordinates (R,φ) Laplace’s equation is

1

R

∂

∂R

[
R
∂V

∂R

]
+

1

R2

∂2V

∂φ2
= 0. (12.20)

Substituting a trial solution of the form V (R,φ) = VR(R)Vφ(φ) into (12.20) gives

Vφ
R

d

dR

[
R

dVR
dR

]
+ VR

1

R2

d2Vφ
dφ2

= 0

(Multiply by R2/VRVφ)
R

VR

d

dR

[
R

dVR
dR

]
+

1

Vφ

d2Vφ
dφ2

= 0

R

VR

d

dR

[
R

dVR
dR

]
= − 1

Vφ

d2Vφ
dφ2

= m2,

(12.21)

where m2 is a separation constant. The equation for Vφ(φ),

d2Vφ
dφ2

= −m2Vφ, (12.22)

has solutions

V
(m)
φ (φ) =

{
A0 +B0φ, if m = 0,
Am cosmφ+Bm sinmφ, if m 6= 0.

(12.23)

We require that Vφ(φ) = Vφ(φ + 2π) because φ is an angular co-ordinate. Looking at (12.23), this means
that if m = 0 then we must have B0 = 0, whereas if m 6= 0 then m must be an integer. As the separation
constant is m2, we need only consider one sign of m. Therefore, without loss of generality, we have that

V
(m)
φ (φ) = Am cosmφ+Bm sinmφ (12.24)

for m = 0, 1, 2, . . ..

By inspection, the solutions to the radial equation,

R
d

dR
R

dVR
dR

= m2VR, (12.25)
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are given by

V
(m)
R (R) =

{
C0 +D0 logR, if m = 0,
CmR

m +DmR
−m, if m > 0.

(12.26)

Therefore, in plane polar co-ordinates the general solution V (R,φ) to Laplace’s equation, ∇2V = 0, is

V (R,φ) =

∞∑
m=0

V
(m)
R (R)V

(m)
φ (φ)

= C0 +D0 logR+

∞∑
m=1

[
CmR

m +DmR
−m] [Am cosmφ+Bm sinmφ] .

(12.27)

Example: earthed rod in uniform electric field

An infinite rod of radius a is earthed and placed in a uniform electric field (Ex, Ey, Ez) = (E, 0, 0), with the
axis of the rod coincident with the Oz axis. The boundary conditions on the unknown potential V (R,φ) are

(i) V (R,φ)→ −ER cosφ as R→∞ and
(ii) V (R,φ) = 0 on R = a.

Taking the general solution (12.27) and applying the first bc, we have that

C0 +D0 logR+

∞∑
m=1

CmR
m[Am cosmφ+Bm sinmφ]→ −ER cosφ, (12.28)

in which we’ve dropped any term in V that decreases as R→∞. There are two ways to find the coefficients
Am, Bm etc. One is to rearrange (12.28) as a sum of LI basis functions (i.e., sinnφ and cosnφ) and then
to argue that the coefficient multiplying each basis function must be zero. The more powerful alternative is
to project (12.28) along each of the basis functions to pick off the coefficients one by one. Taking the scalar
product of both sides of (12.28) with sinnφ for n = 1, 2, 3, . . ., gives

∞∑
m=1

CmR
mBm

∫ 2π

0

sinnφ sinmφ dφ→ 0, or

∞∑
m=1

CmR
mBmπδnm → 0,

(12.29)

which can only be satisfied if all CmBm = 0. Next take the scalar product of (12.28) with cosnφ for
n = 0, 1, 2, . . .. For n = 0 we have that

C0 +D0 logR→ 0, (12.30)

so that D0 = 0. For n ≥ 1,

∞∑
m=1

CmR
mAm

∫ 2π

0

cosnφ cosmφ→ −ER
∫ 2π

0

cosnφ cosφ dφ, or

∞∑
m=1

CmR
mAmπδnm → −ERπδn1,

(12.31)

so that all CmAm = 0, except for C1A1 = −E. Substituting these results into (12.27), our potential has
become

V (R,φ) = C0 − ER cosφ+

∞∑
m=1

DmAmR
−m cosmφ+

∞∑
m=1

DmR
−mBm sinmφ (12.32)
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Applying the bc V (a, φ) = 0, we have that

0 = V (a, φ) = C0 − Ea cosφ+

∞∑
m=1

DmAma
−m cosmφ+

∞∑
m=1

Dma
−mBm sinmφ. (12.33)

Taking the scalar product of (12.33) with cosnφ tells us that C0 = 0 (from the n = 0 case) and that all
DmAm = 0 except for D1A1 = Ea2. Similarly, the scalar product with sinnφ gives all DmBm = 0. Our
solution to Laplace’s equation subject to both bcs is therefore

V (R,φ) = −E
(
R− a2

R

)
cosφ. (12.34)

12.3 Laplace’s equation in spherical polar co-ordinates

Finally, what is the most general V (r, θ, φ) that solves Laplace’s equation in spherical polar co-ordinates,

∇2V =
1

r2

∂

∂r

[
r2 ∂V

∂r

]
+

1

r2 sin2 θ

∂2V

∂φ2
+

1

r2 sin θ

∂

∂θ

[
sin θ

∂V

∂θ

]
= 0? (12.35)

As usual, we first try a solution of the form V = Vr(r)Vθ(θ)Vφ(φ). Substituting this trial solution into
Laplace’s equation (12.35), multiplying by r2 sin2 θ/VrVθVφ and rearranging, we find that

sin2 θ

Vr

d

dr

[
r2 dVr

dr

]
+

sin θ

Vθ

d

dθ

[
sin θ

dVθ
dθ

]
︸ ︷︷ ︸

function of (r, θ) only

= − 1

Vφ

d2Vφ
dφ2︸ ︷︷ ︸

fn φ only

= m2, (12.36)

where m2 is a separation constant. By the same reasoning we used earlier in the plane-polar case, we impose
Vφ(φ+ 2π) = Vφ(φ), which means that the general solution to Vφ(φ) is

Vφ(φ) = A cosmφ+B sinmφ, (12.37)

where m = 0, 1, 2, 3, . . . is a non-negative integer.

To find Vr(r) and Vθ(θ), divide (12.36) by sin2 θ and rearrange slightly to obtain

− 1

Vr

d

dr

[
r2 dVr

dr

]
︸ ︷︷ ︸

only r

=
1

Vθ sin θ

d

dθ

[
sin θ

dVθ
dθ

]
− m2

sin2 θ︸ ︷︷ ︸
only θ

= −l(l + 1), (12.38)

in which l(l + 1) is an inspired choice of separation constant. The equation for Vθ is therefore

1

sin θ

d

dθ

[
sin θ

dVθ
dθ

]
− m2

sin2 θ
Vθ = −l(l + 1)Vθ, or[

d

dx

(
(1− x2)

d

dx

)
− m2

1− x2

]
Vθ = −l(l + 1)Vθ,

(12.39)

where in the last line we’ve substituted x = cos θ, so that d
dθ = − sin θ d

dx . This equation for Vθ is the
associated Legendre equation of §8.2. The eigenfunctions (i.e., the Vθ) are associated Legendre
functions, Pml (cos θ), and exist only for l = 0, 1, . . . , and |m| ≤ l.
Finally, the Vr equation becomes

d

dr

[
r2 dVr

dr

]
= l(l + 1)Vr, (12.40)
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which, by inspection, has a general solution

Vr(r) = Crl +Dr−(l+1). (12.41)

Putting this together, we have that

VrVθVφ =
[
Crl +Dr−(l+1)

]
Pml (cos θ)[A cosmφ+B sinmφ] (12.42)

is one solution to Laplace’s equation for l = 0, 1, 2, . . . and m = 0, 1, 2, . . . , l. Because Laplace’s equation is
linear and homogeneous, we can superpose solutions and write

V (r, θ, φ) =

∞∑
l=0

l∑
m=0

[
Clmr

l +Dlmr
−(l+1)

]
Pml (cos θ)[Alm cosmφ+Blm sinmφ], (12.43)

in which the constants of integration A, B, C, D depend on the choice of l and m.

Exercise: Show that (12.43) is the most general solution to Laplace’s equation. (Hint: first use the
property of completeness of SL eigenfunctions to show that any V (r = const, θ, φ) can be expressed as∑
lm P

m
l (cos θ)[Flm(r) cosmφ+Glm(r) sinmφ]. Then substitute this expression into Laplace’s equation

to obtain ODEs for Flm(r) and Glm(r).)

In problems with axisymmetry, V = V (r, θ), we have that all Blm = 0 and the only Alm that are non zero
are those with m = 0. Then the solution to Laplace’s equation becomes

V (R, θ) =

∞∑
l=0

[
Clr

l +Dlr
−(l+1)

]
Pl(cos θ) (12.44)

because P 0
l (x) = Pl(x), the lth-order Legendre polynomial (see §8.1).

Example: Earthed sphere in a uniform electric field

An earthed sphere is placed in a uniform electric field E = Eẑ. There are no charges outside the sphere, so
the electric potential V satisfies Laplace’s equation, ∇2V = 0, with bcs (i) V → −Er cos θ as r → ∞ and
(ii) V (r, θ) = 0 on the surface of the sphere r = a.

The first bc can also be written V → −ErP1(cos θ) as r → ∞. From the general solution (12.44) we than
have that, as r →∞,

∞∑
l=0

Clr
lPl(cos θ)→ −ErP1(cos θ). (12.45)

To find the coefficients Ci, take the scalar product† of both sides with Pm(cos θ): that is, multiply both sides
by Pm(cos θ) and integrate d(cos θ). The result is

∞∑
l=0

Clr
l

∫ 1

−1

Pm(cos θ)Pl(cos θ) d(cos θ)→ −Er
∫ 1

−1

Pm(cos θ)P1(cos θ) d(cos θ),

∞∑
l=0

Clr
l 2

2m+ 1
δlm → −Er

2

2m+ 1
δm1,

(12.46)

where in the last line we have used the orthogonality relation for the Pl, namely,∫ 1

−1

Pl(x)Pm(x) dx =
2

2l + 1
δlm. (12.47)

† An alternative method is of course to exploit the linear independence of the Pl.
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Therefore all Cl = 0, except for C1 = −E.

Similarly, applying the second bc, V (r, θ) = 0 on r = a, gives

0 = (−Ea+D1a
−2)P1(cos θ)︸ ︷︷ ︸

l=1

+
∑
l 6=1

Dla
−(l+1)Pl(cos θ). (12.48)

As the Pl are linearly independent, we must have that D1 = a3E and all other Dl = 0. Our final solution
for the potential outside the sphere is

V (r, θ) = −Er
(

1− a3

r3

)
P1(cos θ). (12.49)

12.4 Spherical harmonics

Spherical harmonics are defined for l = 0, 1, 2, . . . and |m| ≤ l via

Ylm(θ, φ) =

{√
2l+1
4π

(l−m)!
(l+m)!P

m
l (cos θ)eimφ, m ≥ 0,

(−1)|m|Y ?l|m|(θ, φ), m < 0.
(12.50)

Notice that they’re linear combinations of the angular part,

Pml (cos θ)[A cosmφ+B sinmφ], (12.51)

of the solutions (12.42) to Laplace’s equation. Therefore another way of writing the general solution to
Laplace’s equation ∇2V = 0, eq. (12.43), in spherical polar co-ordinates is

V (r, θ, φ) =

∞∑
l=0

l∑
m=−l

[
Clmr

l +Dlmr
−(l+1)

]
Ylm(θ, φ). (12.52)

Examples

For reference, here are the first few spherical harmonics:

Y00 =
1√
4π

; Y1,−1 =

√
3

8π
sin θe−iφ; Y10 =

√
3

4π
cos θ; Y11 = −

√
3

8π
sin θeiφ. (12.53)

Important properties

By construction, the Ylm(θ, φ) are eigenfunctions both of r2∇2 (i.e., the angular terms in ∇2) and of ∂
∂φ :

r2∇2Ylm = −l(l + 1)Ylm,

∂

∂φ
Ylm = mYlm.

(12.54)

They are orthonormal: ∫
Y ?l′m′(θ, φ)Ylm(θ, φ) sin θdθdφ = δl′lδm′m. (12.55)

Exercise: use equation (8.25) to show that (i) the Ylm are orthogonal and (ii) normalized.

The Ylm(θ, φ) are also complete: any well-behaved function f(θ, φ) defined on the surface of a sphere can
be expressed as

f(θ, φ) =

∞∑
l=0

l∑
m=−l

clmYlm(θ, φ), (12.56)

where the coefficients,

clm =

∫
Y ?lm(θ, φ)f(θ, φ) sin θdθdφ, (12.57)

are the projections of f onto each Ylm.
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13 Helmholtz/wave equation: vibrations of a circular drum

Here is another example that involves two separation constants. The vertical displacement u(R,φ, t) of the
surface of a circular drum satisfies the wave equation

∇2u− 1

c2
∂2u

∂t2
= 0, (13.1)

with the boundary condition that u = 0 on the edge R = a of the drum. What are the normal modes of the
drum?

Let us separate variables in two steps. First we write u(R,φ, t) = U(R,φ)T (t). Substituting this into the
wave equation and separating variables, we obtain

d2T

dt2
= −ω2T,

∇2U +
ω2

c2
U = 0,

(13.2)

using ω2 as the separation constant. The time-dependent factor in our assumed u(R,φ, t) is clearly T (t) ∝
e±iωt, while the spatial part U(R,φ) is given by the solution of the Helmholtz equation subject to the
boundary condition that U = 0 for R = a.

Making the further substitution U(R,φ) = UR(R)Uφ(φ) to separate variables in the Helmholtz equation
gives

Uφ
R

d

dR

(
R

dUR
dR

)
+
UR
R2

d2Uφ
dφ2

+
ω2

c2
URUφ = 0. (13.3)

Multiplying by R2/URUφ, gives

R

UR

d

dR

(
R

dUR
dR

)
+

1

Uφ

d2Uφ
dφ2

+
ω2

c2
R2 = 0, (13.4)

which separates into the two equations

d2Uφ
dφ2

+m2Uφ = 0,

R
d

dR

(
R

dUR
dR

)
+

(
ω2

c2
R2 −m2

)
UR = 0,

(13.5)

where m2 is another separation constant. The first of these has solution Uφ ∝ eimφ. The periodicity condition
Uφ(φ+ 2π) = Uφ(φ) restricts m to be an integer: m = 0,±1,±2, ....

Exercise: The separation constant in these equations is m2, not m. Why do we nevertheless need to
include both signs of m in our general solution for Uφ(φ)?

The second equation is Bessel’s equation (8.39). Letting x ≡ ωR/c, it becomes

x
d

dx

(
x

dUR
dx

)
+ (x2 −m2)UR = 0. (13.6)

The solutions to this equation that are well-behaved at the origin x = 0 are the Bessel functions UR(x) =
Jm(x).

General solution By the linearity and homogeneity of the wave equation, we can superpose solutions
with different separation constants m and ω to obtain the general solution

u(R,φ, t) =

∞∑
m=−∞

∑
ω

Aω,mJm

(
ωR

c

)
eimφe±iωt, (13.7)
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where the coefficients Aω,m are set by the boundary conditions of the problem.

Boundary conditions The treatment of the boundary condition in most problems involving Bessel func-
tions differs slightly from the previous problems we have tackled. In the present problem we have that
u(R = a, φ, t) = 0, which means that

0 =

∞∑
m=−∞

∑
ω

Aω,mJm

(ωa
c

)
eimφe±iωt. (13.8)

The linear independence of the eimφ and e±iωt factors means that this can hold only if Jm(ωa/c) = 0. The
general solution subject to the boundary condition that u = 0 on the edge R = a is therefore

u(R,φ, t) =

∞∑
n=1

∞∑
m=−∞

Jm

(
ωmnR

c

)
eimφ

(
A+
mneiωmnt +A−mne−iωmnt

)
(13.9)

where ωmn is the nth solution to Jm(ωmna/c) = 0. That is ωmn = cαmn/a, where the coefficients αmn
enumerate the zeros Jm(αmn) = 0 of the mth Bessel function.

Exercise: Explain why any choice of initial displacement U0(R,φ) for which U0(a, φ) = 0 can be
represented by the series (13.9) with a suitable choice of coefficients A+

mn and A−mn. Find expressions
for these coefficients in terms of U0(R,φ).

14 Cool down: heat equation

The temperature Θ(x, t) of a semi-infinite wall (x > 0) satisfies the heat equation

∂Θ

∂t
= D

∂2Θ

∂x2
, (14.1)

where D is a constant, subject to the boundary condition that the temperature at the surface x = 0 varies
with time as Θ(x = 0, t) = T0 + T1 cosωt. How does Θ(x, t) vary inside the wall?

To answer this, let us try a solution of the form Θ(x, t) = X(x)T (t). Substituting this into the heat equation
gives

X
dT

dt
= DT

d2X

dx2
. (14.2)

Dividing by DTX results in
1

DT

dT

dt
=

1

X

d2X

dx2
, (14.3)

in which the LHS depends only on t, not x, and the RHS depends only on x, not t. The only way this can
happen is if they are both equal to some constant, −λ2, where λ may be complex. Therefore the PDE (14.1)
separates into the two ODEs,

dT

dt
= −(λ2D)T,

d2X

dx2
= −λ2X.

(14.4)

The general solutions to these are Tλ(t) ∝ exp(−λ2Dt) and X(x) = Aλeiλx.

Comment: Notice that we have slightly simplified the expression for these solutions by writing the
separation constant as −λ2 instead of, say, λ. For any choice of separation constant −λ2 there are two
possible values of λ: one of these gives a solution X(x) = A+λe+iλx, the other to X(x) = A−λe−iλx.
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Absorbing the constant of proportionality in this Tλ(t) into Aλ, the (λ-dependent) solution is

Θλ(x, t) = Aλeiλx−λ2Dt. (14.5)

The heat equation is linear and homogeneous, so we can superpose solutions, giving the more general solution

Θ(x, t) =
∑
λ

Aλ exp(iλx− λ2Dt). (14.6)

Now we turn to boundary conditions. The condition that Θ(x = 0, t) = T0 + T1 cosωt means that

∑
λ

Aλe−λ
2Dt = T0 +

T1

2

(
eiωt + e−iωt

)
(14.7)

The RHS is clearly periodic. Imposing this same periodicity on the LHS implies that −λ2D = inω, where
n ∈ Z. Therefore

λn = ±(1− i)

√
nω

2D
. (14.8)

We rely on an implicit boundary condition to choose the correct sign in this expression: we expect Θ(x) 6→ ∞
as x→∞. This means that the real part of iλ must be less than 0, so that

iλn =

−(1 + i)
√
|n|ω
2D , if n > 0,

−(1− i)
√
|n|ω
2D , if n < 0.

(14.9)

Now equation (14.7) becomes

∞∑
n=−∞

Aneinωt = T0 +
T1

2

(
eiωt + e−iωt

)
. (14.10)

Exploiting the linear independence of the einωt for different n, we have that A0 = T0 and A1 = A−1 = T1/2,
with all other An = 0. The full solution (14.6) is

Θ(x, t) = T0 +
T1

2

[
exp

(
−1 + i

δ
x+ iωt

)
+ exp

(
−1− i

δ
x− iωt

)]
= T0 + T1e−x/δ cos

(
ωt− x

δ

)
,

(14.11)

where the skin depth δ ≡
√

2D/ω.
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15 Inhomogeneous PDEs: Green’s functions?

By analogy with §9, suppose that we want to solve the linear, second-order inhomogeneous PDE

D̂ψ = f, (15.1)

for ψ(x) given f(x). We’ll assume that the operator D̂ is of the form

D̂ =
1

w(x)
[∇ · (p(x)∇) + q(x)] . (15.2)

and that the boundary conditions are such that either ψ (Dirichlet) or its normal derivative (Neumann)
vanish on the boundary of the region under consideration.

Exercise: Use Gauss’ theorem plus the identity ∇·(u∇v) = u∇2v+(∇u) ·(∇v) to show that
〈
u, D̂v

〉
=〈

v, D̂u
〉
? when u(x) and v(x) satisfy these boundary conditions.

If we can find a function G(x1,x2) that (i) satisfies the same boundary conditions as our solution ψ(x1) and
(ii) for which

D̂1G(x1,x2) =
1

w(x1)
δ(x1 − x2), (15.3)

then the solution to (15.1) is given by

ψ(x1) =

∫
V

d3x2G(x1,x2)f(x2). (15.4)

In (15.3) the operator D̂1 is given by the expression (15.2) for D̂ with x replaced by x1.

The properties we derived in §9.1 for one-dimensional Green’s functions all generalise in a straightforward
way to the multi-dimensional case.

15.1 Examples

How to find G(x1,x2)? In §9.2 we constructed Green’s functions for various one-dimensional problems by
joining up linearly independent solutions to the homogeneous equation Axu = 0. This procedure is less
useful in multidimensional problems.

Example: Laplace by inspection Sometimes Green’s functions can nevertheless be found by inspec-
tion. For example, consider D̂ = ∇2 in everyday three-dimensional space. In Cartesian coordinates the
natural weight function w(x) = 1, and then our D̂ = ∇2 is of the form (15.2) with p(x) = 1 and q(x) = 0.
G has to satisfy

∇2
1G(x1,x2) = δ(x1 − x2). (15.5)

We assume Dirichlet bcs, so that G → 0 at infinity. Integrating over a volume V that includes the point
source at x = x2 and applying Gauss’s divergence theorem, we find that∫

V

∇1 · ∇1G(x1,x2)d3x1 =

∫
V

δ(x1 − x2)d3x1

⇒
∫
V

∇1G(x1,x2) · d2S1 = 1.

(15.6)

If we take V to be a sphere of radius r12 = |x1 − x2| centred on the point x2, this is satisfied by taking the
integrand in the LHS to be

∂

∂r12
G(x1,x2) =

1

4πr2
12

. (15.7)

? Bonus material: examples of the application of the Dirac delta and Fourier transforms
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Therefore, assuming Dirichlet bcs, the Green’s function for the operator D̂ = ∇2 is G = −1/4πr12, or

G(x1,x2) = − 1

4π

1

|x1 − x2|
. (15.8)

The obvious physical application is Poisson’s equation, ∇2ψ = −ρ/ε0. The solution that satisfies ψ → 0 as
r →∞ is therefore

ψ(x1) =

∫
V

d3x2G(x1,x2)

(
−ρ(x2)

ε0

)
=

1

4πε0

∫
V

ρ(x2)d3x2

|x1 − x2|
.

(15.9)

Example: Laplace by Fourier Notice that this D̂ and its boundary conditions are translationally
invariant. That means that we might expect to be able to find G(x1,x2) = G(x1 − x2) using integral
transform methods, such as Fourier transforms. Taking advantage of the translational symmetry of ∇2, the
problem of finding G(x1,x2) for Laplace’s equation reduces to finding the single-variable function G(x) that
satisfies

∇2G(x) = δ(x), (15.10)

subject to the boundary condition that G(x) vanishes at infinity. Fourier transforming this, we have that

−(k2
x + k2

y + k2
z)G̃(k) =

1

(2π)3
, (15.11)

so that

G(x) = − 1

(2π)3

∫
d3k

k2
eik·x. (15.12)

Changing to polar coordinates in k space, this becomes

G(x) = − 1

(2π)2

∫ ∞
0

dk k2

∫ π

0

dθ sin θ
1

k2
eik|x| cos θ

= − 1

(2π)2

∫ ∞
0

dk
2 sin k|x|
k|x|

= − 1

2π2|x|

∫ ∞
0

dz
sin kz

z
= − 1

4π|x|
.

(15.13)

This is the response to a unit of “charge” placed at x = 0. By translational invariance, the response at
x = x1 to a unit charge placed at x2 is G(x1,x2) = G(x1 − x2), in agreement with (15.8).

Example: Electromagnetic waves In Lorenz gauge, the electromagnetic potentials φ(x, t) and
A(x, t) are related to the charge and current densities ρ and j by the PDE

−
[
− 1

c2
∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

](
φ
A

)
=

(
ρ/ε0
µ0j

)
. (15.14)

Notice that the operator on the left-hand side is unchanged under (Lorentz) translations. We assume vacuum
boundary conditions. The Green’s function G(x, t) should then satisfy

−
[
− 1

c2
∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
G(x, t) = δ(x)δ(t). (15.15)

Defining the Fourier transform†

G̃(k, z) ≡ 1

(2π)3/2

∫
d3x e−ik·x 1

(2π)1/2

∫
dt e+iztG(x, t), (15.16)

† Note that the sign used in the t→ z transform differs from our usual definition. Conventions...
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equation (15.15) becomes

−
[
z2

c2
− k2

]
G̃(k, z) =

1

(2π)2
. (15.17)

Rearranging,

G̃(k, z) =
c2

c2k2 − z2
, (15.18)

for which the inverse Fourier transform is

G(x, t) =
1

(2π)4

∫
c2

c2k2 − z2
ei(k·x−zt)d3kdz. (15.19)

Following the same procedure used in our solution to Laplace’s equation, we change to polar coordinates
in k, obtaining

G(x, t) =
c2

4π3|x|

∫ ∞
0

sin(k|x|)
(∫ ∞
−∞

k

c2k2 − z2
e−izt dz

)
dk. (15.20)

The integrand in brackets has poles at z = ±ck. We can deform our integration contour along the real line
to skirt above (z takes on a small positive imaginary part) or below (Im z < 0) these poles. Let’s skirt above
and call the resulting Green’s function Gret. Then, when t < 0 we need to close the integration contour in
the upper half plane so that the e−izt factor is well behaved. This leaves no poles within the contour and so

Gret(x, t) = 0, t < 0. (15.21)

For t > 0 we need to close the contour in the lower half plane, which means it encloses the two poles. The z
integral becomes ∫

ke−izt dz

c2k2 − z2
= − iπ

c

[
eickt − e−ickt

]
, (15.22)

leading to

Gret(x, t) =
c

4π|x|
[δ(|x| − ct)− δ(|x|+ ct)] , t > 0. (15.23)

The condition on the sign of t means that the second Dirac delta cannot contribute and so our complete
Green’s function for the case in which we deform our integration contour to go above the two poles in the
complex plane is given by

Gret(x, t) =
c

4π|x|
×
{

0, t < 0
δ(|x| − ct), t > 0.

(15.24)

This is known as the retarded Green’s function for the electromagnetic wave equation. It corresponds to
a spherical shell of light emanating at t = 0 from x = 0, whose radius increases as |x| = ct. Its amplitude
varies with radius as 1/|x|, as one would expect for a potential.

Deforming our integration contour to go under the poles at z = ±ck yields the advanced Green’s function

Gadv(x, t) =
c

4π|x|
×
{
δ(|x| − ct), t < 0
0, t > 0.

(15.25)
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Appendix A: Tensor algebra?

Consider an n-dimensional real vector space V. Let e1, ..., en be a basis for this space and introduce the
linear maps e1

?, ..., e
n
? defined by ei?ej ≡ δij .

Exercise: Without assuming the existence of an inner product on V, show that V and its dual V? are
isomorphic and that the e?i are a basis for V?.

Any vectors v ∈ V and v? ∈ V? can be written as v =
∑
i a
iei and v? =

∑
i aie

i
? respectively. Notice that

each dummy index appears twice in these expressions: once upstairs (e.g., ai) and once downstairs (ei):
downstairs indices label basis vectors for V and the components of vectors from V?; upstairs indices label
basis vectors for V? and the components of vectors from V.

A.1 Covectors eat vectors; vectors eat covectors

We have introduced covectors as linear maps from vectors to scalars. What about the dual (V?)? to the
space of covectors V?? As you might guess, it turns out that this (V?)? is essentially V.

More precisely, there is a natural isomorphism between V and (V?)?. For any v ∈ V, introduce a mapping
f(v) : V? → F by

f(v)(ω) = ω(v). (A.1)

This f(v)(ω) is a linear map from ω ∈ V? to F . It is therefore a member of the dual space to V?: that is,
f(v) ∈ (V?)?. Viewed as a function of v, it is also clear that f : V → (V?)? is linear. It is also injective:
for any nonzero v =

∑
i viei ∈ V we have f(v)(ei?) = ei?(v) = vi. Now V, V? and (V?)? all have the same

dimension. So this f : V → (V?)? is an isomorphism.

Just as elements of V? are linear maps from V to scalars, elements of (V?)? are linear maps from V? to F .
As (V?)? and V are isomorphic, we can treat elements of V as being linear maps from V? to scalars.

A.2 Definition of tensors

A covariant tensor of rank r or, simply a covariant r-tensor on V is a scalar-valued multilinear function
of r elements of V:

T : V × · · · × V︸ ︷︷ ︸
r copies

→ F . (A.2)

Some examples: scalars are covariant 0-tensors; members of the dual space V? are covariant 1-tensors;
the scalar product of two real vectors is a covariant 2-tensor; the determinant of n real vectors from an
n-dimensional vector space V is a covariant n-tensor.

If T is unchanged under exchange of two of its arguments – that is, T (...,vi, ...,vj , ...) = T (...,vj , ...,vi, ...) –
then T is symmetric with respect to that pair of arguments. Similarly, if swapping two arguments changes
the sign of T then T is antisymmetric with respect to those two arguments. The determinant is an example
of a tensor that is completely antisymmetric with respect to exchanges of any pair of its arguments.

? Bonus material

http://www-thphys.physics.ox.ac.uk/people/JohnMagorrian/mm/
mailto:john.magorrian@physics.ox.ac.uk
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The set of all covariant r-tensors on V, written T r(V), is itself is a vector space under the usual operations
of pointwise addition and scalar multiplication: for any T, T ′ ∈ T r(V) the linear combination

(αT + α′T ′)(v1, ...,vk) = αT (v1, ...,vk) + α′T ′(v1, ...,vk), (A.3)

is itself another covariant r-tensor, with the sum and products on the right being the usual scalar operations.
We construct a basis below.

A contravariant s-tensor is a scalar-valued multilinear function of s elements of V?:

T : V? × · · · × V?︸ ︷︷ ︸
s copies

→ F . (A.4)

A vector v ∈ V is a contravariant 1-tensor. The set of all contravariant s-tensors on (V), written Ts(V) is
itself a vector space under the operations of pointwise addition and scalar multiplication.

More generally, a mixed
(
s
r

)
-tensor is a multilinear map

T : V? × · · · × V?︸ ︷︷ ︸
s copies

×V × · · · × V︸ ︷︷ ︸
r copies

→ F (A.5)

of s dual vectors and r vectors to scalars. Linear operators A : V → V are examples of type
(

1
1

)
tensors:

when fed a vector they emit another vector, which when fed with a covector emits a scalar. Covariant
r-tensors are type

(
0
r

)
tensors, while contravariant s-tensors are type

(
s
0

)
. Again, for given r and s the set

of all
(
s
r

)
-tensors forms a vector space.

To construct a basis for these vector spaces we first need to introduce a way of constructing higher-rank
tensors from vectors and covectors.

A.3 Tensor products

Tensor (or outer) product of two covariant 1-tensors Consider covariant 1-tensors S, T ∈ V? and
define their tensor product to be the map S ⊗ T : V × V → F given by

S ⊗ T (a,b) = S(a)T (b), (A.6)

the product on the right being just ordinary multiplication of scalars. Linearity of S and T guarantees that
S ⊗ T is a bilinear function of a and b. Therefore it is a covariant 2-tensor.

Exercise: Show that the tensor product so defined is associative. That is, R⊗ (S ⊗ T ) = (R⊗ S)⊗ T
for covariant 1-tensors R, S and T .

Generalisation Let S ∈ T k and T ∈ T l. Then define their tensor product to be the map

S ⊗ T : V × · · · × V︸ ︷︷ ︸
k + l copies

→ F (A.7)

given by
S ⊗ T (v1, ...,vk+l) = S(v1, ...,vk)T (vk+1, ...,vk+l). (A.8)

Multilinearity of S and T means that S ⊗ T is multilinear too. Therefore it is a covariant (k + l)-tensor.

Exercise: Show that the tensor product defined by (A.8) is bilinear and associative: i.e., that S ⊗ T
depends linearly on S and T and that R⊗ (S ⊗ T ) = (R⊗ S)⊗ T .

Exterior products of contravariant tensors and, more generally, of mixed-rank tensors are constructed in the
same way. For example, the exterior product of a covector S ∈ V? and v ∈ V is defined as

S ⊗ v(a, B) = S(a)v(B), (A.9)

for any a ∈ V and B ∈ V?. This is a
(

1
1

)
-tensor.
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A.4 Bases

Let ei? be any basis for V?. Then a basis for the space T r(V) of covariant r-tensors is

ei1? ⊗ · · · ⊗ eir? , 1 ≤ i1, ..., ir ≤ n. (A.10)

Therefore T r(V) is an nr-dimensional vector space.

Proof: Each of the objects (A.10) is clearly a covariant r-tensor. We need to show that that they
span T r(V) and are LI. First we show that they span the space. Take any T ∈ T r(V) and consider the
linear combination

∑
i1...ir

Ti1...ire
i1
? ⊗ · · · ⊗ eir? , with coefficients

Ti1...ir ≡ T (ei1 , ..., eir ). (A.11)

This linear combination of tensors is itself also a tensor. Applied to any set of basis vectors (ej1 , ..., ejr )
we have that

n∑
i1=1

· · ·
n∑

ir=1

Ti1...ire
i1
? ⊗ · · · ⊗ eir? (ej1 , ..., ejr ) =

n∑
i1=1

· · ·
n∑

ir=1

Ti1...ire
i1
? (ej1)⊗ · · · ⊗ eir? (ejr )

=

n∑
i1=1

· · ·
n∑

ir=1

Ti1...irδ
i1
j1
· · · δirjr

= Tj1...jr

= T (ej1 , ..., ejr ).

(A.12)

By multilinearity, any tensor is determined by its action on the basis vectors. Therefore we have shown
that any T ∈ T r(V) can be expressed as T =

∑
i1...ir

Ti1...ire
i1
? ⊗· · ·⊗eir? with components Ti1...ir given

by (A.11): the tensors (A.10) span T r(V).

To show that the tensors (A.10) are LI, suppose that there is some linear combination of them that
equals zero,

∑
i1...ir

Ti1...ire
i1
? ⊗ · · · ⊗ eir? = 0. Applying this equation to the tensor ej1 ⊗ · · · ⊗ ejs yields

Tj1...jr = 0 for any choice of (j1, ..., jr). Therefore the only solution to
∑
i1...ir

Ti1...ire
i1
? ⊗ · · · ⊗ eir? = 0

is when all Ti1...ir = 0: the tensors (A.10) are LI.

Similarly, a basis for the space Ts(V) of contravariant s-tensors is

ei1 ⊗ · · · ⊗ eis , 1 ≤ i1, ..., is ≤ n, (A.13)

and, more generally, a basis for the space of rank
(
s
r

)
mixed tensors is

ei1 ⊗ · · · ⊗ eis ⊗ ej1? ⊗ · · · ⊗ ejr? 1 ≤ i1, ..., is, j1, ..., jr ≤ n. (A.14)

Therefore the dimension of the vector space of
(
s
r

)
-tensors is nr+s.

A.5 Inner products: the metric tensor

All of our discussion of tensors to this point has been mere algebraic bookkeeping. In applications physics
usually supplies an inner product on V, which allows us to define lengths of vectors and the projection of one
vector onto another. From a bookkeeping point of view, this inner product identifies a special isomorpism
between vectors and covectors.

Recall that for real vector spaces the scalar product is a symmetric bilinear mapping from pairs of vectors
to scalars. That is, it is a symmetric covariant 2-tensor, which is known as the metric tensor or simply
“the metric”. Given any basis e1, ..., en for V and corresponding ei? for V? the metric tensor can be written

g =
∑
ij

gije
i
? ⊗ ej? (A.15)
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with components
gij = g(ei, ej). (A.16)

The inner product of the vectors a and b then is a · b =〈a,b〉= g(a,b).

In normal 3-space, the mathematical definition of a metric includes the condition that the metric is positive
definite: g(u,u) > 0 for all u 6= 0, equivalent to condition (2.4) in our definition of the inner product. Then
a basis e1, ..., en is orthonormal iff g(ei, ej) = δij .

When applied to spacetime (relativity) we need to relax this to the weaker condition that the metric be
merely definite: that is, if g(u,v) = 0 for all v implies that u = 0, but g(u,u) can be any sign (or even
zero). Such a g is sometimes called a pseudometric, but we broaden our definition of the word “metric”
to encompass this important case. The orthonormality condition is then g(ei, ej) = ±δij . For example, in
(ct, x, y, z) Minkowski space the orthonormality condition is

g(ei, ej) = ηij ≡ diag(1,−1,−1,−1) (A.17)

and a vector u is called timelike if g(u,u) > 0, lightlike if g(u,u) = 0 and spacelike if g(u,u) < 0.

Metric duality: raising and lowering indices Given v, then the object g(v, •) is a covector. Expand
v =

∑
k v

kek and feed an arbitrary vector b in the empty slot •. Then

g(v, •)b =
∑
ij

gije
i
? ⊗ ej?(

∑
k

vkek,b) =
∑
ijk

gijv
kei?(ek)⊗ ej?(b) =

∑
ij

gijv
iej?(b) (A.18)

That is, g(v, •) is a covector whose jth component in the e1
?, ...., e

n
? basis is

∑
i gijv

i.

Having this covector g(v, •) =
∑
ij gijv

iej?, can we extract our original v from it? Yes, we can:

Exercise: Consider a contravariant 2-tensor ḡ =
∑
ij ḡ

ijei ⊗ ej . Explain how ḡ turns covectors into

vectors. By filling in the first slot of ḡ with the covector
∑
ij gijv

iej?(•), show that our original vector

v =
∑
i v
iei is returned if we choose the components ḡij = (g−1)ij , where (g−1)ij are the elements of

the inverse matrix of gij .

To summarise, the metric (i.e., the scalar product) induces a natural pairing between vectors and covectors,
with ej mapped to

∑
i gije

?
i and e?j to

∑
i g
ijei. Therefore

v =
∑
i

viei ∈ V ↔ v? =
∑
ij

gijv
iej? ∈ V?,

v? =
∑
i

v?i e
i
? ∈ V? ↔ v =

∑
ij

gijv?i ej ∈ V.
(A.19)

Here gij is the inverse of the metric tensor, gij ≡ (g−1)ij .

More generally, any tensor T that wants to be fed a vector in one of its input slots can converted into one
that accepts a covector: just attach a ḡ = g−1 over the input slot to intercept the input covector and turn
it into a vector before feeding to the original T . Conversely, if T wants a covector, we can nevertheless feed
it vectors by using g to turn vectors into covectors before feeding to T . So, using the metric we can turn
a type-

(
m
n

)
tensor into another type

(
r
s

)
one, as long as m + n = r + s. This procedure is usually called

“raising” or “lowering” and is easier to follow if we use index notation.

A.6 Index notation

We have seen that a general rank
(
s
r

)
tensor can be expressed as

T =
∑
i1

· · ·
∑
is

∑
j1

· · ·
∑
jr

T i1···isj1···jrei1 ⊗ · · · ⊗ eis ⊗ ej1? ⊗ · · · ⊗ ejr? , (A.20)
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where the nr+s components are the numbers

T i1···isj1···jr = T (ei1? , ..., e
is
? , ej1 , ..., ejr ). (A.21)

obtained by applying T to the basis vectors. Just as we often loosely refer to a vector v =
∑
i v
iei by

its components (v1, ..., vn), you will usually see the components T i1···isj1···jr of the tensor (A.20) being used as
shorthand for the tensor itself, the basis vectors being suppressed.

The distinction between tensors of different type is made solely by the number and position of the indices.
So Ai is a (contravariant) vector. The corresponding (covariant) (co)vector is written Ai, where Ai = gijA

j :
any index that appears once downstairs and once upstairs is to be summed over (the Einstein summation
convention); the same symbol is used for a vector and the corresponding covector.

The scalar product of the vectors A and B is gijA
iBj = AiBi = gijAiBj = AiB

i. Their outer product can
be expressed as AiBj (a contravariant 2-tensor) or AiBj (a covariant 2-tensor) and so on.

Given, e.g., a covariant 2-tensor Tij , we can turn the first slot from a vector-eating machine to a covector-
eating machine by raising the first index: T ij = gikTkj : notice that we leave a space underneath the raised
index i to indicate that it labels the first input slot of the original T : V × V → F and that j labels the
second. If the original Tij were symmetric then we could safely omit this space.

A.7 Transformation properties

Tensors do not care about which basis we choose to talk about them. It is up to us to ensure that anything we
say about the components of a tensor in a particular basis transforms in a way that respects this indifference.

Suppose that we introduce a new basis (remember, summation convention)

e′i = (Λ−1)ijej , (A.22)

so that
e′i? = Λije

j
?. (A.23)

Inverting both of these equations and plugging directly into (A.20) it follows that the components of the
tensor in the new basis are given by

T ′i1···isj1···jr = Λi1k1 · · ·Λ
is
ks

(Λ−1)l1j1 · · · (Λ)
lq
jr
T k1···ksl1···lr . (A.24)

Any multilinear object that transforms in this way is automatically a type-
(
s
r

)
tensor.

In particular, the components of a contravariant vector transform as

A′i = ΛijA
j , (A.25)

and those of a covariant vector as
B′i = (Λ−1)jiBj . (A.26)

Exercise: Show that the condition for the transformation Λij to preserve the Minkowski scalar prod-

uct (A.17) is ηijΛ
i
kΛjl = ηkl. Any Λij that satisfies this condition is a Lorentz transformation. A

familiar example of such a transformation is

Λ =


γ −βγ
−βγ γ

1
1

 , (A.27)

with β = v/c and γ = 1/
√

1− β2.
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A.8 Vector and tensor fields

In classical physics (e.g., electromagnetism, relativity) the vector space V is usually a tangent space.

Example: Tangent vectors (sphere) Take a point r on the surface of a sphere. At the point r
attach a plane whose normal coincides with that of the surface of the sphere there. Any vector tangent to
the surface of the sphere at r is represented by an arrow that starts at r and is confined to this plane. The
collection of all such arrows is known as the tangent space at r. It is a two-dimensional vector space. Each
point r on the sphere has its own two-dimensional tangent space.

Tangent vectors (general) Consider smooth functions f : M → F defined on some n-dimensional
space M. Choose a point P in M and introduce coordinates (x1, ..., xn) whose origin is at P . The set of
directional derivatives evaluated at P , (

a1∂1 + · · ·+ an∂n
)
, (A.28)

forms a n-dimensional vector space, known as the tangent space at P . The partial derivative operators
∂i ≡ ∂

∂xi

∣∣
P

are a basis for this space and, in terms of this basis, the ai are the coordinates. The basis for

the dual space is dxi: we have that dxi(∂jf) = δijf for any smooth function f .

Transformation laws Given a new set of coordinates (x′1, ..., x′n) for the tangent space at P , equa-
tion (A.23) becomes

dx′i = Λij dxj =
∂x′i

∂xj
dxj . (A.29)

Therefore the transformation matrix between the xi and the x′i is Λij = ∂x′i

∂xj and the components (A.24) of
a general tensor transform as

T ′i1···isj1···jr =

(
∂x′i1

∂xk1

)
· · ·
(
∂x′is

∂xks

)(
∂xl1

∂x′j1

)
· · ·
(
∂xls

∂x′js

)
T k1···ksl1···lr . (A.30)

In particular,

A′i =

(
∂x′i

∂xj

)
Aj ,

A′i =

(
∂xj

∂x′i

)
Aj .

(A.31)

The gradient of a scalar field φ has components ∂iφ. It is covariant (check how it transforms under changes
of coordinates). It lives in the tangent space to the point x at which we evaluate the derivatives ∂iφ.

Defining gradients of vector fields is more subtle, as it requires some way of connecting the tangent space
at points x with the tangent space (or cotangent space) at neighbouring points x + ∆x. This can be done
using the affine connection, but that is a topic for another course.
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Appendix B: Basic ideas of probability theory

You already have an intuitive notion of what probability theory is all about. It can be reduced to some
simple ideas about sets and mappings between sets, which were identified by Kolmogorov (1933).

B.1 Sample space and events

Suppose that we are doing an experiment, perhaps multiple times. Every time we do the experiment (that
is, for each trial) we obtain some result (or outcome or sample). The space of all possible outcomes is known
as the sample space, denoted Ω. Some examples:

• If our experiment involves making a single toss of a coin, the sample space Ω is the set of the possible
outcomes, “heads” or “tails”. Then Ω = {heads, tails}.

• For a single throw of a die the sample space Ω = {1, 2, 3, 4, 5, 6}.
• If we throw a pair of non-identical dice (e.g., one is red, the other is green) the sample space contains

the 36 possible outcomes {(1, 1), (1, 2), ..., (1, 6), (2, 1), ..., (2, 6), ..., (6, 6)}, where the first number i in
each pair (i, j) is the result shown on the red die, the second j on the green one.

• If the dice are indistinguishable then we can’t tell the difference between, say, (1, 2) and (2, 1): in
this case there are only 21 possible outcomes, which we could represent using ordered pairs (i, j) with
i = 1, .., 6 and j = 1, ..., i. Alternatively, we could recognise that the dice are physically distinct (even
though we can’t get close enough to tell them apart) and take Ω to be the same 36 outcomes as in
the previous case.

• A coach measures how long it takes a runner to complete a lap of a 400m track. The sample space
consists of all non-negative real numbers, corresponding to the length of time (in seconds) the runner
takes. (We assume that our coach can measure times to abitrary precision.)

We are often not interested in the precise details of the outcome of each trial. For example, we might care
only that our runner completes a lap in less than 60 seconds, or that the ball lands in a red slot in a spin
of roulette. To deal such cases we define an event F as a subset of the sample space Ω. If the outcome
of the trial is a member of this subset, we say that the corresponding event occurs. For example, running
a sub-minute lap corresponds to the event [0, 60). Throwing an even number on the die means that the
event {2, 4, 6} occurs. The outcome of each trial can correspond to many events, however: if we throw a
six on our die then there are 32 distinct events that occur (namely, {6}, {2, 4, 6} and all 30 other subsets of
Ω = {1, ..., 6} that include the outcome 6). A runner completing a 400m lap in 42.something seconds would
be quite an event, corresponding to the subset [42, 43) of the real line. The more pedestrian sub-minute
event [0, 60) would also occur in this case.

So, events are represented by subsets of Ω, not by the elements of Ω themselves. The sample space Ω itself
is an event, known as the certain event, while the empty set ∅ is the impossible event. Following the usual
set notation, given two events A and B we can define the following new events:

• A ∪B contains all elements of Ω that are in A or B (union, A or B);
• A ∩B contains all elements that are in both A and B (intersection, A and B);
• A\B is the difference, containing all elements of A that are not in B (A but not B);
• Ac ≡ Ω\A is the complement of A (not A).

http://www-thphys.physics.ox.ac.uk/people/JohnMagorrian/mm/
mailto:john.magorrian@physics.ox.ac.uk
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Let us write F for the collection of all possible events. If Ω is countable? then this F is just the set of all
subsets of Ω. If Ω is uncountable (e.g., if it is some interval the real numbers) then this notion of “set of
all sets” leads to a morass. Nevertheless, we can still just assume that some good choice of F exists in such
cases, without needing to know the details.

In case you’re wondering, here is the secret recipe. We require only that F be closed under countable unions, specifically:
• ∅ ∈ F ;
• if A1, A2, ... ∈ F then ∪∞i=1Ai ∈ F ;
• if A ∈ F then Ac ∈ F .

Any collection F of subsets of Ω that satisfies these conditions is called a σ-field. If Ω is countable then the set of all
subsets of Ω is automatically a σ-field.

Examples of σ-fields: F = {∅,Ω}. If A is any subset of Ω then F = {∅, A,Ac,Ω}.

For our purposes this is probably best kept a secret: you really don’t need to know it.

B.2 Probability measure

That’s enough about sets of subsets of Ω. Where does probability come in to this? A probability measure

P on (Ω,F) is a mapping P : F → [0, 1] that assigns a real number between 0 and 1 to each event in F ,
subject to the following conditions:

(i) P(∅) = 0, P(Ω) = 1;
(ii) if A1, A2, ... is a collection of disjoint members of F (i.e., with Ai ∩Aj = ∅ for all i 6= j), then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai). (B.1)

There is nothing surprising here. The probability assigned to the impossible event should be zero and that
assigned to the certain event should be 1. The probabilities assigned to distinct, non-overlapping events
between these two extremes should add up in the obvious way. The triplet (Ω,F ,P) is called a probability
space.

That’s the absolute basics of probability theory: it’s all about mappings between events and the real
numbers between 0 and 1 inclusive. Physics enters into the construction of the mapping P. The rest is
maths. For example, the probability that a coin lands heads up depends on the mass distribution of the
coin, how it’s thrown and the surrounding environment (air conditions, details of the surface on which it
lands, and so on). Once we’ve decided to assign P(heads) = 1

2 (which might be from experiment, detailed
calculation or just plain indifference), the maths takes over.

Exercise: By drawing Venn diagrams (how many?), or otherwise, verify the following distributive laws
for events A, B and C:

A ∩ (B ∪ C) =(A ∩B) ∪ (A ∩ C),

A ∪ (B ∩ C) =(A ∪B) ∩ (A ∪ C).
(B.2)

B.3 Conditional probability

Let us suppose that the event B occurs. Because events are just sets, then some other event A occurs if and
only if the event A ∩ B occurs. So the probability that A occurs given that B occurs must be proportional
to P(A ∩ B). To find the constant of proportionality consider condition (i) of §B.2: the probability of the

? a “countable” set is one that can be mapped one-to-one to the natural numbers {0, 1, 2, 3, 4, ...}. Any subset
of the integers is countable. The set of all rational numbers is (perhaps surprisingly?) countable, as is the
set of all ordered pairs (i1, i2) of integers. The reals are not countable.
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certain event Ω given that B occurs must equal 1. Therefore, assuming P(B) > 0, we define the conditional
probabilty of the event A given B as

P(A|B) ≡ P(A ∩B)

P(B)
. (B.3)

Swapping A and B and using the symmetry of the ∩ operator we have the familiar

P(A ∩B) = P(A|B)P(B) = P(B|A)P(A). (B.4)

B.4 Independence

Two events, A and B, are independent if

P(A ∩B) = P(A)P(B). (B.5)

That is, if P(A|B) = P(A) and P(B|A) = P(B). Notice that independence does not mean that A ∩ B = ∅:
independence is a statement about probabilities of events, not about the nature of the events themselves. For
example, suppose we draw a playing card from a full deck. Let A be the event of obtaing a 4, B obtaining a
club. The probabilities P(A) and P(B) are independent according to (B.5), even though the events A and B
overlap (both events would occur if we drew the 4 of clubs). On the other hand, if we started from a deck
that did not have the full complement of either 4s or clubs then the probabilities would change and these
two events would no longer be independent.

Three events A, B, C are independent if each pair is independent and also P(A∩B ∩C) = P(A)P(B)P(C).
More generally, a collection of events {A1, A2, ..., An} is independent if, for any subset J ⊆ {1, 2, .., n} the
probabilities satisfy

P

⋂
j∈J

Aj

 =
∏
j∈J

P(Aj). (B.6)

B.5 Bayes

Suppose we split Ω into a collection of disjoint events B1, B2, ... for which ∪iBi = Ω and Bi ∩Bj = ∅ when
i 6= j. The collection {B1, B2, ...} is then said to partition Ω: every element of Ω belongs to precisely one of
the Bi. For any event A we can construct a collection of new events (A ∩B1), (A ∩B2), ... . Clearly, these
new events are disjoint, with (A ∩Bi) ∩ (A ∩Bj) = ∅ for i 6= j, and the union of all of them, ∪i(A ∩Bi), is
just A. Using condition (ii) of §B.2, we have that

P(A) = P

(⋃
i

(A ∩Bi)

)
=
∑
i

P(A ∩Bi)

=
∑
i

P(A|Bi)P(Bi),

(B.7)

the last equality following from (B.4). Suppose that we know that A occurs and want to determine the
probability of each Bj . Using (B.4) followed by (B.7), we obtain Bayes’ formula,

P(Bj |A) =
P(A|Bj)P(Bj)

P(A)
=

P(A|Bj)P(Bj)∑
i P(A|Bi)P(Bi)

, (B.8)

the single most important result in applications of probability theory.
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An aside: stepping way back, all probabilities are conditional. In §B.2 whenever we assign probability
measure P to the collection of events F , we invariably do so under some assumptions (e.g., that our coin is
unbiased, that our die is fair). Moreover, when defining the sample space we invariably restrict ourselves to
certain idealised conditions, which are often unstated. For example, in the coin-tossing example we usually
exclude freak possibilities, such as the coin landing on its edge, or Magnus the Magpie swooping in and
stealing it before it lands. In the mathematical universe of our (Ω,F ,P) probability space this outside world
of bizarre possibilities does not exist. But if we’re feeling energetic enough there is nothing to stop us from
extending our (Ω,F ,P) to include these possibilities.

B.6 Random variables

The formal definition of a random variable X is a mapping X : Ω→ R that assigns a real number to each
possible outcome of our experiment: i.e., for each element ω of the sample space Ω it returns some X(ω).

In practice, random variables usually correspond to quantities that we can (in principle) measure. Discrete
random variables only return certain discrete values. Continuous random variables vary continuously
in some interval. We’ll use uppercase letters (e.g., X) to denote random variables and lowercase letters (x) to
denote particular values taken by the function. The random variable X itself is neither random nor variable
– it’s just a mapping – but the values x are.

Here are some technical points that you should ignore, but might find interesting. The mapping X must be so-called
F-measurable. That is, for any xmax ∈ R we must have {ω ∈ Ω : X(ω) < xmax} ⊂ F : that is, the set of all outcomes that
produce results less than or equal to xmax must belong to the field F of allowed events. This condition ensures that the
cumulative probability distribution (see equation (B.9) below) is well defined. [Recall that a probability space (Ω,F ,P)
involves three objects: the sample space Ω, the field F of events and the mapping P : F → [0, 1]. Clearly the latter
determines the distribution of possible values of the function X. But P only accepts events that belong to F .]

X is a discrete random variable if the set {X(Ω) : ω ⊂ Ω} of allowed values of X is countable.

X is a continuous random variable if its cumulative DF can be written as (B.24) below for some nonnegative function
fX(x).

Examples of discrete random variables:
(i) The score obtained when we throw a single die. The set of possible values is {1, 2, ..., 6}.
(ii) The total score obtained when throwing a pair of dice. Possible values are drawn from {2, 3, ..., 12}
(iii) The balance of your bank account at the end of the month.
(iv) The number of alpha particles emitted by a block of radium during the next minute.
(v) The score obtained when we throw a single dart at a dartboard. Possible values are 0 (if we miss the

board altogether), 1, 2, ..., 20, 22, ..., 57, 60.

Examples of continuous random variables:
(i) The distance (in meters) that a dart lands from the centre of the board.

(ii) The x and y coordinates of where the dart lands are each random variables.
(iii) The time interval between successive alpha decays from the block of radium.
(iv) The weight of a randomly-chosen bank manager.

Comments:
(i) If the sample space Ω is countable then all random variables are necessarily discrete. On the other

hand, if Ω isn’t countable then random variables can be discrete or continuous (or neither).
(ii) Any real-valued function of one or more discrete random variables is itself a discrete random variable.

Similarly, any smooth, real-valued function of one or more continuous random variables is another
continuous random variable.
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B.7 Cumulative distribution function

Any random variable X, whether discrete or continuous (or neither), is completely described by its cumu-
lative distribution function (or CDF), FX(x), which measures the total probability mass associated with
all values of X less than some threshold x. That is,

FX(x) ≡ P(X ≤ x). (B.9)

Some points to note:
(i) FX(x)→ 0 as x→ −∞ and FX(x)→ 1 as x→∞.
(ii) FX(x) never decreases; it has no maxima.
(iii) If X is a discrete random variable then FX(x) is a staircase function: constant everywhere except for

discrete upward jumps at each possible value of X (see Figure B-1 below).
(iv) If X is a continuous random variable then FX(x) is a smoothly varying function of x.
(v) The probability of measuring X in the interval (a, b] is simply

P(a < X ≤ b) = FX(b)− FX(a). (B.10)

[Confirmation: write the event {X : a < X ≤ b} as the difference B\A of the events B = {X : X ≤ b}
and A = {X : X ≤ a}. We have that B = (B\A) ∪A and that the events (B\A) and A are disjoint:
(B\A) ∪A = ∅. From the definition of P in §B.2 it follows then that P(B) = P(B\A) + P(A).]

B.8 Discrete random variables

Let X be a discrete random variable and let I = {x1, x2, ...} be the set of discrete possible results that X
can return. The probability mass function of X is defined as

P(X = x) ≡ P(E(x)), (B.11)

where E(x) = {X(ω) = x : ω ∈ Ω} is the event composed of the union of all outcomes for which X takes the
value x. Notice that this overloads the meaning of the P symbol. Fundamentally P stands for the mapping
between events and [0, 1], but any random variable depends on that same mapping (because the set of all
possible ways in which X can take the value x is itself a well-defined event) and so the same symbol P is
used for both. Sometimes we’ll write pX(x) or just p(x) as shorthand for this P(X = x).

This probability mass function is related to the CDF of X via

FX(x) ≡ P(X < x) =
∑
x′<x
x∈I

P(X = x′). (B.12)

If we know the CDF then we know the probability mass function, and vice versa. The CDF is a discontinuous,
staircase-like function, which jumps upwards at each value of xi (see, e.g., Figure B-1 below).

You’ve probably already encountered the following three ways of locating the “centre” of the probability
mass function P(X = x). The mode is the value(s) of x at which P(X = x) reaches its maximum. The
median is the value of x for which P(X < x) = 1

2 : half of the “mass” lies to the left of the median, half to
the right. Most important, however, is the mean or expectation value, defined as

E[X] ≡
∑
x∈I

xP(X = x). (B.13)

It gives the location of the centre of (probability) mass of the distrbution. Some comments:
• This E[X] is not a random variable: it’s just a number.
• Alternative ways of denoting E[X] include X and 〈X〉.
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• Note that neither the mean nor the median need belong to the set of possible values I = {xi} that X
is allowed to take.

The kth moment of X (k a positive integer) is obtained by taking g(x) = xk in the example above:

E[Xk] = Xk =
∑
x∈I

xk P(X = x). (B.14)

The zeroth moment is unity, while the first moment is equal to the mean. The kth central moment of X
is the kth moment of X after subtracting off this mean:

E[(X − X̄)k] = (X − X̄)k =
∑
x∈I

(x− X̄)k P(X = x). (B.15)

The first-order central moment is zero. The second central moment is the variance,

var[X] ≡ E
[
(X − X̄)2

]
= E[X2]− X̄2, (B.16)

which is the single most useful and convenient way of quantifying how concentrated the distribution is its
mean value. Recalling that the expectation value E[X] is the location of the centre of (probability) mass of
X, it follows that the variance var[X] is its moment of inertia. The characteristic width of the distribution
is then

std[X] =
√

var[X], (B.17)

which is known as the standard deviation of X.

[There are alternative ways of measuring the width of a distribution, such as the locations (x1/4, x3/4) of the

first and third quartiles defined in terms of the cumulative distribution function through P(X ≤ x1/4) = 1
4

and P(X ≤ x3/4) = 3
4 . They are sometimes more robust in practice, but harder to reason about than the

variance.]

Exercise: For real numbers a and b, show that

E[aX + b] = aE[X] + b,

var[aX + b] = a2 var[X].
(B.18)

B.9 Some important discrete distributions

Bernoulli distribution The mother of all discrete distributions is the simple coin flip. This is the pro-
totypical example of a Bernoulli trial, the name given to the situation in which there are just two pos-
sible outcomes: heads/tails, success/failure, left/right, fight/flee, truth/dare. Let us assign X = +1 if
the coin lands heads up, X = 0 for tails. If p is the probability of heads, then E[X] = X̄ = p and
var[X] = E[(X − x̄)2] = p(1− p).

Exercise: There is nothing magical about the values 0 and 1 for X. Suppose that X takes the value
+1 with probability p and −1 with probability 1− p. What are E[X] and var[X] then?

Binomial distribution Suppose we carry out n independent Bernoulli trails. Then our sample space Ω
consists of all 2n sequences (X1, X2, ..., Xn) in which each Xi takes the value +1 with probability p, 0 with
probability (1− p). By (B.5) the probability of any sequence (X1, X2, ..., Xn) ∈ Ω is simply

P(X1, X2, ..., Xn) = P(X1)P(X2) · · ·P(Xn) (B.19)

Let K be a new random variable that counts the number of times Xi = +1 occurs. From (B.19) it is
clear that, given a particular sequence (X1, ..., Xn) for which K = k, the probability associated with that
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Figure B-1. Probability mass functions (top) and cumulative distribution functions (bottom)
of a binomial distribution (B.20) having n = 10, p = 0.4 (left) and a Poisson distribution (B.23)
having ν = 4 (right). The Possion distribution is defined for k →∞, but the plots are restricted
to k < 12.

particular sequence is pk(1 − p)n−k. But there are many sequences for which K = k: in fact, there are(
n
k

)
= n!/k!(n− k)! of them and each one occurs with the same probability, pk(1− p)n−k. Therefore

P(K = k) =

(
n

k

)
pk(1− p)n−k. (B.20)

Multinomial distribution Keeping the number of throws n fixed, consider what happens when we in-
crease the number of sides of our “coin” to m > 2. For example, if we replaced our coin by a die we would
have m = 6. Then the result of each throw, X1, ..., Xn, is one of m values, which occur with probabilities
p1, ..., pm, satisfying p1 + · · · + pm = 1. The probability of any particular sequence of throws is still given
by (B.19).

Let K1, ...,Km be random variables that count the number of times that each of our m possible per-throw
outcomes occurs. So, K6 would be the number times we rolled a six in our die example. We can work
out the probability of any given sequence (x1, ..., xn) by counting the number of times each outcome occurs
among the {xi}: if outcome 1 appears k1 times, outcome 2 occurs k2 times, etc, then the probability of that
sequence is pk+1

1 pk22 · · · pkmm . But of the mn possible sequences there are a total of n!/k1! · · · km! that share
the property that oucome 1 occurs k1 times, outcome 2 occurs k2 times etc, each occuring with the same
probability. Therefore

P(K1 = k1, ...,Km = km) =
n!

k1! · · · km!
pk11 · · · pkmm , (B.21)

which is the multinomial distribution. The binomial distribution is the special case m = 2.

Poisson distribution There is one more very important discrete distribution. Consider the following
model of radioactive decay. Split the time interval [0, T ] into n subintervals each of length ∆t, so that
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T = n∆t. Let p be the probability of an event (e.g., a radioactive decay event) occuring during one of those
subintervals. We expect this probability to be propotional to ∆t. So let p = λ∆t, where λ is known as
the rate parameter. If we make ∆t small enough there will be at most one event per subinterval and the
probability of having k events among these n is just (binomial)

P(K = k) =

(
n

k

)
pk(1− p)n−k. (B.22)

Now let n→∞ holdiing T fixed, so that ∆t = T
n → 0. Then

P(K = k) = lim
n→∞

n!

k!(n− k)!
[λ∆t]

k
[1− λ∆t]

n−k

= lim
n→∞

n!

k!(n− k)!

[
λT

n

]k [
1− λT

n

]n−k
= 1

k! [λT ]
k

e−λT

= 1
k!ν

ke−ν ,

(B.23)

where in the last line we have introduced ν ≡ λT .

Exercise: Show that the expectation value and the variance of the Poisson distribution are both equal
to ν. Going back to our radioactive decay model, what does this imply about the spread in the number
of counts received when the time interval T becomes large?

B.10 Continuous random variables

By definition, a continuous random variable is one whose CDF (B.9) can be expressed as the integral

FX(x) ≡ P(X ≤ x) =

∫ x

−∞
fX(x′) dx′ (B.24)

for some non-negative function fX(x). This fX(x) is known as the probability density function or PDF
of X. Clearly, it can be obtained from the CDF just by differentiating:

fX(x) =
d

dx
FX(x). (B.25)

Using (B.10), the probability (or “probability mass”) of finding X in the range [a, b] is then

P(a < X ≤ b) = FX(b)− FX(a) =

∫ b

0

fX(x) dx−
∫ a

0

fX(x) dx

=

∫ b

a

fX(x) dx,

(B.26)

and the probability of finding X in some small interval [x, x+ dx] of width dx around x is fX(x) dx.

Note: the PDF fX(x) is not a probability: it’s a probability density. In particular, the probability that a
continuous random variable X takes on any specific value x is precisely zero, because choosing a single point
implies taking dx→ 0.

Change of variables Any smooth function g of the random variable X is itself another continuous random
variable. This is a powerful idea, but it raises the following question: if X has pdf fX(x), how do we find
the pdf fY (y) of the new random variable Y = g(X)?
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To answer this, suppose that this g is a strictly increasing function, so that it has a single-valued inverse
function g−1: if y = g(x) then x = g−1(y). Now look at the CDF of y:

FY (y) ≡ P(Y ≤ y) = P(g(X) ≤ y) = P(X ≤ g−1(y)), (B.27)

the last equality following because g is a strictly increasing function. Following (B.25) and differentiating
with respect to y, we find that the PDF of y is given by

fY (y) = fX(g−1(y))
d

dy
g−1(y), (B.28)

which is a bit of a mess: this is a case where you should remember the method, not the result.

Exercise: As a slight variation on this method, consider the event associated with X lying in the
interval [x, x + dx], which has probability fX(x) dx. The same event corresponds to y lying in the
interval [y, y + dy], where y = g(x) and dy = g′(x)dx. Explain why we must have

fX(x) dx = fY (y) dy. (B.29)

Hence obtain (B.28).

Expectation, variance, moments The expectation of a continuous random variable X is defined to be

E[X] = X̄ ≡
∫ ∞
−∞

xfX(x) dx, (B.30)

which is essentially the same as the discrete case (B.13) with P(X = x) replaced by fX(x) dx and the sum
turned into an integral. Although it is not as easy to show, the expectation of any other random variable
Y = g(X) is simply

E[g(X)] =

∫ ∞
−∞

g(x)fX(x) dx. (B.31)

In particular, the variance of X is (once again) the expectation value of (X − X̄)2, which is simply

var[X] ≡ E[(X − X̄)2] =

∫ ∞
−∞

(x− X̄)2fX(x)dx. (B.32)

The kth moment of X is defined to be

E[Xk] =

∫ ∞
−∞

xkfX(x) dx. (B.33)

So, as for discrete variables, the variance is the second moment of the deviation, (X − X̄), of X from its
centre of mass X̄ = E[X].

Exercise: Let X and Y be continous random variables and let a and b be real numbers. Show that

E[aX + b] = aE[X] + b,

var[aX + b] = a2 var[X].
(B.34)
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B.11 Some important continuous distributions

Here are the PDFs of some important continuous distributions.

Uniform distribution between x = a and x = b:

f(x) =

{
1
b−a , if a < x < b,
0 otherwise.

(B.35)

It has mean 1
2 (b+ a) and variance 1

12 (b− a)2.

Exponential with rate parameter λ:

f(x) =

{
λe−λx, if x > 0,
0 otherwise.

(B.36)

Its mean is λ−1, variance λ−2.

Exercise: Consider the radioactive-decay model we used to motivate the Poisson distribution in §B.9.
Show that PDF of the time interval t > 0 between successive decay events is f(t) = λe−λt.

Normal or Gaussian with mean µ and variance σ2:

f(x) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
. (B.37)

Sometimes this is written as N(µ, σ).

Cauchy

f(x) =
1

π(1 + x)2
. (B.38)

B.12 Joint distributions

We can generalise the notion of random variable to random tuples (pairs), random triples, random vectors
and so on. For example,

(i) In darts one usually throws three darts per round. The scores (s1, s2, s3) obtained in a round comprise
a discrete random triple.

(ii) The (x, y) coordinates of a single dart’s landing point describe a continuous two-dimensional random
vector.

For clarity we’ll restrict our attention to the case of just two continuous random variables, X and Y ; the
corresponding results for discrete variables and the generalisation to three or more variables should be
obvious.

The joint cumulative distribution function of (X,Y ) is defined as the probability of the event consisting of
all X ≤ x and Y ≤ y:

FX,Y (x, y) = P ((X ≤ x) ∩ (Y ≤ y)) . (B.39)

It is clear that this FX,Y → 1 as both x, y → ∞, and that FX,Y → 0 as either x or y → −∞. It tells us
everything about how X and Y are distributed.

The joint CDF completely determines the probabilities of all events involving X and Y . The condition for
X and Y to be continuous random variables is that we can express FX,Y as

FX,Y (x, y) =

∫ x

−∞
dx′
∫ y

−∞
dy′fX,Y (x′, y′) (B.40)



VI–11 Appendix: probability

for some non-negative function fX,Y (x, y). This fX,Y (x, y) is known as the joint probability density of
(X,Y ) and can be obtained by differentiating the joint CDF:

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y). (B.41)

From (B.40) the probability mass associated with the square {x < X < x+ ∆x}∩{y < Y < y+ ∆y} is then

(FX,Y (x+ ∆x, y + ∆y)− FX,Y (x, y + ∆y))− (FX,Y (x, y)− FX,Y (x+ ∆x, y))

=

∫ x+∆x

x

dx′
∫ y+∆y

y

dy′ fX,Y (x′, y′).
(B.42)

Letting ∆x and ∆y tend towards zero, the probabilty mass associated with a small element dxdy at (x, y)
is simply fX,Y (x, y) dxdy.

Change of variables Suppose that we have another pair of random variables U = U(X,Y ), V =
V (X,Y ) that are functions of (X,Y ). What is the joint PDF of (U, V )? Following (B.29) this new PDF
fU,V (u, v) can be obtained from fX,Y (x, y) by requiring that probability masses are independent of the
“coordinates” (x, y) or (u, v) that we use to label them. Consider a small rectangle of side dx× dy at (x, y).
In (u, v) space this will be a parallelogram of area |∂u∂x

∂v
∂y −

∂v
∂x

∂u
∂y |dxdy. We must have then that

fU,V (u, v)
∣∣∣∂u∂x ∂v∂y − ∂v

∂x
∂u
∂y

∣∣∣dxdy = fX,Y (x, y) dxdy. (B.43)

That is,

fU,V (u, v) = fX,Y (x, y)

∣∣∣∣∂(u, v)

∂(x, y)

∣∣∣∣−1

, (B.44)

where ∣∣∣∣∂(u, v)

∂(x, y)

∣∣∣∣ = det

( ∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

)
(B.45)

is the determinant of the Jacobian of the (x, y)→ (u, v) transformation.

Exercise: The generalisation to three random variables should be obvious. Just to check: suppose
that the random variables (X,Y, Z) and (R,Θ,Φ) are related via X = R sin Θ cos Φ, Y = R sin Θ sin Φ,
Z = R cos Θ. Show that fR,Θ,Φ(r, θ, φ) = fX,Y,Z(x, y, z) r2 sin θ.

Marginal PDFs Having a joint CDF FX,Y (x, y) we can immediately obtain the CDFs of the individual
variables X and Y simply by taking appropriate limits:

FX(y) = lim
y→∞

FX,Y (x, y),

FY (y) = lim
x→∞

FX,Y (x, y).
(B.46)

The PDFs of X and Y are then

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy,

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx,

(B.47)

which are sometimes referred to the the marginal PDFs of fX,Y (x, y) or FX,Y (x, y): Integrating over one
(or more) of the variables in a joint PDF to eliminate that variable from the PDF is known as “marginalising”
that variable. (This jargon makes sense if you think of taking a page containing a 2d table of numbers (our
joint PDF/PMF), summing up the rows and writing the result in the margin of the page.)
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Independence We have already stated the condition (B.5) for events to be independent. The condition
for random variables X and Y to be independent is that the joint CDF factorises into

FX,Y = FX(x)FY (y). (B.48)

Exercise: Show that this is equivalent to

fX,Y (x, y) = fX(x)fY (y), (B.49)

if X and Y are continuous random variables, and to

P((X = x) ∩ (Y = y)) = P(X = x)P(Y = y) (B.50)

if they are discrete.

Exercise: Show that

var[X + Y ] = var[X] + var[Y ], if E[XY ] = E[X]E[Y ] (B.51)

The variables X and Y are uncorrelated if E[XY ] = E[X]E[Y ]. This last exercise shows that the variance
of the sum of a pair of uncorrelated variables is equal to the sum of the variances. A sufficient (but not
necessary) condition for X and Y to be uncorrelated is that they be independent.

Covariance and correlation The covariance of the random variables X and Y is defined as

cov(X,Y ) = E[(X − X̄)(Y − Ȳ )]

=

∫ ∞
−∞

dx

∫ ∞
−∞

dy (x− X̄)(y − Ȳ )fX,Y (x, y),
(B.52)

the last equality applying if X and Y are continuous. So, while the variance of a single random variable
measures its (scalar) moment of inertia, the covariance of two random variables is the inertia tensor of the
joint PDF.

The correlation is a rescaled version of the covariance:

ρ(X,Y ) =
cov(X,Y )√
var[X] var[Y ]

. (B.53)

B.13 Laws of large numbers

An effective, practical explanation of the “probability of an event” is the fraction of times the event occurs
in a large number of trials. The expectation or average value of a random variable is often explained in a
similar way by considering the average value over multiple trials. How does this fit into the grand framework
of events, probability measure and so on that we’ve just seen? Recall that we made no mention of repeated
trials in §B.2 when we introduced the definition of probability measure in §B.2 nor in the definition of
expectation in equations (B.13) or (B.30).

Here is (part of) the answer to that question. Suppose that we’re interested in some physical quantity, which
is represented by the random variable X. We’ve devised an experiment to measure this X. We run this
experiment multiple times. Let X1 be the random variable denoting the result of the first run, X2 the result
of the second, and so on. We assume that our experimental skills are so good that these Xi are independent
and identically distributed. Consider the partial sum,

Sn = X1 + · · ·+Xn, (B.54)
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of the first n such results. The expectation value of the sample average 1
nSn is then

E
[

1
nSn

]
=

1

n
(E[X1] + · · ·+ E[Xn])

=
1

n
(E[X] + · · ·+ E[X]) = E[X] = X̄,

(B.55)

the first equality following by the standard properties of the expectation, the second from our assumption
that the Xi are independent and identically distributed. The variance of the sample average is

var
[

1
nSn

]
=

1

n2
var [X1 + · · ·+Xn]

=
1

n2
(var[X1] + · · ·+ var[Xn])

= 1
n var[X]

(B.56)

using the properties (B.18) and (B.51) of the variance together with the assumption that the Xi are inde-
pendent. So, in the limit of a large number n→∞ of measurements, the distribution of the sample average
becomes more and more tightly concentrated on E[X], with a characteristic width (standard deviation) that
shrinks as 1/

√
n. This is an example of a “law of large numbers”

Comments:
• This particular law of large numbers requires only that the Xi be independent with the same means

and variances; apart from that it does not actually require that their PMFs/PDFs be identical.
• There are variants that show more explicitly that the probability mass associated with any nonzero

value of | 1nSn−X̄| tends to 0 as n→∞. Some of these require that the Xi are identically distributed,
but do not require the variances to exist.

Exercise: You may have encountered the following empirical fact. Experiments – even if repeated
many times – do not always converge on the correct result. Here is one way of attempting to model
that. Suppose that the random variables Xi are related to the true value xtrue of the physical quantity
by Xi = xtrue + ∆ + b, where ∆ is a random measurement error and b is a constant bias. How is the
distribution of sample average of these Xi related to b, ∆ and the underlying xtrue?

We have just found seen that the expectation value of the sample average 1
nSn tends to E[X] and that its

variance is 1
n var[X]. We can do better: the central limit theorem tells us that, under certain reasonable

conditions, the PDF of 1
nSn tends towards a normal distribution with that mean and variance. We postpone

the proof until we’ve covered Fourier transforms.

B.14 Further reading

See also your Statistics and Data Analysis course, the first few lectures of which give plenty of examples
involving “pure” probability. Lots of books cover this material: my treatment follows Grimmet & Welsh’s
Probability: an introduction. RHB§30 is another good starting point, not least because it gives plenty of
examples. Beware that the meaning of the term “distribution function” of a random variable depends
on who you talk to. In maths books on probability theory it refers to the cumulative distribution function.
Among physicists, the “distribution function” is usually taken to mean either the probability mass function
(in the case of a discrete variable) or the probability density function (for a continuous variable).

You may have noticed that we’ve successfully avoided stating what the map P actually “means”. The most
obvious definition is perhaps that P stands for the frequency of occurence of an event in the limit of many
trials. But what if someone says “I’m 90% certain that it’s going to rain tomorrow”: how do you hold them
to account? Or less fluffily, what if a cosmologist claims that “with 68% confidence, the Hubble constant
lies in the range 67.0 to 68.3 km/s/Mpc”? A more general way of looking at probability is to treat events as
statements (“it will rain tomorrow”) and to use P to quantify your degree of belief in each statement. See
Chapters 1 and 2 and Appendix A of Jaynes’ Probability Theory: The Logic of Science.

http://www-pnp.physics.ox.ac.uk/~biller/Statistics.html

