Mathematical Methods MT2017: Problems 1

John Magorrian, john.magorrian@physics.ox.ac.uk

1. Find real values α and β such that the complex vectors $\mathbf{u}=\alpha\binom{1+\mathrm{i}}{1-\mathrm{i}}$ and $\mathbf{v}=\beta\binom{1-\mathrm{i}}{1+\mathrm{i}}$ are normalised. What is the value of the scalar product $\mathbf{u}^{\dagger} \cdot \mathbf{v}$? Prove that \mathbf{u} and \mathbf{v} are linearly independent. Are there any further linearly independent two-dimensional complex vectors? If so, find the necessary vectors to make an orthogonal basis. Express the vector $\binom{1}{i}$ as a linear combination of the basis vectors.
2. Use the Gram-Schmidt procedure to construct an orthonormal set of vectors from the following: $\vec{x}_{1}=(0,0,1,1)^{\mathrm{T}}, \quad \vec{x}_{2}=(1,0,-1,0)^{\mathrm{T}}, \quad \vec{x}_{3}=(1,2,0,2)^{\mathrm{T}}, \quad \vec{x}_{4}=(2,1,1,1)^{\mathrm{T}}$.
3. Let $S(\mathbf{a}, \mathbf{b})=\mathbf{a}^{\dagger} M \mathbf{b}$, where M is a matrix. What conditions do we need to impose on M if $S(\mathbf{a}, \mathbf{b})$ is to define a scalar product between the vectors \mathbf{a} and \mathbf{b} ?
4. Prove the triangle inequality: given an inner product $\langle\cdot, \cdot\rangle$ on a vector space \mathcal{V}, show that the norm $\|\mathbf{a}\|$ defined by $\|\mathbf{a}\| \equiv \sqrt{\langle\mathbf{a}, \mathbf{a}\rangle}$ satisfies $\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|$ for any $\mathbf{v}, \mathbf{w} \in \mathcal{V}$.
5. Let A be an operator on a complex vector space \mathcal{V} and let $\left|v_{1}\right\rangle$ and $\left|v_{2}\right\rangle$ be any two vectors from \mathcal{V}. Verify that

$$
\begin{equation*}
4\left\langle v_{2}\right| A\left|v_{1}\right\rangle=\left\langle v_{+}\right| A\left|v_{+}\right\rangle-\left\langle v_{-}\right| A\left|v_{-}\right\rangle+\left\langle v_{+}^{\prime}\right| A\left|v_{+}^{\prime}\right\rangle \mathrm{i}-\left\langle v_{-}^{\prime}\right| A\left|v_{-}^{\prime}\right\rangle \mathrm{i}, \tag{Q5.1}
\end{equation*}
$$

where $\left|v_{ \pm}\right\rangle \equiv\left|v_{1}\right\rangle \pm\left|v_{2}\right\rangle$ and $\left|v_{ \pm}^{\prime}\right\rangle \equiv\left|v_{1}\right\rangle \pm \mathrm{i}\left|v_{2}\right\rangle$. Use this result to show that
(i) if $\langle v| A|v\rangle=0$ for all vectors $|v\rangle \in \mathcal{V}$ then $A=0$;
(ii) A is Hermitian if and only if $\langle v| A|v\rangle$ is real for all $|v\rangle \in \mathcal{V}$. (Hint: if $\langle v| A|v\rangle$ is real then $\left.\langle v| A|v\rangle-\langle v| A|v\rangle^{\star}=0.\right)$
6. Which of these matrices represents a rotation?

$$
\left(\begin{array}{ccc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \tag{Q6.1}\\
-\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
\frac{1}{4} & \frac{3}{4} & -\sqrt{\frac{3}{8}} \\
\frac{3}{4} & \frac{1}{4} & \sqrt{\frac{3}{8}} \\
\sqrt{\frac{3}{8}} & -\sqrt{\frac{3}{8}} & -\frac{1}{2}
\end{array}\right) .
$$

Find the angle and axis of the rotation. What does the other matrix represent?
7. Show that if $[A, B]=0$ then

$$
\begin{equation*}
(A+B)^{n}=\sum_{i=0}^{n}\binom{n}{i} A^{i} B^{n-i} \tag{Q7.1}
\end{equation*}
$$

identifying clearly where you make use of the fact that $[A, B]=0$. Use this result to show that if $[A, B]=0$ then $\exp A \exp B=\exp (A+B)$. Give an example of A, B for which $[A, B] \neq 0$ and $\exp A \exp B \neq \exp (A+B)$.
8. Consider the matrices $\sigma^{x}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), \sigma^{y}=\left(\begin{array}{cc}0 & -\mathrm{i} \\ \mathrm{i} & 0\end{array}\right), \sigma^{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Which of the matrices are symmetric? Which are Hermitian? By calculating the commutators of these matrices, show that they can be written as $\left[\sigma^{a}, \sigma^{b}\right]=2 \mathrm{i} \epsilon_{a b c} \sigma^{c}$, where $\epsilon_{a b c}$ is the alternating tensor and on the right-hand side the summation convention is employed (i.e., the index c is summed over). Write $\exp \left(\mathrm{i} \alpha \sigma^{y}\right)(\alpha$ is a real number) as a 2×2 matrix. What does it represent? Show that $\exp \left(\mathrm{i} \alpha \sigma^{y}\right)$ is unitary without writing it explicitly as a 2×2 matrix.
9.
(a) Find the eigenvalues of the Pauli matrix $\sigma^{y}=\left(\begin{array}{cc}0 & -\mathrm{i} \\ \mathrm{i} & 0\end{array}\right)$. Normalise the two corresponding eigenvectors, \vec{u}_{1}, \vec{u}_{2}, so that $\vec{u}_{1}^{\dagger} \cdot \vec{u}_{1}=\vec{u}_{2}^{\dagger} \cdot \vec{u}_{2}=1$. Check that $\vec{u}_{1}^{\dagger} \cdot \vec{u}_{2}=0$. Form the matrix $U=\left(\begin{array}{ll}\vec{u}_{1} & \vec{u}_{2}\end{array}\right)$ and verify that $U^{\dagger} U=I$. Evaluate $U^{\dagger} \sigma^{y} U$. What have you learned from this calculation?
(b) A general 2-component complex vector $\vec{v}=\left(c_{1}, c_{2}\right)^{\mathrm{T}}$ is expanded as a linear combination of the eigenvectors \vec{u}_{1} and \vec{u}_{2} via

$$
\begin{equation*}
\vec{v}=\alpha \vec{u}_{1}+\beta \vec{u}_{2}, \tag{Q9.1}
\end{equation*}
$$

where α and β are complex numbers. Determine α and β in terms of c_{1} and c_{2} in two ways: (i) by equating corresponding components of (Q9.1), (ii) by showing that $\alpha=\vec{u}_{1}^{\dagger} \cdot \vec{v}, \beta=\vec{u}_{2}^{\dagger} \cdot \vec{v}$ and evaluating these products.
10. Construct a real symmetric matrix whose eigenvalues are 2,1 and -2 , and whose corresponding normalised eigenvectors are $\frac{1}{\sqrt{2}}(0,1,1)^{\mathrm{T}}, \frac{1}{\sqrt{2}}(0,1,-1)^{\mathrm{T}}$ and $(1,0,0)^{\mathrm{T}}$.
11. Find the eigenvalues and eigenvectors of the matrix $F=\left(\begin{array}{cc}4 & -2 \\ -2 & 1\end{array}\right)$. Hence, proving the validity of the method you use, find the values of the elements of the matrix F^{n}, where n is a positive integer.
12. By finding the eigenvectors of the Hermitian matrix $H=\left(\begin{array}{cc}10 & 3 \mathrm{i} \\ -3 \mathrm{i} & 2\end{array}\right)$ construct a unitary matrix U such that $U^{\dagger} H U=D$, where D is a real diagonal matrix.
13. Which of the following matrices have a complete set of eigenvectors in common?

$$
A=\left(\begin{array}{cc}
6 & -2 \tag{Q13.1}\\
-2 & 9
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 8 \\
8 & -11
\end{array}\right), \quad C=\left(\begin{array}{cc}
-9 & -10 \\
-10 & 5
\end{array}\right), \quad D=\left(\begin{array}{cc}
14 & 2 \\
2 & 11
\end{array}\right) .
$$

Construct the common set of eigenvectors where possible.

