Mathematical Methods MT2017: Problems 1

John Magorrian, john.magorrian@physics.ox.ac.uk

1. Find real values α and β such that the complex vectors $\mathbf{u} = \alpha \begin{pmatrix} 1+i\\ 1-i \end{pmatrix}$ and $\mathbf{v} = \beta \begin{pmatrix} 1-i\\ 1+i \end{pmatrix}$ are normalised. What is the value of the scalar product $\mathbf{u}^{\dagger} \cdot \mathbf{v}$? Prove that \mathbf{u} and \mathbf{v} are linearly independent. Are there any further linearly independent two-dimensional complex vectors? If so, find the necessary vectors to make an orthogonal basis. Express the vector $\begin{pmatrix} 1\\ i \end{pmatrix}$ as a linear combination of the basis vectors.

- 2. Use the Gram–Schmidt procedure to construct an orthonormal set of vectors from the following: $\vec{x}_1 = (0, 0, 1, 1)^{\text{T}}, \quad \vec{x}_2 = (1, 0, -1, 0)^{\text{T}}, \quad \vec{x}_3 = (1, 2, 0, 2)^{\text{T}}, \quad \vec{x}_4 = (2, 1, 1, 1)^{\text{T}}.$
- **3.** Let $S(\mathbf{a}, \mathbf{b}) = \mathbf{a}^{\dagger} M \mathbf{b}$, where *M* is a matrix. What conditions do we need to impose on *M* if $S(\mathbf{a}, \mathbf{b})$ is to define a scalar product between the vectors \mathbf{a} and \mathbf{b} ?
- 4. Prove the triangle inequality: given an inner product $\langle \cdot, \cdot \rangle$ on a vector space \mathcal{V} , show that the norm $\|\mathbf{a}\|$ defined by $\|\mathbf{a}\| \equiv \sqrt{\langle \mathbf{a}, \mathbf{a} \rangle}$ satisfies $\|\mathbf{v} + \mathbf{w}\| \leq \|\mathbf{v}\| + \|\mathbf{w}\|$ for any $\mathbf{v}, \mathbf{w} \in \mathcal{V}$.
- 5. Let A be an operator on a complex vector space \mathcal{V} and let $|v_1\rangle$ and $|v_2\rangle$ be any two vectors from \mathcal{V} . Verify that

$$4\langle v_{2} | A | v_{1} \rangle = \langle v_{+} | A | v_{+} \rangle - \langle v_{-} | A | v_{-} \rangle + \langle v_{+}' | A | v_{+}' \rangle \mathbf{i} - \langle v_{-}' | A | v_{-}' \rangle \mathbf{i}, \qquad (Q5.1)$$

where $|v_{\pm}\rangle \equiv |v_1\rangle \pm |v_2\rangle$ and $|v'_{\pm}\rangle \equiv |v_1\rangle \pm i |v_2\rangle$. Use this result to show that (i) if $\langle v | A | v \rangle = 0$ for all vectors $|v\rangle \in \mathcal{V}$ then A = 0;

- (ii) A is Hermitian if and only if $\langle v | A | v \rangle$ is real for all $|v\rangle \in \mathcal{V}$. (Hint: if $\langle v | A | v \rangle$ is real then $\langle v | A | v \rangle \langle v | A | v \rangle^* = 0$.)
- 6. Which of these matrices represents a rotation?

$$\begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} \frac{1}{4} & \frac{3}{4} & -\sqrt{\frac{3}{8}}\\ \frac{3}{4} & \frac{1}{4} & \sqrt{\frac{3}{8}}\\ \sqrt{\frac{3}{8}} & -\sqrt{\frac{3}{8}} & -\frac{1}{2} \end{pmatrix}.$$
 (Q6.1)

Find the angle and axis of the rotation. What does the other matrix represent?

7. Show that if [A, B] = 0 then

$$(A+B)^{n} = \sum_{i=0}^{n} \binom{n}{i} A^{i} B^{n-i},$$
(Q7.1)

identifying clearly where you make use of the fact that [A, B] = 0. Use this result to show that if [A, B] = 0 then $\exp A \exp B = \exp(A + B)$. Give an example of A, B for which $[A, B] \neq 0$ and $\exp A \exp B \neq \exp(A + B)$.

8. Consider the matrices $\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma^y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Which of the matrices are symmetric? Which are Hermitian? By calculating the commutators of these matrices, show that they can be written as $[\sigma^a, \sigma^b] = 2i\epsilon_{abc}\sigma^c$, where ϵ_{abc} is the alternating tensor and on the right-hand side the summation convention is employed (i.e., the index c is summed over). Write $\exp(i\alpha\sigma^y)$ (α is a real number) as a 2 × 2 matrix. What does it represent? Show that $\exp(i\alpha\sigma^y)$ is unitary without writing it explicitly as a 2 × 2 matrix.

9.

- (a) Find the eigenvalues of the Pauli matrix $\sigma^y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$. Normalise the two corresponding eigenvectors, \vec{u}_1 , \vec{u}_2 , so that $\vec{u}_1^{\dagger} \cdot \vec{u}_1 = \vec{u}_2^{\dagger} \cdot \vec{u}_2 = 1$. Check that $\vec{u}_1^{\dagger} \cdot \vec{u}_2 = 0$. Form the matrix $U = (\vec{u}_1 \quad \vec{u}_2)$ and verify that $U^{\dagger}U = I$. Evaluate $U^{\dagger}\sigma^y U$. What have you learned from this calculation?
- (b) A general 2-component complex vector $\vec{v} = (c_1, c_2)^{\mathrm{T}}$ is expanded as a linear combination of the eigenvectors \vec{u}_1 and \vec{u}_2 via

$$\vec{v} = \alpha \vec{u}_1 + \beta \vec{u}_2,\tag{Q9.1}$$

where α and β are complex numbers. Determine α and β in terms of c_1 and c_2 in two ways: (i) by equating corresponding components of (Q9.1), (ii) by showing that $\alpha = \vec{u}_1^{\dagger} \cdot \vec{v}$, $\beta = \vec{u}_2^{\dagger} \cdot \vec{v}$ and evaluating these products.

- 10. Construct a real symmetric matrix whose eigenvalues are 2, 1 and -2, and whose corresponding normalised eigenvectors are $\frac{1}{\sqrt{2}}(0,1,1)^{\mathrm{T}}, \frac{1}{\sqrt{2}}(0,1,-1)^{\mathrm{T}}$ and $(1,0,0)^{\mathrm{T}}$.
- 11. Find the eigenvalues and eigenvectors of the matrix $F = \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix}$. Hence, proving the validity of the method you use, find the values of the elements of the matrix F^n , where n is a positive integer.
- 12. By finding the eigenvectors of the Hermitian matrix $H = \begin{pmatrix} 10 & 3i \\ -3i & 2 \end{pmatrix}$ construct a unitary matrix U such that $U^{\dagger}HU = D$, where D is a real diagonal matrix.
- **13.** Which of the following matrices have a complete set of eigenvectors in common?

$$A = \begin{pmatrix} 6 & -2 \\ -2 & 9 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 8 \\ 8 & -11 \end{pmatrix}, \quad C = \begin{pmatrix} -9 & -10 \\ -10 & 5 \end{pmatrix}, \quad D = \begin{pmatrix} 14 & 2 \\ 2 & 11 \end{pmatrix}.$$
 (Q13.1)

Construct the common set of eigenvectors where possible.