
Galactic & planetary dynamics – problem set 2

1. Let (θ0,J0) be angle-action variables for the Hamiltonian H0(J0). We wish to construct approximate angle-
action variables (θ1,J1) for the perturbed Hamiltonian H = H0+εH1, where εH1(θ0,J0) is a known function
of the (θ0,J0). Explain why it is appropriate to construct these new (θ1,J1) by using a type-2 generating
function of the form F2(θ1,J0) = θ1 ·J0 + εS(θ1,J0). What is the relationship between (θ0,J0) and (θ1,J1)
in terms of the function S? Obtain an expression for H = H0 + εH1 as a function of θ1,J1, correct to first
order in ε. By Fourier expanding

S(θ1,J0) =
∑
k

Sk(J0)eik·θ
1

(0.1)

and making a similar expansion for the perturbation H1, explain how it is possible to choose the Sk(J0) to
eliminate the O(ε) dependence of the Hamiltonian on the angles θ1.

2. Consider an orbit having semimajor axis a and eccentricity e in a Kepler potential. How are the eccentric
anomaly η and mean anomaly w of a point along such an orbit defined? By expressing the cartesian
coordinates (x, y) of the orbit in terms of the eccentric anomaly and then integrating over the mean anomaly,
or otherwise, show that

〈r2〉 = a2
(
1 + 3

2e
2
)
, 〈r2 cos2 ϕ〉 = 1

2a
2(1 + 4e2), 〈r2 sin2 ϕ〉 = 1

2a
2(1− e2), (0.2)

where 〈Q〉 denotes the time average of the quantity Q.

Now consider the special case of orbits that are close to circular. Show that the mean anomaly satisfies

cosw = cos η + e sin2 η +O(e2) (0.3)

and hence that the true anomaly is given by

ϕ = η + e sin η +O(e2)

= w + 2e sinw +O(e2).
(0.4)

3. For a Kepler orbit of semimajor axis a, eccentricity e and inclination i show that〈
a3

r3

〉
=

1

(1− e2)3/2
,

〈
z2

r5

〉
=

sin2 i

2a3(1− e2)3/2
. (0.5)

4. A satellite orbits an axisymmetric planet of massM , whose potential may be expanded as Φ(r, θ) = −GM/r+
Φ1, where

Φ1(r, θ) =
GM

r

∞∑
l=2

JlR
l

rl
Pl(cos θ). (0.6)

Here R is the mean radius of the planet, the Pl(cos θ) are Legendre polynomials and the Jl are multipole
moments. Treating Φ1 as a perturbation and considering only its l = 2 term, show that the orbit-averaged
perturbation Hamiltonian is given by

〈H1〉 =
GMJ2R

2

4a3(1− e2)3/2
(3 sin2 i− 2), (0.7)

where a, e and i are the semimajor axis, eccentricity and inclination of the satellite’s orbit. By expressing
this in terms of Delaunay variables, show that a, e and i are constants of motion, but that the argument of
periapse ω undergoes prograde precession if cos i > 1/

√
5, retrograde if cos i < 1/

√
5.
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5. [optional] Write a piece of computer code to map between Cartesian phase-space coordinates (x,v) and
Delaunay elements. Assume that GM = 1. Construct an orbit integrator for the potential of the previous
problem and use it to check how well the averaging approximation holds for the earth (for which J2 ' 10−3).

6. [BT3.23] The earth is flattened at the poles by its spin. Consequently orbits in its potential do not conserve
total angular momentum. Many satellites are launched in inclined, nearly circular orbits only a few hundred
kilometers about the Earth’s surface, and their orbits must remain nearly circular, or they will enter the
atmosphere and be destroyed. Why do the orbits remain nearly circular? [See Tremaine & Yavetz (2014)]

7. Consider the restricted three-body problem in which a test body orbiting a central star of unit mass is
perturbed by a planet of mass m that moves on a circular orbit of unit radius.

(a) The motion of the test particle can be described by a Hamiltonian of the form H = H0(J) +H1(θ,J), in
which

H0(J) = −1/2J2
λ + (J$ − Jλ). (0.8)

Explain how actions J = (Jλ, J$) and angles θ = (λ,−$) are related to the orbital elements (a, e, ω, w) of
the test particle. What is the origin of the (J$ − Jλ) term in H0?

(b) Write down an expression for H1 in terms of the radius r and true anomaly ϕ of the test particle. Without

detailed calculation explain how to expand this H1 using Laplace coefficients b
(j)
s (a) and and thence to angle–

action coordinates (θ,J).

[The Laplace coefficients b
(j)
s (a) are defined through (1 + a2 − 2a cosφ)−s =

∑∞
j=0 b

(j)
s (a) cos jφ.]
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