
Mathematical Methods MT2017: Problems 4
John Magorrian, john.magorrian@physics.ox.ac.uk

(mostly recycled from Fabian Essler’s MT2009 problems)

1. Orthogonality

Suppose that the functions Ψ0(x), Ψ1(x), Ψ2(x), ... are orthogonal over the interval [a, b] with respect
to the weight function w(x). Show that the Ψn(x) are linearly indepdendent.

2. Orthogonal, normalised eigenfunctions

The real functions un(x) (n = 1 to ∞) are an orthogonal, normalised set on the interval (a, b) with
weight function w(x) = 1. The function f(x) is expressed as a linear combination of the un(x) via

f(x) =

∞∑
n=1

anun(x). (Q2.1)

Show that
(i)

an =

∫ b

a

un(x)f(x) dx; (Q2.2)

(ii) ∫ b

a

[f(x)]2 dx =

∞∑
n=1

a2n. (Q2.3)

[Hint for part (ii): writing out the left-hand side in long-hand notation gives∫ b

a

(a1u1(x) + a2u2(x) + · · ·)(a1u1(x) + a2u2(x) + · · ·) dx

=

∫ b

a

[
a21[u1(x)]2 + a22[u2(x)]2 + · · ·+ 2a1a2u1(x)u2(x) + · · ·

]
dx.

(Q2.4)

Why do the
∫

[un(x)]2dx terms each give 1? Why do the
∫
un(x)um(x) dx terms with n 6= m each give

0?]

3. Eigenvalues and eigenfunctions

By substituting x = et, find the normalized eigenfunctions yn(x) and the eigenvalues λn of the operator
L̂ defined by

L̂y = x2y′′ + 2xy′ +
1

4
y, 1 ≤ x ≤ e, (Q3.1)

with boundary conditions y(1) = y(e) = 0.

4. Hermiticity

Consider the set of functions {f(x)} of the real variable x defined on the interval −∞ < x <∞ that go
to zero faster than 1/x for x→ ±∞, i.e.,

lim
x→±∞

xf(x) = 0. (Q4.1)

For unit weight function, determine which of the following linear operators is Hermitian when acting

upon {f(x)}: (a) d
dx + x (b) −i d

dx + x2 (c) ix d
dx (d) i d3

dx3 .
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5. More Hermiticity

Recall that an operator A is Hermitian if 〈u|A |v〉=〈v|A |u〉?, or, equivalently,

∫ b

a

u?(x) [Av(x)] w(x)dx =

[∫ b

a

v?(x) [Au(x)] w(x)dx

]?
=

∫ b

a

[Au(x)]
?
v(x)w(x)dx. (Q5.1)

The dual A† of the operator A is defined such that 〈u|A† |v〉=〈v|A |u〉?, or, equivalently∫ b

a

u?(x)
[
A†v(x)

]
w(x)dx =

∫ b

a

[Au(x)]
?
v(x)w(x)dx. (Q5.2)

(a) Let A be a non-Hermitian operator. Show that A+A† and i(A−A†) are Hermitian operators.
(b) Using the preceding result, show that every non-Hermitian operator may be written as a linear

combination of two Hermitian operators.

6. Sturm–Liouville Problem

The equation
L̂y(x) = λy(x) (Q6.1)

is a Sturm–Liouville equation for the operator

L̂ =
1

w(x)

[
d

dx

(
p(x)

d

dx

)
+ q(x)

]
, (Q6.2)

where p(x), q(x) and w(x) are real functions with w(x) > 0. Any two real solutions yn(x), ym(x) with
distinct eigenvalues λn, λm satisfy the boundary condition[

ymp
dyn
dx

]∣∣∣∣
x=a

=

[
ymp

dyn
dx

]∣∣∣∣
x=b

. (Q6.3)

Without assuming any results proved in lectures, show directly from equations (Q6.1) to (Q6.3) that∫ b

a

yn(x)ym(x)w(x)dx = 0 (Q6.4)

when n 6= m.

7. Express the differential equation

xy′′ + (k + 1− x)y′ = λy, (Q7.1)

where k is a constant, as a Sturm–Liouville equation. What are the natural limits (a, b) to place on x
to satisfy the Sturm–Liouville boundary conditions?

8. Quantum harmonic oscillator

Consider the time-independent Schrödinger equation for the quantum harmonic oscillator

Hψ(x) = Eψ(x),

H = − ~2

2m

d2

dx2
+

1

2
mω2x2.

(Q8.1)
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(a) Using the substitutions y = x
√

mω
~ and ε = E/~ω reduce the Schrödinger equation to

d2

dy2
Ψ(y) + (2ε− y2)Ψ(y) = 0. (Q8.2)

(b) Consider the limit y →∞ and verifty that in this limit

Ψ(y)→ Ayke−y
2/2. (Q8.3)

Hint: you can neglect ε compared to y2 in this limit.
(c) Separate off the exponential factor and define

Ψ(y) = u(y)e−y
2/2. (Q8.4)

Show that u(y) fulfils the ODE

u′′ − 2yu′ + (2ε− 1)u = 0. (Q8.5)

(d) Show that this differential equation can be converted to Sturm–Liouville form by multiplying

both sides of the equation by e−y
2

. What is the weight function w(y) of the Sturm–Liouville
problem?

(e) Solve (Q8.5) by the ansatz

u(y) =

∞∑
n=0

any
n (Q8.6)

by deriving a recurrence relation for the coefficients an. You should get

an+2 = an
(2n+ 1− 2ε)

(n+ 2)(n+ 1)
. (Q8.7)

(f) We know from (b) that for y → ∞ the function u(y) must go to Ayk. This means that the
recurrence relation must terminate, i.e., we must have an = 0. This quantizes the allowed values
of ε = E/~ω:

εn = n+
1

2
, n = 0, 1, 2, . . . . (Q8.8)

Find the polynomial solutions Hn(x) corresponding to these values of ε for n = 0, 1, 2, 3. These
polynomials are called Hermite polynomials.

(g) Show that your results for n = 0, 1, 2, 3 agree with Rodrigues’ formula

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

. (Q8.9)

(h) Show that the Hn can be normalized such that

∫ ∞
−∞

dy e−y
2

Hn(y)Hl(y) = δnl
√
π2nn!. (Q8.10)
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9. Generating function

Hermite polynomials can be defined by the generating function

G(x, t) = ex
2

e−(t−x)
2

= e2tx−t
2

=

∞∑
n=0

Hn(x)
tn

n!
. (Q9.1)

(a) Find H0(x), H1(x), H2(x) by expanding this generating function as a power law in t.
(b) By differentiating G(x, t) with respect to t, show that

2(x− t)
∞∑

n=0

Hn(x)
tn

n!
=

∞∑
n=0

Hn(x)n
tn−1

n!
(Q9.2)

and hence that the Hn(x) satisfy the recurrence relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x). (Q9.3)

(c) By differentiating G(x, t) with respect to x, show that

H ′n(x) = 2nHn−1(x). (Q9.4)

(d) Using the results from (b) and (c), show that the Hn defined in this way satisfy Hermite’s
differential equation

H ′′n − 2xH ′n + 2nHn = 0. (Q9.5)

10. Legendre polynomials

Position vectors r1 and r2 are such that r2 � r1, where r1 = |r1| and r2 = |r2|. Show that

1

|r2 − r1|
=

1

r2

{
1 +

(
r1
r2

)
P1(cos θ12) +

(
r1
r2

)2

P2(cos θ12) + · · ·

}
, (Q10.1)

where θ12 is the angle between r1 and r2, and P1(cos θ) = cos θ, P2(cos θ) = 1
2 (3 cos2 θ − 1).

An electric quadrupole is formed by charges Q and coordinates (0,±a, 0) and charges −Q at coordi-
nates (±a, 0, 0). Show that the potential V in the (x, y) plane at a distance r large compared to a is
approximately

V =
−3Qa2 cos 2θ

4πε0r3
, (Q10.2)

where θ is the angle between r and the x-axis.

Derive an expression for the couple exerted on the quadrupole by a positive point charge Q at a position
r in the (x, y) plane, where r � a.

Deduce the angles θ for which this couple is zero. If the charges of the quadrupole are rigidly connected
and free to rotate about the z-axis, determine whether the equilibrium is stable or unstable in each case.
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