
Chapter 1

Introduction

These are work-in-progress notes for the MMathPhys course “Galactic and Planetary Dynamics”,
which you can think of as a prequel to Michaelmas Term’s “Kinetic Theory” lectures. The starting
point (actually, nearly the whole course!) is the one-body problem: understanding test-particle
orbits in smooth background potentials, and how they respond when perturbed. From there we
build up to self-consistent, steady-state equilibrium models of galaxies and then investigate their
response to various perturbations. I assume you have had some exposure to Hamiltonian mechanics.
Some background in kinetic theory and astrophysics would be useful, but is not essential.

Reading: Tremaine (2023) and Morbidelli (2002) for planetary systems; Binney & Tremaine
(2008) for galaxies; Arnold (1978), Fasano et al. (2013) for background in classical mechanics.

These notes are from 7th February 2025. Mistakes are guaranteed. Corrections and suggestions
are welcome: john.magorrian@physics.ox.ac.uk.
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Chapter 2

The two-body problem

Let’s go back to basics and consider the two-body problem: a pair of bodies of masses m1, m2

at positions r1, r2 interacting with potential energy V (r1, r2) = m1m2U(|r2 − r1|) so that the
force between them is central. We’ll shortly specialize to the choice U(r) = −G/r appropriate for
Newtonian gravity, but for the moment let’s consider general U(r).

2.1 Reduction to one-body problem

The equations of motion (EOM) for the system are

m1r̈1 = − ∂V

∂r1
,

m2r̈2 = − ∂V

∂r2
.

(2.1)

Introducing the the centre of mass of the pair,

R =
m1r1 +m2r2
m1 +m2

, (2.2)

and their relative displacement

r ≡ r2 − r1, (2.3)

the EOMs can be written as

MR̈ = 0,

r̈ = −M dU

dr
r̂

(2.4)

where M ≡ m1 +m2 is the total mass of the system and r̂ is the unit vector in the direction of r.
The first of this pair of equations is conservation of linear momentum of the system. The second
shows that the two-body problem can be reduced to that a single equation for the displacement r.
Another way of writing this reduced, one-dimensional EOM is

r̈ = −∂Φ
∂r

, (2.5)

where the potential Φ(r) =MU(r).
The energy of the system,

E =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 + V

=
1

2
MṘ2 +

1

2
µṙ2 + µΦ,

(2.6)

3



4 CHAPTER 2. THE TWO-BODY PROBLEM

splits into a contribution from the the kinetic energy of the centre of mass motion (first term)
plus the total energy of a one-body system of reduced mass µ ≡ m1m2/(m1 +m2) moving in the
potential Φ. The system’s angular momentum

L = r1 ×m1ṙ1 + r2 ×mṙ2

= R×MṘ+ r× µṙ,
(2.7)

is conserved, because
d

dt
L =

d

dt

(
R×MṘ

)
+

d

dt
(r× µṙ) = 0 (2.8)

using the usual vector identity a× a = 0 for any vector a together with R̈ = 0 and r× r̈ = 0 from
equations (2.4). A consequence is that r ·L = constant: i.e., r is confined to a plane whose normal
is set by the direction of L.

What does motion in this plane look like? Let us introduce plane polar coordinates (r, φ), so
that r̈ = (r̈ − rφ̇2)r̂ + (2ṙφ̇ + rφ̈)φ̂. Then the vector equation (2.5) becomes the pair of scalar
equations

r̈ − rφ̇2 = −dΦ

dr
, 2ṙφ̇+ r2φ̈ = 0. (2.9)

The second of these is conservation of angular momentum again. Let h = r × ṙ be the angular
momentum (per unit reduced mass) of the reduced system. Then the first equation can be written
as r̈ − h2/r3 = −dΦ/dr. Substituting u ≡ 1/r and using d

dt = hu2 d
dϕ it becomes

d2u

dφ2
+ u = − 1

h2
dΦ

du
. (2.10)

2.2 Newtonian gravity

Now specialise to the case Φ = −GM/r = −GMu. The solution to (2.10) is then u(φ) = A cos(φ−
φ0) +GM/h2, where A and φ0 are constants of integration. So r = 1/u is given by

r(φ) =
h2/GM

1 + AGM
h2 cos(ϕ− ϕ0)

=
a(1− e2)

1 + e cos(φ− φ0)
, (2.11)

in which the constants A and h are replaced by new variables a and e. This is the equation of
a conic section with focus at r = 0 and pericentre at φ = φ0. Without loss of generality we set
φ0 = 0 from now on. If the eccentricity e < 1 then the orbit is bound and traces a closed ellipse
with semimajor axis a. Its pericentre is at r = a(1− e), φ0 = 0, apocentre at r = a(1+ e), φ0 = 0.
The marginally bound e = 1 case is a parabola; unbound e > 1 orbits are hyperbolae.

Our solution (2.11) gives only the geometrical shape of the path, r(φ), without directly telling
us anything about its time dependence. To work out the latter we need to use dφ/dt = h/r2,
where h2 = GMa(1 − e2). From this it immediately follows that the period of bound, elliptical
orbits is

T = 2π

√
a3

GM
, (2.12)

independent of their eccentricity e.
To go beyond this it is helpful to express

r(η) = a(1− e cos η), (2.13)

a much simpler function of a new, fictitious angle η, known as the eccentric anomaly. The real,
honest-to-goodness geometrical angle φ is known as the true anomaly. The “dynamical” angle
w = 2πt/T , where t = 0 corresponds to pericentre, is known as the mean anomaly. Both η and φ
increase by 2π over the course of an orbit, but neither increases linearly with time unless e = 0.
To map among these three angles we need the following result.

Exercise: Equating (2.11) to (2.13) and rearranging gives

cosφ =
cos η − e

1− e cos η
. (2.14)
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By considering (1− cosφ)/(1 + cosφ), show that

√
1− e tan

1

2
φ =

√
1 + e tan

1

2
η,

dφ

dη
=

√
1− e2

1− e cos η
. (2.15)

By conservation of angular momentum φ̇ = h/r2 = h/a2(1− e cos η)2. So,

t =

∫
dη

η̇
=

∫
dη

φ̇

dφ

dη
=
a2

h

∫
dη (1− e cos η)2

dφ

dη
. (2.16)

Taking dφ/dη from (2.15) and integrating, choosing t = 0 at pericentre,

t =
a2

h

√
1− e2(η − e sin η) =

T

2π
(η − e sin η). (2.17)

That is, the mean and eccentric anomalies are related via

w =
2πt

T
= η − e sin η, (2.18)

a result known as Kepler’s equation.

2.3 Orbit elements

The semimajor axis a, eccentricity e and mean anomaly w are three of the six orbital elements
that are often used to specify the phase-space position of a particle orbiting a Newtonian point
mass. The other three elements are the Euler angles that describe how the orbit plane is oriented
in space.

Introduce Cartesian coordinates (x′, y′) = r(cosφ, sinφ) within the orbital plane. From (2.13)
it follows that

x′ = a(cos η − e),

y′ = a
√
1− e2 sin η

z′ = 0. (2.19)

Now rotate this (x′, y′, z′) coordinate system about the Oz′ axis by angle ω ∈ [0, 2π), the argument
of peripasis. Next rotate about the new Ox′ axis by the inclination angle i ∈ [0, π]. Finally
rotate about the updated Oz′ axis by Ω ∈ [0, 2π), the longitude of the ascending node: the
orbit’s nodes are the locations where it intersects the z = 0 plane; the ascending node has ż > 0,
the descending node ż < 0. Then the three-dimensional coordinatesxy

z

 =

cosΩ − sinΩ 0
sinΩ cosΩ 0
0 0 1

1 0 0
0 cos i − sin i
0 sin i cos i

cosω − sinω 0
sinω cosω 0
0 0 1

x′y′
0

 , (2.20)

with the dependence on a, e, w entering via (x′, y′) given by (2.19).
All elements but the mean anomaly w are constants of motion in the unperturbed two-body

problem. Perturbations will cause the elements to evolve: at any instant the phase-space location
of our reduced one-body system can be specified by a set of so-called osculating elements.

2.4 The eccentricity vector

A special feature of the Kepler potential is that it is closed. Of all spherically symmetric potentials,
only it and the SHO potential have this property. By direct differentiation it is easy to confirm
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that an additional integral of motion for the Kepler Hamiltonian is the Laplace–Runge–Lenz
vector,

e =
ṙ× h

GM
− r̂, (2.21)

which points in the direction of pericentre and has magnitude e. For this reason it is also called
the eccentricity vector.

Exercise: Another conserved vector is the angular momentum h. Show that h and e are
not independent and that conservation of both of them leads to a total of five independent
constants of motion: (a, e, ω, i,Ω).

Exercises

1. Two Newtonian point particles orbit their common centre of mass, which is at rest. Show that
the total energy of the system is given by

E = −GMµ

2a
, (2.22)

where a is the semimajor axis.

2. Consider an orbit having semimajor axis a and eccentricity e. By expressing the Cartesian
coordinates (x, y) of the orbit in terms of the eccentric anomaly and then integrating over the
mean anomaly, or otherwise, show that

⟨r2⟩ = a2
(
1 +

3

2
e2
)
, ⟨r2 cos2 φ⟩ = 1

2
a2(1 + 4e2), ⟨r2 sin2 φ⟩ = 1

2
a2(1− e2), (2.23)

where ⟨Q⟩ denotes the time average of the quantity Q.
Now consider the special case of orbits that are close to circular. Show that the mean anomaly
satisfies

cosw = cos η + e sin2 η +O(e2) (2.24)

and hence that the true anomaly is given by

φ = η + e sin η +O(e2)

= w + 2e sinw +O(e2).
(2.25)

3. For a Kepler orbit of semimajor axis a, eccentricity e and inclination i show that〈
a3

r3

〉
=

1

(1− e2)3/2
,

〈
z2

r5

〉
=

sin2 i

2a3(1− e2)3/2
. (2.26)

4. A test particle orbits a point mass M located at R = 0. Sketch the orbit, assuming that the
particle is bound with e ̸= 0, indicating the directions of the vectors h, e and h× e. Introduce
a coordinate system centred on M and let ẑ be a unit vector in the Oz direction. What pair of
special points lie on the line that passes throughM in the direction of h× ẑ? Then by referring
to equation (2.19) and the rotations (2.20), or otherwise, explain how to calculate the elements
(a, e, ω, i,Ω, w) of the test particle given its position (x, y, z) and velocity (ẋ, ẏ, ż) in Cartesian
coordinates.

5. Let (r, ϑ, φ) be the spherical polar coordinates of the particle in the previous problem, so that
it has Cartesian coordinates (x, y, z) = r(sinϑ cosφ, sinϑ sinφ, cosϑ). From (2.20) show that

cot i cotϑ = sin(φ− Ω), (2.27)

a result that holds for any orbit that is confined to a plane whose orientation is given by the
angles (Ω, i). We’ll use this in §5.6 later. See also Figure 3.26 of Binney & Tremaine (2008).

6. A pair of bodies approach one another on a hyperbolic orbit with relative speed v and impact
parameter b. Show that the deflection angle at the end of the encounter is given by π − 2∆φ,
where

tan∆φ = − bv2

GM
. (2.28)
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7. Show that the minimum separation rmin during the encounter between the bodies in the pre-
vious question satisfies

v2r2min + 2GMrmin − b2v2 = 0. (2.29)

Suppose now that the bodies have identical massesm1 = m2 and radius a. Obtain an expression
for the minimum value of b needed to avoid contact between them. Hence show that each body
has an effective cross section for physical collisions of

σ⋆ = π(2a)2 (1 + Θ) , (2.30)

where Θ = v2esc/v
2 with v2esc = 2Gm1/a.
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Chapter 3

More orbits

3.1 The collisionless approximation

Consider a cluster composed of N stars, each of mass m, arranged in a sphere of radius R. The
typical speed v of star is then given by v2 = GmN/R. Follow a typical star as it passes though the
cluster. From (2.28) each interaction it makes as it passes another star leads to a nudge δv ∼ Gm/bv
in the 1d components of its velocity, where b is the impact parameter of the encounter. Per crossing
there are approximately 2πbdbN/πR2 such encounters having impact parameters in the range from
b and b + db. If we assume that these encounters are uncorrelated, then the mean-square change
in velocity is given by

∆v2

v2
∼ 2π

N

πR2

∫ bmax

bmin

(δv)2bdb ∼ 1

N
log Λ, (3.1)

where the Coulomb logarithm log Λ ≡ log(bmax/bmin). A natural choice of bmax is R, the radius
of the cluster. Our approximation for δv assumes that the deflection angle in each encounter is
small and so we set bmin ∼ Gm/v2. Then log Λ ∼ logN and we have that

∆v2

v2
∼ logN

N
. (3.2)

A more refined version of this calculation (Hamilton et al., 2018) considers explicitly the con-
tribution from different length scales. Instead of a sphere, take a three-dimensional box of side L
containing our N stars, each of mass m and moving with typical speed v. Now consider a subbox
of side xL within the big box. The subbox contains Nx = x3N ±

√
x3N stars. The mass within

the subbox has fluctuations δMx = m
√
x3N which persist for a time δtx ∼ xL/v. A test particle

at some distance rL from the subbox will experience a nudge to its velocity of

δv(r, x) ∼ GδMx

rL
δtx =

vx5/2

r2
√
N
. (3.3)

Assuming no correlations, the contribution to the mean-square change in the velocity of the test
particle from all subboxes of scale x at distance r in crossing the big box is then

∆v2(r, x) =
∑
r

(
vx5/2

r2
√
N

)2

︸ ︷︷ ︸
δv2(r,x)

4π
( r
x

)2
︸ ︷︷ ︸

# subboxes

1

x︸︷︷︸
#δtx

∼ 4πv2x2

Nr2
. (3.4)

Now, keeping the subbox scale x fixed, we sum over separations r = x, 2x, 3x, ..., using the approx-
imation that

∑1
r=x

1
r2 ∼ 1

x2 . The result is that

∆v2(x) =
∑
r

∆v2(r, x) =
1

x2
4πv2x2

N
=

4πv2

N
, (3.5)

independent of the spatial fluctuation scale x. This result is based on the assumption that the
fluctuations in each subbox are statistically independent and that there are enough stars in each

9



10 CHAPTER 3. MORE ORBITS

subbox that the usual
√
N Gaussian approximation to the Poisson fluctuations is applicable. The

former breaks down as x → 1, the latter as x → N−1/3. For small x the result also ignores the
temporal correlations among subboxes as particles stream from each subbox to its neighbours: it
assumes that the stars are completely reshuffled every δtx ∝ x. Hamilton et al. (2018) account for
this by adding together the contribution from all scales from x = xmin = 1/N1/3 to x = xmax = 1.
There are ∼ log(xmax/xmin) such scales to include. Multiplying the constant (3.5) by this factor
gives

∆v2

v2
=

4π

3

logN

N
, (3.6)

in ∼ agreement with (3.2).

We define the relaxation time to be the time taken for a star to lose all memory of its initial
orbit. From the preceding expression (which accounts only for uncorrelated two-body encounters)
this two-body relaxation time is given by

trelax ∼ N

logN
tdyn, (3.7)

where tdyn is the dynamical or crossing time. In reality galaxies can relax faster than this (see
exercises to §6 for one example), but the shot noise from two-body encounters is inevitable and
sets a minimum relaxation rate.

Typical galaxies have N ∼ 1011 stars and are only ∼ 102 crossing times old. Therefore the two-
body perturbations to a stellar system caused by individual stars are largely unimportant, except
possibly very close to the centre where the crossing time becomes short. Over timescales t≪ trelax
we can think of stars as test particles moving in a smooth background potential Φ(r, t) sourced
by the distribution of stars and dark matter. This is often called the collisionless assumption:
it does not just mean that stars do not undergo physical collisions, but that they do not even
encounter each other directly.

In this approximation there are no correlations among stars and each distinct population is
completely described by its phase-space distribution function (DF), f(x,v, t), which we define to
be the phase-space mass density of that population.1

We make the additional approximation that stars are neither created nor destroyed. Then the
6d continuity equation becomes the collisionless Boltzmann equation (CBE),

∂f

∂t
+ v · ∂f

∂x
− ∂Φ

∂x
· ∂f
∂v

= 0, (3.8)

for the evolution of f . If f includes all matter in the galaxy then the potential Φ(x, t) is

Φ(x, t) = −G
∫
f(x′,v′, t) d3x′ dv′

|x− x′|
+Φext(x, t), (3.9)

where Φext(x, t) is any externally imposed gravitational perturbation. If there are multiple distinct
populations i = 1, ..., n, each with its own DF fi then each will make its own contribution to Φ.

Much of this course will be concerned with constructing solutions to the coupled pair of equa-
tions (3.8) and (3.9). We start by investigating the qualitative behaviour of orbits in plausible
steady-state potentials Φ(x).

3.2 Orbits in spherically symmetric potentials

A test particle moving in a spherically symmetric potential Φ(r) has constant angular momentum
L per unit mass.2 Its motion is therefore confined to an orbital plane, r · L = constant. We use

1That is f(x,v)d3xd3v is the mass enclosed within a volume element d3xd3v at phase-space location (x,v). An
alternative convention is to take f to be a probability density.

2Unless stated otherwise we set m = 1 for test particles, so that their energies and momenta are all per unit
notional mass.
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polar coordinates (r, φ) to label its position in this plane. Conservation of energy,

E =
1

2
ṙ2 +

1

2
r2φ̇2 +Φ(r)

=
1

2
ṙ2 +

L2

2r2
+Φ(r)︸ ︷︷ ︸

Φeff (r)

(3.10)

gives a relation between r and ṙ. The constraint that ṙ2 > 0 means that r is confined to some
range r− < r < r+, where the peri- and apo-centre radii r− and r+ can be determined by finding
the roots of Φeff(r)− E = 0.

Rearranging (3.10) into an expression for 1/ṙ = dt/dr and integrating, the radial period of
the particle’s orbit (that is, the time taken for it complete a single loop of its r− → r+ → r−
motion) is given by

Tr = 2

∫ r+

r−

dr√
2(E − Φ(r))− L2/r2

. (3.11)

Meanwhile φ increases at a rate φ̇ = L/r2, so that over the course of a radial period φ increases
by an amount

∆φ = 2

∫ r+

r−

Ldr

r2
√
2(E − Φ(r))− L2/r2

. (3.12)

The angular period is therefore Tφ = 2πTr/|∆φ|. If the ratio Tφ/Tr = 2π/|∆φ| is rational then
the particle eventually retraces its orbit exactly: its orbit is closed.

Exercise: Show that Tφ/Tr = 1 for the Kepler potential Φ(r) = −GM/r and that Tφ/Tr =
2 for the simple harmonic oscillator potential Φ(r) = 1

2Ω
2r2. By considering the (three-

dimensional) mass distributions that give rise to these potentials, what does this result say
about the range of plausible values of Tφ/Tr in plausible astrophysical systems?

A very handy result comes from approximating the effective potential as a quadratic,

Φeff(r) ≃ Φeff(rg) +
1

2
κ2(r − rg)

2 + · · · , (3.13)

about its minimum, the location of which is known as the guiding centre radius, rg. The
constant

κ2 ≡ d2Φeff

dr2

∣∣∣∣
rg

=

(
d2Φ

dr2
+

3L2

r4

)
rg

=

(
d2Φ

dr2
+

3

r

dΦ

dr

)
rg

(3.14)

is known as the radial epicycle frequency. Particles that are on almost-circular orbits (r remains
close to rg) undergo simple harmonic motion in the radial direction with freqency κ. Meanwhile,
their angular coordinate φ increases at a rate Ω = L/r2. Because we are assuming that r is close
to rg, this angular frequency Ω is given by

Ω2 =
1

r

dΦ

dr

∣∣∣∣
rg

. (3.15)

Exercise: Explain how to find the radius rc of a circular orbit (i) that has angular momentum
L or, alternatively, (ii) that has energy E. Show that the circular speed vc of such orbits
are given by v2c = (rdΦ/dr) |rc .

In summary, orbits in spherical potentials are straightforward. Each such orbit has four con-
served integrals of motion: the energy E and the three components of angular momentum L. The
orbit is confined to a plane whose normal is set by the direction of L. Within this plane the motion
is confined to an annulus whose edges are given by the solutions to E = Φeff(r). We can think
of every orbit as being (possibly large, anharmonic, generalized) epicyclic oscillations about an
underlying closed, circular orbit of radius rg given by E = Φeff(rg).

The Kepler potential is a very special case of a spherical potential in which the radial and
tangential frequencies are identical, κ = Ω. Another special case is the spherical harmonic oscillator
potential, Φ(r) = 1

2Ω
2r2, for which κ = 2Ω everywhere.
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3.3 Orbits in steady, nonspherical potentials

The structure of phase space in flattened potentials is much more interesting. As a simple example,
let us consider the flattened singular logarithmic potential

Φ(x, y) =
1

2
v20 log

(
x2 +

y2

q2

)
, (3.16)

in which the constant q specifies the axis ratio of the equipotential surfaces in the (x, y) plane and
v0 sets a velocity scale: when q = 1 all circular orbits have speed v0. This can be used as a crude
model of the potential of a nonaxisymmetric disc, or, if we replace (x, y) by (R, z) –

Φ(R, z) =
1

2
v20 log

(
R2 +

z2

q2

)
(3.17)

– of orbits in the meridional (R, z) plane of an axisymmetric galaxy that have zero angular mo-
mentum (Lz = 0).

Exercise: What is the mass density distribution that generates the potential (3.17)? What
is its total mass? By considering a multipole expansion of the three-dimensional mass distri-
bution ρ(x), or otherwise, comment on the plausibility of ellipsoidal equipotential surfaces,
Φ(x) = Φ(m), where m2 ≡ x2 + y2/b2 + z2/c2 and b and c are constants.

The left panel of Figure 3.1 shows a surface of section in the potential (3.16) with v0 = 1
and q = 0.7. This surface of section is obtained by launching orbits from y = 0 with various initial
(x, ẋ), choosing ẏ so that the total energy E = 1, then using a numerical integrator to follow the
orbit for many crossings of the y = 0 plane. Every time the orbit crosses this plane with ẏ > 0 we
record its (x, ẋ) values, leaving the consequents on the figure. The panel on the right shows the
three orbits that produce the black, green and red points on the surface of section. These orbits
are known as “loop”, “fish” and “banana” orbits, respectively. In each case the points plotted on
the surface of section lie along the so-called invariant curve of the orbit: the longer we integrate
for, the more densely we sample this curve.

Exercise: By pure thought, or otherwise, construct a surface of section for orbits in the
spherical potential (3.16) with q = 1.

The only integral of motion that we can write down in this two-dimensional flattened system
(q ̸= 1) is the total energy E. But if this were the only integral of motion orbits would be
restricted only to the three-dimensional subspace E = 1 of four-dimensional phase-space, and the
two-dimensional slice presented in Figure 3.1 should be filled densely. Instead, the restriction of the
loop, fish and banana orbits to one-dimensional invariant curves indicates that each of these orbits
respects an additional isolating integral, I2, that reduces the dimensionality of phase space by
one: the constraints on E and I2 mean that each orbit explores a 4− 2 = 2-dimensional subspace
of the full 4-dimensional phase space. These are examples of regular orbits: that is, orbits that
have as many isolating integrals as there are degrees of freedom. Similarly, most orbits in most
realistic axisymmetric galaxy models respect a third integral of motion in addition to energy E
and the angular momentum Lz about the symmetry axis.

Two additional points:

1. each of the loop, banana and fish orbits can be thought of as epicyclic motion about an
underlying closed parent orbit; they correspond to distinct orbit families, each of which
has its own distinct I2.

2. Not all orbits are regular. In particlar, orbits close to the boundaries between orbit families
are irregular. For example, in the potential (3.16) the irregular orbits are those that do not
lie on an invariant curve in the surface of section, but instead fill out the space between
the gaps occupied by the major orbit families. In two-dimensional systems irregular orbits
are strongly confined, but in three-dimensional galaxy potentials they can occupy significant
fractions of phase space.
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Figure 3.1: Orbits in the flattened logarithmic potential (3.16) with v0 = 1 and q = 0.7.
The panel on the left shows an (x, px = ẋ) surface of section obtained by numerically integrating
orbits with energy E = 1. The black, red and green points are each generated by a single orbit,
the (x, y) trace of which is shown on the right.

3.4 Orbits in rotating frames of reference

The next case to consider is the situation in which the potential Φ(r) is steady, ∂Φ/∂t = 0, in
a frame that rotates with angular velocity Ωp. Recall that the EOM in such systems is (equa-
tion (4.19) later)

r̈ = −Ω̇p × r− 2Ωp × ṙ︸ ︷︷ ︸
Coriolis

−Ωp × (Ωp × r)︸ ︷︷ ︸
centrifugal

−∂Φ
∂r

. (3.18)

For slowly moving particles (ṙ ≃ 0) in a steadily rotating potential (Ω̇p = 0), this equation of
motion is equivalent to motion in an effective potential

Φeff(r) = Φ(r)− 1

2
(Ωp × r)2, (3.19)

and, whether the particle moves slowly or not, it is confined to some Φeff ≥ EJ = constant region
(see equation (4.20) below).

Figure 3.2 shows the effective potential Φeff for two systems. The first is a very poor attempt
at a model of a galactic bar, in which the potential

Φ(x, y) =
1

2
v20 log

(
R2

c + x2 +
y2

q2

)
, (3.20)

is stationary in a frame that rotates with constant angular velocity Ωp = (0, 0, 1). For this plot
we’ve chosen Rc = 0.1 and q = 0.8 (see also Figure 3.14 and equation (3.103) of BT).

The second example is a three-body system consisting of a star of mass M0 at position x0 and
planet of mass M1 at position x1 orbiting one another with constant angular velocity Ωp, where
|Ωp|2 = G(M0 +M1)/a

3, where a = |x1 − x0| is the constant separation between the star and the
planet. The effective potential is

Φeff(r) = − GM0

r− r0
− GM1

r− r1
− 1

2
(Ωp × r)2 (3.21)

We choose a corotating frame centred on the centre of mass of the system and whose z axis is
parallel to Ωp and whose x axis points towards the planet.

The extrema of Φeff are interesting and are called Lagrange points, and identified as L1, L2,
etc, although there are different naming conventions for these points. Using the order shown in
the right panel of Figure 3.2 and taking M0 to be the sun, M1 to be Jupiter, “Trojan” asteroids
live at the trailing L5 point, “Greeks” at the leading L4 and “Hildas” at L3. The Gaia and JWST
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Figure 3.2: Effective potential (3.19) for the rotating flattened logarithmic potential (left) and for
the restricted three-body problem (right) with Φeff given by equations (3.20) and (3.21), respec-
tively.

satellites are located at L2 of the Sun–Earth system. They orbit the Sun with the same period as
the Earth, albeit slightly further out: the additional attraction from the Earth makes this possible.
The solar observatory SOHO sits at L1. The points L1 and L2 are important in the theory of
tides: the equipotential surface that passes through them enclosing M1 is known as the Roche
surface (or Jacobi or Hill).

In the rotating logarithmic potential (left panel) the gravitational and centrifugal accelerations
balance exactly at the points L1, L2, L4 and L5. Stars at these points can corotate with the
potential pattern. For this particular potential, orbits around L3, L4 and L5 are stable, whereas
those around L1 and L2 are unstable. Figure 3.3 plots some of the orbits around L3 and L4 in this
potential.

Exercises

1. A globular cluster has mass 106M⊙ and half-mass radius 3 pc. Justifying any assumptions
you make, calculate tdyn and trelax. Are stellar collisions likely be important? [Hint: use
equation (2.30).]

2. Does the expression (3.7) for the relaxation time apply for two-dimensional systems, such as
discs? If not construct a better estimate.

3. [BT3.7] A test particle moves in a spherically symmetric potential Φ(r). Write down an ex-
pression for the turning points ṙ = 0 of its orbit in terms of (E,L2), where E and L are the
particle’s energy and angular momentum per unit mass. Show that there are at most two such
turning points when Φ is generated by a non-negative mass density ρ(r). [Hint: substitute
u = 1/r.]

4. [BT3.19, Touma & Tremaine (1997)] A spherically symmetric cluster of stars has potential
Φ(r) = Crα, with −1 ≤ α ≤ 2 and C > 0 for α > 0, C < 0 for α < 0. Show that the ratio of
radial to azimuthal periods is

Tr
Tφ

=


1/
√
2 + α, for nearly circular orbits,{

1
2 , α > 0,

1/(2 + α), α < 0,
for nearly radial orbits.

(3.22)

[Hint: to calculate ∆φ for Lz ≃ 0 use
∫∞
1

dx

x
√

xb−1
= π

b for b > 0. For nearly circular orbits,

try a substitution of the form r = A+B sinα.]
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Figure 3.3: Top left: surface of section for orbits in the rotating flattened logarithmic poten-
tial (3.20) having Jacobi integral EJ = −0.273 (see equation (4.20) later). The orbits corresponding
to the red-, green- and blue-coloured consequents are shown in the other panels.

5. By considering contours of Φeff explain why there is a volume of space within which test-particle
orbits in the restricted three-body system (3.21) are bound toM1, with the Lagrange points L1

and L2 lying on the boundary of this region. Show that as M1/M0 → 0 this volume becomes
a sphere of radius

rH = |r1 − r0|
(
M1

3M0

)1/3

(3.23)

(known as the Hill radius) centred on M1.

6. The code that was used to generate the orbits in Figure 3.3 is given in Appendix A. By
modifying this code, or otherwise, construct at least one example each of “horseshoe” and
“tapole” orbits in the the restricted three-body system (3.21), giving the value of the Jacobi
integral in each case. [“Tadpole” orbits execute epicyclic oscillations about either L4 or L5, but
not both; “horseshoe” orbits occupy the horseshoe-shaped contours of Φeff in the right-hand
panel of Figure 3.2 that enclose all of L3, L4 and L5, but not L1 or L2.]
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Chapter 4

Recap of Hamiltonian mechanics

Orbits are most naturally described using the language of Hamiltonian mechanics, which we now
review. Most of the content of this chapter will probably be familiar to you, except perhaps for
§4.6 on orbit integration methods.

Recall that the arena for Lagrangian mechanics is configuration space, whose dimension is equal
to the number of degrees of freedom of the system. The Lagrangian L(q, q̇, t) is a function of
location q(t) within configuration space, the generalised velocity q̇(t) ≡ d

dtq with which the
location moves and possibly time.

Hamilton’s principle of least action states that, if the system is at location q0 at time t0
and at q1 at time t1, then the path q(t) through configuration space between these two endpoints
extremises the action integral, ∫ t1

t0

L(q, q̇, t)dt. (4.1)

Equivalently, the path q(t) satisfies the Euler–Lagrange (EL) equation,

d

dt

(
∂L

∂q̇

)
=
∂L

∂q
, (4.2)

subject to the boundary conditions q(t0) = q0, q(t1) = q1. Another way of writing the EL
equation is by introducing the generalised momentum

p ≡ ∂L

∂q̇
, (4.3)

so that the EL equation becomes
d

dt
p =

∂L

∂q
. (4.4)

That is, the rate of change of generalised momentum is equal to the generalised force, ∂L
∂q .

How to find L? We are free to choose any L for which the EL equation (4.2) produces the
correct equation of motion. For this course can always take L to be the difference between the
kinetic and potential energies of the whole system. That is,

L = T − V, (4.5)

in which the kinetic energy

T =
1

2
q̇T ·A · q̇+B · q̇ (4.6)

is a quadratic form in the generalised velocities q̇, and where the matrix A(q, t), vector B(q, t)
and the potential energy V (q, t), may depend on the generalised coordinates and time t, but not
on the generalised velocity q̇. If our q are orthogonal coordinates referred to an inertial frame of
reference then A is diagonal and B = 0.

Notice from (4.1) that this L is not unique. In particular, adding any total derivative dΛ(q, t)/dt
to L has no effect on the path q(t) that extremises the action integral, although it does change the
definition of p.

17
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4.1 From Lagrangians to Hamiltonians

The EL equation (4.2) is a set of n implicit coupled second-order ODEs (4.2) for the coordinates
qi(t). The equivalent form (4.4) coupled to the definition (4.3) is more appealing, but it mixes up
p’s, q’s and q̇’s. Let’s banish the latter by using a Legendre transformation to rid L(q, q̇, t) of all
generalised velocities q̇. The result of doing this is the Hamiltonian function

H(q,p, t) ≡ p · q̇− L(q, q̇, t), (4.7)

in which all occurences of q̇ are eliminated in favour of q and p. To find the extremal path q(t) in
terms of this new function, let’s look at how this H varies with changes (dq,dp,dt). Differentiating
both sides of this relation we obtain

∂H

∂q
· dq+

∂H

∂p
· dp+

∂H

∂t
dt = q̇ · dp+ p · dq̇−

(
∂L

∂q
· dq+

∂L

∂q̇
· dq̇+

∂L

∂t
dt

)
= q̇ · dp− ∂L

∂q
· dq− ∂L

∂t
dt, (4.8)

using the Euler–Lagrange equation ṗ = ∂L/∂q. This equality must hold for any (dq,dp,dt).
Therefore ∂H/∂t = −∂L/∂t and

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, (4.9)

which are Hamilton’s equations of motion. They are generally no easier to solve than the Euler–
Lagrange equation for the system. But their first-order, explicit nature makes it easier to use them
to reason about general properties of the motion.

Examples:

1. Particle in gravitational field Consider a particle of mass m moving in gravitational
potential Φ(x, t), so that its potential energy is V (x, t) = mΦ(x, t). The equation of motion
is d

dtmẋ = −∂V/∂x. Taking

L(x, ẋ, t) =
1

2
mẋ2 − V (x, t), (4.10)

the generalised momentum p ≡ ∂L/∂ẋ = mẋ and the Euler–Lagrange equation is ṗ =
−∂V/∂x, in agreement with the usual equation. Applying the Legendre transform (4.7) to
this L(x, ẋ, t) results in

H(x,p, t) =
p2

2m
+ V (x, t), (4.11)

for which Hamilton’s equations are ṗ = −∂V/∂x and q̇ = p/m.

For situations in which we have a single, test particle we may safely set m = 1.

2. Point transformation: spherical polar coordinates Expressed in spherical polar co-
ordinates (r, ϑ, φ) the Lagrangian in the preceding example becomes (setting m = 1)

L =
1

2

[
ṙ2 + r2ϑ̇2 + r2 sin2 ϑφ̇2

]
− Φ(x, t). (4.12)

The generalised momentum p has components

pr = ṙ, pϑ = r2ϑ̇, pφ = r2 sin2 ϑϑ̇. (4.13)

Applying the Legendre transformation (4.7) to this Lagrangian (4.12) yields

H(r, ϑ, φ, pr, pϑ, pφ) =
1

2

[
p2r +

p2ϑ
r2

+
p2φ

r2 sin2 ϑ

]
+Φ(r, ϑ, φ). (4.14)
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Notice that if φ does not appear explicitly in Φ then it does not appear in H either. Therefore
∂H/∂φ = 0 and the corresponding momentum pφ is a constant of motion. Such coordinates
are known as cyclic coordinates. In this case the Hamiltonian is reduced to the simpler

Heff(r, ϑ, pr, pϑ|pφ) =
1

2

[
p2r +

p2ϑ
r2

]
+Φeff(r, ϑ|pφ), (4.15)

in which the effective potential

Φeff(r, ϑ|pφ) = Φ(r, ϑ) +
p2φ

2r2 sin2 ϑ
. (4.16)

3. Transform to rotating frame When transformed to a coordinate system r that rotates
with angular velocityΩ with respect to the original x coordinate system, so that ẋ = ṙ+Ω×r,
the Lagrangian (4.10) becomes

L(r, ṙ, t) =
1

2
(ṙ+Ω× r)

2 − Φ(r, t). (4.17)

The generalised momentum is given by

p = ṙ+Ω× r, (4.18)

which is the momentum mẋ in the original, x, frame! The Euler–Lagrange equation can be
rearranged to read

d

dt
ṙ = −Ω̇× r− 2Ω× ṙ−Ω× (Ω× r)− ∂Φ

∂r
, (4.19)

in which the second and third terms are the Coriolis and centrifugal forces, respectively. The
Hamiltonian corresponding to the Lagrangian (4.17) is

H(r,p) =
p2

2
−Ωp · (r× p) + Φ(r). (4.20)

Unlike the energy E, this H has no explicit dependence on time and therefore is a constant
of motion, known as the Jacobi integral, EJ = E − Ωp · L = 1

2 ṙ
2 + Φeff , where Φeff =

Φ− 1
2 (Ωp × r)2 (equation 3.19).

4. N-body system Consider a system of N particles having masses m1, ...,mN located at
x1, ...,xN , in which the pairwise interparticle interaction is described by potential energy
functions Vnl(|xn − xl|) with Vln = Vnl. The equations of motion are then

d

dt
mnẋn = − ∂

∂xn

N∑
l=1

Vnl(|xn − xl|). (4.21)

These equations of motion can be reproduced by the Lagrangian

L({x1, ...,xN}, {ẋ1, ..., ẋN}) = 1

2

N∑
n=1

mnẋ
2
n − 1

2

N∑
n=1

N∑
l=1

Vnl(|xn − xl|), (4.22)

for which the generalised momentum is the vector {p1, ...,pN} = {m1ẋ1, ...,mN ẋN}. The
Hamiltonian is

H({x1, ...,xN}, {p1, ...,pN}) =
N∑

n=1

p2
n

2mn
+

1

2

N∑
n=1

N∑
l=1

Vnl(|xn − xl|). (4.23)

5. Solar system Now consider a system of N planets about the sun. Let r0 = x0 be the
coordinates of the sun and let rn ≡ xn − x0 be the coordinates of the nth planet relative to
the sun. Then the Lagrangian of the (N + 1)-body system in these coordinates is

L({r0, ..., rN}, {ṙ0, ..., ṙN}) = 1

2
m0ṙ

2
0 +

1

2

N∑
n=1

mn(ṙn + ṙ0)
2 − V (4.24)
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where we have written

V ≡ 1

2

N∑
n=0

N∑
l=1

Vnl(|rn − rl|) +
N∑

n=1

Vn0(rn) (4.25)

for the total potential energy of the system. From (4.24) we obtain that the momenta
conjugate to the coordinates ri are

p0 = m0ṙ0 +

N∑
n=1

mn(ṙ0 + ṙn),

pn = mn(ṙ0 + ṙn), n ̸= 0. (4.26)

Notice that for the planets (n ̸= 0) pn is just mnẋn, which is the momentum referred to

the original frame. Rearranging these, we find that m0ṙ0 = p0 −
∑N

n=1 pn and mnṙn =
pn − mn

m0
(pn −

∑
l pl). Therefore

H({rn}, {pn}) =
N∑

n=0

pn · ṙn − L

=
p2
0

2m0
− 1

m0
p0 ·

N∑
n=1

pn +

N∑
n=1

p2
n

2mn
+

1

2m0

N∑
n,l=1

pn · pl + V

=
p2
0

2m0
− 1

m0
p0 ·

N∑
n=1

pn +

N∑
n=1

p2
n

[
1

2mn
+

1

2m0

]
+

N∑
n=1

n−1∑
l=1

pn · pl

m0
+ V.(4.27)

We may as well set p0 = 0 because r0 is a cyclic coordinate. Then H splits into H0, a sum
of N one-body Hamiltonians for particles having reduced masses µn = m0mn/(m0 +mn) in
orbit about the sun, plus H1, which mops up the planet–planet interactions and the indirect
terms that account for the noninertial frame:

H = H0 +H1,

H0 =

N∑
n=1

[
p2
n(m0 +mn)

2m0mn
+ V0n(rn)

]
,

H1 =

N∑
n=1

n−1∑
l=1

[
pn · pl

m0
+ Vnl(rn − rl)

]
. (4.28)

Going back to the middle line of the expression (4.27) for H, a more symmetric way of writing
this is

H =

N∑
n=1

[
p2
n

2mn
+ V0n(rn)

]
+

1

2m0

[
N∑

n=1

pn

]2
+

N∑
n=1

n−1∑
l=1

Vnl(rn − rl), (4.29)

which splits H into a sum of three terms, each of which is easy to integrate on its own.

Notice that in many of the cases above we have H = T+V , the sum of the kinetic and potential
energies of the system.

Exercise: Show that if L = T −V in which T = 1
2

∑
Aij(q)q̇iq̇j is a homogenenous quadratic

form in the velocities q̇i and V = V (q, t) is independent of the velocities, then H = T + V ,
with all q̇i replaced by functions of p. What happens if we add a term

∑
iBi(q, t)q̇i to T?

4.2 Phase space and extended phase space

A Hamiltonian that has no explicit time dependence – ∂H/∂t = 0 – is called autonomous. For
autonomous Hamiltonians we can think of the system as a point having coordinates (q(t),p(t))
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moving in 2n-dimensional phase space, where n is the number of degrees of freedom of the system.
The “velocity” (q̇(t), ṗ(t)) of this point is given by Hamilton’s equations (4.9). As Hamilton’s
equations are first order, the evolution of the system is completely determined by its initial phase-
space location.

Nonautonomous Hamiltonians can be made autonomous by introducing extra variables. For
example, suppose that H = H(q,p, t). Consider the new Hamiltonian

H ′(q,p, τ, E) ≡ H(q,p, τ) + (−E), (4.30)

on an extended (2n + 2)-dimensional phase space that includes an additional coordinate τ with
corresponding generalised momentum −E. Here τ is the “physical” time coordinate, whereas t is
used to parametrize trajectories in phase space: all occurences of t in the original H(q,p, t) are
replaced by τ . Hamilton’s equations for τ and −E are τ̇ = ∂H/∂(−E) = 1 and −Ė = −∂H/∂τ .
So, τ is directly proportional to t and the autonomous Hamiltonian H ′(q,p, τ, E) produces the
same trajectories in (q,p) space as H(q,p, t).

4.3 Poisson brackets

The Poisson bracket [A,B] of the pair of functions A(q,p), B(q,p) is defined as

[A,B] ≡ ∂A

∂q
· ∂B
∂p

− ∂A

∂p
· ∂B
∂q

. (4.31)

Remembering that the qi and pi are independent coordinates labelling points in phase space, it
immediately follows that

[qi, qj ] = 0, [pi, pj ] = 0 and [qi, pj ] = δij , (4.32)

which are known as the canonical commutation relations or fundamental Poisson brackets.
Similarly, from the definition (4.31) the Poisson bracket has the following properties:

antisymmetry: [A,B] = −[B,A];

linearity: [αA+ βB,C] = α[A,C] + β[B,C]; (α, β constants)

chain rule: [AB,C] = [A,C]B +A[B,C];

Jacobi identity: [[A,B], C] + [[B,C], A] + [[C,A], B] = 0. (4.33)

Hamilton’s equations (4.9) can be written in Poisson bracket form as

q̇i = [qi, H], ṗi = [pi, H]. (4.34)

Another way of writting the Poisson bracket (4.31) is as

[A,B] =

(
∂A

∂w

)T

J

(
∂B

∂w

)
, (4.35)

in which the phase-space coordinates are gathered into the 2n-dimensional column vector

w =

(
q
p

)
(4.36)

and the 2n× 2n symplectic unit matrix is given by

J =

(
0n 1n

−1n 0n

)
, (4.37)

with 0n and 1n being the n× n zero and identity matrices, respectively.
Notice that JT = −J , J2 = −12n and that detJ = 1. Any matrix A that satisfies J = AJAT

is symplectic.
The fundamental Poisson brackets (4.32) become simply

[wi, wj ] = Jij (4.38)

and Hamilton’s equations become

ẇi = [wi, H] = Jiα

(
∂H

∂wα

)
. (4.39)
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4.4 Phase flow

Any well-behaved function B(q,p) defines a flow (q(λ),p(λ)) in phase space, with “velocity”
vectors given by Hamilton’s equations

dq

dλ
=
∂B

∂p
,

dp

dλ
= −∂B

∂p
, or

dw

dλ
= J

∂B

∂w
, (4.40)

in which we take B as the Hamiltonian and use λ to parameterise location along the flow. The
trajectories w(λ) = (q(λ),p(λ)) for different choices of initial condition w0 = (q0,p0) are the
integral curves of the function B. The Poisson bracket [A,B] is the rate of change of the
function A(q,p) = A(w) as it is carried along the phase flow generated by B, because

dA

dλ
=
∂A

∂w
· dw
dλ

=
∂A

∂zi
Jiα

∂B

∂zα
(using (4.40))

= [A,B].

(4.41)

In an autonomous system, any function I(q,p) whose phase flow commutes with that of the
Hamiltonian, [I,H] = 0, is an integral of motion, dI

dt = 0. In particular, the Hamiltonian itself
is one such integral. Much of this course will be about finding a further n− 1 integrals, when they
exist.

Exercise: For a system having Hamiltonian H(q,p, t) show that the rate of change of a
function f(q,p, t) is given by

df

dt
=
∂f

∂t
+ [f,H]. (4.42)

Exercise: Suppose that I1, ..., Ik are integrals of motion for the Hamiltonian H. Show that
any function f(I1, ..., Ik) that depends only these integrals is itself another integral of motion.

Having established that any function B(q,p) defines a flow in phase space, let us return to the
properties of such flows but using H for the function that generates the flow and t to parametrise
position along the flow. We can have some formal fun with this for functions f(q,p). Introduce
the operator LH defined by

LH• ≡ [•, H]. (4.43)

Then

LHf = [f,H] =
df

dt
, L2

Hf = [[f,H], H] =
d2f

dt2
, ..., Ln

Hf =
dnf

dtn
, (4.44)

in which Ln
H• means apply the [•, H] operator n times. The formal Taylor series expansion

f(t) =

∞∑
n=0

1

n!
tn

dnf

dtn

∣∣∣∣
t=0

(4.45)

can be written as the Lie series

f(t) =

∞∑
n=0

1

n!
tnLn

Hf(0)

= exp(tLH)f(0), (4.46)

which will be useful later.
The flows defined by Hamilton’s equations (4.9), (4.40) or (4.46) have a number of special

properties that sets them apart from other dynamical systems.
Liouville’s theorem Consider motion from time t to time t+ δt, during which w increases

by δw. To first order in δt, the Jacobian of this mapping from w to w+ δw is the 2n× 2n matrix
having elements

∂

∂wj
(wi + δwi) = δij +

∂

∂wj

(
Jik

∂H

∂wk

)
δt = δij +Aijδt, (4.47)
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where Aij = −Aij ≡ Jik
∂2H

∂wj∂wk
. Using the relation det(I + Aδt) ≃ etr(Aδt) together with the

antisymmetry of Aij , it follows that the determinant of this Jacobian is +1. Therefore the phase
flow preserves volume and orientation.

Poincare invariants Volume is just one invariant of phase flows. There is a hierarchy of
conserved quantities, the must fundamental of which are the integrals

I ≡
∮
γ(t)

p · dq =
∑
i

∫
S(t)

dqidpi, (4.48)

in which γ(t) is any closed curve in phase space that moves with the phase flow. To show that I
is conserved, let λ be a periodic variable parametrising position along the curve. Then

dI

dt
=

∮
γ(t)

[
dp

dt
· dq
dλ

+ p · ∂
2q

∂λ∂t

]
dλ. (4.49)

Integrating the second factor of the second term by parts this becomes

dI

dt
=

∮ [
dp

dt
· dq
dλ

− dp

dλ
· dq
dt

]
dλ

= −
∮ [

∂H

∂q
· dq
dλ

+
dp

dλ
· ∂H
∂p

]
dλ = −

∮
dH

dλ
dλ = 0. (4.50)

In fact, these invariants can be taken to be the the defining properties of phase flows: if (4.48) is
conserved for all curves C(t) then the flow must be Hamiltonian (4.9).

4.5 Canonical maps

The coordinates (q,p) we use to label points in phase space are not unique. There are, however,
certain preferred sets of coordinates, somewhat analogous to orthonormal coordinates in everyday
three-dimensional space. Suppose that we transform to new phase space coordinates (Q,P) with
Qi = Qi(q,p) and similarly for Pi, i = 1, ..., n. As before, let us write W for the 2n-dimensional
column vector having elements Q1, ..., Qn followed by P1, ..., Pn. Then W = W(w). If the new
W = (Q,P) satisfy the canonical commutation relations (4.32)

[Qi, Qj ] = 0, [Pi, Pj ] = 0 and [Qi, Pj ] = δij , (4.51)

or, equivalently,
[Wi,Wj ] = Jij , (4.52)

then the new coordinates (Q,P) are canonical coordinates and the mapping between the two
sets of coordinates is called canonical or symplectic.

All Poisson brackets are preserved under canonical maps. To see this, introduce the Jacobian
matrix (

∂W

∂w

)
ij

≡ ∂Wi

∂wj
(4.53)

so that
∂A

∂wi
=

∂A

∂Wk

∂Wk

∂wi
(4.54)

can be written as the column vector

∂A

∂w
=

(
∂W

∂w

)T
∂A

∂W
. (4.55)

and the canonical commutation relation (4.52) becomes(
∂W

∂w

)
J

(
∂W

∂w

)T

= J. (4.56)
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Then

[A,B]w =

(
∂A

∂w

)T

J

(
∂B

∂w

)
=

(
∂A

∂W

)T(
∂W

∂w

)
J

(
∂W

∂w

)T

︸ ︷︷ ︸
=J

(
∂B

∂W

)
= [A,B]W

(4.57)

So, Poisson brackets are independent of canonical basis.
Similarly, using (4.39) the rate of change of the coordinate Wi is

Ẇi =
∂Wi

∂wα
ẇα =

∂Wi

∂wα
Jαβ

∂H

∂wβ

= [Wi, H]. (4.58)

So Hamilton’s equations in the new canonical coordinates are simply

Ẇi = [Wi, H]. (4.59)

So, canonical maps preserve the form of Hamilton’s equations of motion.
An important example of a canonical map is the mapping w0 → w(t) obtained by simply

drifting along under the flow generated by a Hamiltonian function H(w). Consider motion for an
infinitesmal time δt. The coordinate wi changes by

δwi = Jiα
∂H

∂wα
δt, (4.60)

so that [wi, wj ] is mapped to

[wi + δwi, wj + δwj ] = [wi, wj ] + [δwi, wj ] + [wi, δwj ] + [δwi, δwj ]. (4.61)

Exercise: Using the definition of the Poisson bracket in the form (4.35) or otherwise, show
that all the O(δt) terms in (4.61) vanish and therefore that the fundamental Poisson bracket
[wi, wj ] is conserved: time evolution is a canonical map. More generally, the phase
flow (4.40) is canonical.

Phase-space volume element In the new coordinates the phase-space volume element

d2nW =

∣∣∣∣det ∂W∂w
∣∣∣∣d2nw. (4.62)

But the condition (4.56) means that the modulus of the determinant is unity and therefore that

d2nW = d2nw. (4.63)

Poincare invariants Let S be any two-dimensional surface in phase space and let γ be
its boundary. By Green’s theorem we can write the Poincare invariant (4.48) as the sum of the
projections of this surface onto the (Qi,Pi) planes:

I =

∮
γ

P · dQ =
∑
i

∫
S

dQidPi. (4.64)

Now let (u, v) be any coordinates labelling position on the surface S. Then (4.64) becomes∑
i

∫
S

∂(Qi, Pi)

∂(u, v)
dudv =

∑
i

∫
Si

(
∂Qi

∂u

∂Pi

∂v
− ∂Pi

∂u

∂Qi

∂v

)
dudv. (4.65)

Notice that ∑
i

(
∂Qi

∂u

∂Pi

∂v
− ∂Pi

∂u

∂Qi

∂v

)
=
∑
αβ

∂Wα

∂u
Jαβ

∂Wβ

∂v

=
∑
αβ

∂Wα

∂wγ

∂wγ

∂u
Jαβ

∂Wβ

∂wδ

∂wδ

∂v

=
∑
αβ

∂wγ

∂u
Jγδ

∂wδ

∂v
, (4.66)
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using the relation (4.56) to obtain the last line. Therefore I from (4.64) becomes

I =
∑
i

∫
S

dQidPi =
∑
αβ

∫
S

∂Wα

∂u
Jαβ

∂Wβ

∂v
=
∑
αβ

∫
S

∂wα

∂u
Jαβ

∂wβ

∂v
=
∑
i

∫
S

dqidpi. (4.67)

Conversely, any mapping that preserves all Poincare integral invariants automatically preserves all
Poisson brackets.

4.6 Symplectic integrators

Hamilton’s equations, ẇ = J
(
∂H
∂w

)
, are a set of 2n first-order coupled ODEs. Given phase-space

coordinates w(0) at time t = 0, it is straightforward to take an off-the-shelf numerical ODE
integrator to integrate these equations forwards in time to find the phase-space trajectory w(t) of
the system at subsequent times t. Two important examples are the case of a single particle moving
in potential Φ(x), so that H = p2/2m+mΦ(x), and the N -body problem (4.23).

A well-known example of a generic integrator is the fourth-order Runge–Kutta scheme. Given a
timestep interval τ , the phase-space position at each new timestep is calculated from the previous
one as

w(t+ τ) ≃ w(t) +
τ

6
(k1 + 2k2 + 2k3 + k4) , (4.68)

in which the coefficients ki(t,w(t)) are given by

k1 = ẇ(t,w),

k2 = ẇ
(
t+

τ

2
,w +

τ

2
k1

)
,

k3 = ẇ
(
t+

τ

2
,w +

τ

2
k2

)
,

k2 = ẇ (t+ τ,w + τk3) , (4.69)

with the values of the function ẇ(t,w) on the RHS obtained by numerically evaluating the phase-
space tangent vector (∂H/∂q,−∂H/∂p) at the appropriate point. The error in this estimate of
w(t+ τ)−w(t) turns out to be O(τ5). Therefore the result is correct to O(τ4) and the method is
said to be “fourth order”. Making the timestep τ smaller results in more accurate orbits w(t), and
one can devise adaptive timestep schemes that estimate the error in w(t+ τ)−w(t) and adjust τ
accordingly. In the single-particle case such schemes allow us to use large steps where V (x) is
changing slowly, saving most of the computation time for locations where the gravitational force
varies rapidly. Similarly, there are many more refined, higher-order integrators than this simple
fourth-order Runge–Kutta one.

For Hamiltonian systems there is a special class of orbit integrator that integrates Hamilton’s
equations exactly, albeit for a surrogate Hamiltonian Hsurr that is “close” to the desired Hamilto-
nian H. The advantage of these symplectic integrators is that, unlike the schemes above, they
preserve Poincare invariants. To understand them, apply (4.46) to obtain the mapping

w(t+ τ) = exp[τLH ]w(t), (4.70)

where LH• ≡ [•, H] as before. If we could carry this out exactly, this would be a perfect stepping
algorithm.

Now suppose that the Hamiltonian H = A+B is a sum of two terms, A and B, for each of which
we can integrate the equations of motion exactly. For example, the single-particle Hamiltonian
H = 1

2mp2 + V (x) splits into the free-particle Hamiltonian A = p2/2m and the potential energy
B = V (x). Under A alone the particle simply drifts with ẋ = p/m, ṗ = 0, whereas under B alone
the particle is kicked with p increasing at the constant rate −∂V/∂x while x is constant.

Consider the operator exp[τLA] exp[τLB ], which corresponds to integrating first along the flow
induced by Hamiltonian B, followed by that induced by A. We need two results to proceed. The
first is the Baker–Campbell–Hausdorff identity,

expX expY = exp
(
X + Y + 1

2 [X,Y ] + 1
12 [X − Y, [X,Y ]] + ⟨rest⟩

)
(4.71)
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where ⟨rest⟩ consists of further nested commutators of the operators X and Y . The second is that

L[A,B] = −[LA, LB ], (4.72)

which is easily verified using the Jacobi identity. Here [A,B] is the Poisson bracket of the functions
A and B, whereas [LA, LB ] is the commutator of the operators LA and LB . Taking these two
together, it follows that our simple integrator can be written as

exp[τLA] exp[τLB ] = exp

(
τ(LA + LB) +

1

2
τ2[LA, LB ] + · · ·

)
= exp (τ(LH + LHerr

)) (4.73)

in which the error Hamiltonian
Herr =

1
2τ [A,B] +O(τ2). (4.74)

Therefore the integrator (4.73) is exact for the surrogate Hamiltonian Hsurr = H+Herr. Compared
to motion under the desired Hamiltonian H, the step w(t+ τ)−w(t) given by (4.73) is correct to
order O(τ), making this a first-order integrator.

Notice that swapping the order in which A and B are applied changes the sign of the leading-
order term in Herr. So, halving the timestep and applying these two integrators in sequence results
in the new integrator (

exp
[
1
2τLA

]
exp

[
1
2τLB

]) (
exp

[
1
2τLB

]
exp

[
1
2LA

])
. (4.75)

Using the identities (4.71) and (4.72) the error Hamiltonian for this new integrator is

Herr =
1
12τ

2
[
[A,B], B + 1

2A
]
+O(τ4), (4.76)

showing that the leading terms in the error Hamiltonians (4.74) of the back-to-back first-order
integrators cancel exactly.

For the case A = p2/2m (drift) and B = V (x) (kick) the integrator (4.75) is one of the two
forms of the well-known leapfrog or Verlet integrator (namely the “DKKD” version). Swapping
A and B results in the “KDDK” version. For solar-system problems, the Hamiltonian can be
written in the form (4.29), which splits into three parts, each of which is easy to integrate in
isolation, albeit in very different sets of coordinates.

By chaining together sequences of the form (4.73) or (4.75) with appropriately chosen timesteps τ ,
it is possible to construct yet higher-order integrators. See Saha & Tremaine (1992).

A disadvantage of symplectic integrators is that the timestep τ cannot be changed adaptively
in the same way as is possible in generic integrators. To see this, consider the mapping from w(t)
to W = w(t+τ) = w(t)+∆w, where ∆w = ∆w(w, τ). This is symplectic if W and w are related
through equation (4.56), namely (

∂W

∂w

)
J

(
∂W

∂w

)T

= J. (4.77)

Making the parameter τ in ∆w a function of w breaks this condition in general.
Chapter 2 of Tremaine (2023) gives a thorough overview of numerical orbit integration schemes

– not just symplectic ones. Laskar & Gastineau (2009) present an application to the long-term
stability of the solar system.

Exercises

1. Let (q,p) be canonical coordinates for a system having n degrees of freedom. Consider the
transformationQ = Aq, P = Bp where A and B are n×nmatrices having constant coefficients.
How must A and B be related to ensure that (Q,P) are canonical?

2. Referred to an inertial coordinates X and momenta P the Hamiltonian for a system of N
planets orbiting a central star is

H({X}, {P}) = P0

2m0
+

N∑
n=1

P2
n

2mn
+ V, (4.78)



4.6. SYMPLECTIC INTEGRATORS 27

where V (X0,X1, ...,XN ) accounts for the gravitational interactions among the bodies.
(a) Consider a canonical transformation to new, heliocentric, coordinates (x0, ...,xN ) in which
x0 ≡ X0 is the location of the sun and xn ≡ Xn −X0 are the heliocentric coordinates of the
planets (n = 1, ..., N). What the the corresponding conjugate momenta p0 and p1, ...,pN?
Show that the Hamiltonian in these new coordinates is given by

H({x}, {p}) = 1

2m0

(
p0 −

N∑
n=1

pn

)2

+

N∑
n=1

p2
n

2mn
+ V. (4.79)

(b) consider an alternative transformation in which x1, ...,xn remain as in part (a), but x0 is
instead defined to be the location of the centre of mass of the whole system. What are the
momenta p0 and pn in this case? Show that the Hamiltonian is given by

H({x}, {p}) = p2
0

2mtot
+

1

2m0

[
n∑

n=1

pn

]2
+

N∑
n=1

p2
n

2mn
+ V,

where mtot = m0 +
∑N

n=1mn. What advantage, if any, does this coordinate system have over
that used in part (a)?

3. Construct a symplectic integator for motion in a rotating frame with Hamiltonian (4.20). [Hint:
split the Hamiltonian into Hdrift = 1

2p
2 − Ωp · (r × p) and Hkick = Φ(r). We can integrate

orbits in Hkick exactly. Construct an exact integrator for Hdrift.]

4. [BT3.26,3.27] Consider the Hamiltonian H = A+ B and let LA• ≡ [•, A], LB ≡ [•, B] denote
derivatives along the phase flows produced by the functions A and B respectively. Show that
the leapfrog integrator

exp
(
1
2τLA

)
exp (τLB) exp

(
1
2τLA

)
corresponds to motion in a surrogate Hamiltonian Hsurr = H +Herr, in which the error Hamil-
tonian

Herr =
τ2

12

[
[A,B], B + 1

2A
]
+O(τ4).

Consider a new integrator composed of three successive leapfrog steps, the first of length aτ ,
followed by one of length bτ and finally another of length aτ , where 2a + b = 1. Find the
constants a and b that kill off all terms lower than O(τ4) in the error Hamiltonian of this new
integrator.

5. Use invariance of Poisson brackets under canonical transformations to express the collisionless
Boltzmann equation (3.8) CBE in spherical polar coordinates (r, ϑ, φ).
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Chapter 5

Angle–action coordinates

For regular Hamiltonians we can find a new set of canonical coordinates in which (i) the new
momenta are conserved and (ii) the new coordinates increase linearly with time. Coordinates with
such friendly properties are attractive candidates to use both for constructing equilibrium models
and for investigating how these equilbria respond to perturbations. This chapter outlines how to
construct maps between our original (x,v) coordinates and these new angle–action coordinates.

5.1 Generating functions for canonical maps

We have already seen that the mapping obtained by drifting along the flow (4.40) generated by any
function B(q,p) is canonical. This is this most natural way of constructing maps that join smoothly
onto the identity map. But this produces only a subset of all canonical maps. For example, in 4.1 we
constructed Hamiltonians for a single particle, first using Cartesian (x, y, z) coordinates, then using
spherical polars (r, ϑ, φ). Both sets of phase-space coordinates were canonical, but no mapping of
the form (4.40) can relate them.

To find a more general way of constructing maps, recall that the condition for a map

Qi = Qi(q,p),

Pi = Pi(q,p), (i = 1, . . . , n), (5.1)

to be canonical is that it preserves the Poincare integral invariants (4.64): that is, for any loops γ
we must have ∮

γ

p · dq =

∮
γ

P · dQ (5.2)

which means that the integrands can differ only by a total differential:

p · dq−P · dQ = dF, (5.3)

where F is some function defined on phase space. This F is the generating function of the
transformation between (q,p) and (Q,P). It is an awkward, implicit way of specifying the trans-
formation, but also very powerful: from just one function of 2n phase-space coordinates we obtain
a complete canonical map.

Type 1 generating functions Let us assume that we can express P = P(q,Q). Then we
may eliminate P from F and write F = F1(q,Q), a function of both the old and new co-ordinates
and time, but not the momenta. Substituting this F = F1 into (5.3) and using the chain rule gives

p · dq−P · dQ =
∂F1

∂q
· dq+

∂F1

∂Q
· dQ. (5.4)

As (dq,dQ) can be varied independently (the equality above has to hold for any loop γ) we must
have

p =
∂F1

∂q
, P = −∂F1

∂Q
. (5.5)

29
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Thus the function F1(q,Q) generates an implicit transformation from (q,p) → (Q,P). By con-
struction, it satisfies the condition (5.2) and therefore is canonical.

Exercise: What mapping is generated by F1 = q ·Q? Show that the Hamiltonian H(q,p) =
1
2 (p

2 + ω2q2) is transformed to H(Q,P) = 1
2 (Q

2 + ω2P2).

Type 2 generating functions Generating functions of the form F1(q,Q) are unsuitable
for constructing mappings close to the identity. So, instead of writing F = F1(q,Q), let us take

F = −P ·Q+ F2(q,P), (5.6)

in which we treat Q as a function Q(q,P). Substituting this into (5.3) and using the chain rule to
expand dF gives:

p · dq−P · dQ = −Q · dP−P · dQ+
∂F2

∂q
· dq+

∂F2

∂P
· dP. (5.7)

As (dP,dq) vary independently, we must have that

p =
∂F2

∂q
, Q =

∂F2

∂P
. (5.8)

This is another implicit canonical mapping between (q,p) and (Q,P).

Exercise: Show that F2(q,P) = q · P generates the identity map. What mapping does
F2(q,P) = q ·P+ ϵn̂ · q produce? What about F2 = q ·P+ ϵn̂ ·P? What is the connection
between this F2 and the function B(z) that generates the phase flow (4.40)?

Exercise: Show that when the generating functions F1 or F2 depend on time t that the
Hamiltonian transforms to

K = H +
∂F

∂t
, (5.9)

where F is the appropriate GF and the (q,p) in the original H are expressed as q = q(Q,P)
and similarly for p. Thus the canonical maps given by type-1 and type-2 generating functions
are given implicitly by

F1(q,Q) : p =
∂F1

∂q
, P = −∂F1

∂Q
, K(Q,P, t) = H(q,p, t) +

∂F1

∂t

F2(q,P) : p =
∂F2

∂q
, Q =

∂F2

∂P
, K(Q,P, t) = H(q,p, t) +

∂F2

∂t
. (5.10)

5.2 Integrability: the Arnold-Liouville theorem and tori

An integral of motion I = I(q,p) is a function that commutes with the Hamiltonian: [I,H] = 0.
Given two integrals of motion, I1(q,p) and I2(q,p), the Jacobi identity implies that [[I1, I2], H] =
0. So, [I1, I2] is another integral of motion, albeit possibly a trivial one. For example, if Lx and
Ly are integrals of motion, then so too is Lz.

If [I1, I2] = 0 then I1 and I2 are said to be in involution. That is, their phase flows
commute. For example, in spherical systems the components of the angular momentum vec-
tor L = (Lx, Ly, Lz) are integrals of motion. The square of the total angular momentum L2 and
any one of (Lx, Ly, Lz) are in involution, but any pair of Lx, Ly and Lz is not.

A HamiltonianH for a system having n degrees of freedom is integrable if it has n independent
integrals of motion, I1, ..., In, that are in involution with each other, [Ii, Ij ] = 0. The Hamiltonian
itself is always one of these integrals of motion.

Each such integral reduces dimension of accessible phase space by one, since Ii(q,p) = ci,
where ci is a constant. So motion in an integrable Hamiltonian is confined to an n-dimensional
subvolume M of 2n-dimensional phase space. The Arnold–Liouville theorem states that, if this
n-dimensional subvolume M is compact, then

1. M is can be mapped smoothly onto an n-dimensional torus;
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2. we can construct a coordinate system θ = (θ1, ..., θn) to label points inM , with each θi being
2π-periodic and increasing linearly with time, θ̇i = Ωi.

See §49 of Arnold (1978) for the proof. The important idea is that each integral I1, ..., In
defines a flow on M . Starting from any point x0 ∈ M we can reach some other x ∈ M by
drifting for some time t1 along the flow generated by I1, followed by time t2 drifting along
the flow generated by I2 and so on. Since the flows commute, the order in which we take
them to travel from x0 to x does not matter. So these t = (t1, ..., tn) can be used to label (at
least some) points x ∈ M . Recalling Liouville’s theorem, the torus-like nature of M follows
by noticing that the domain of (t1, ..., tn) is Rn whereas M itself is compact by assumption.
For certain choices {t0} of t we must return to x0. These fixed points {t0} define a regular
lattice on the domain Rn of t. The angles θi and corresponding constant frequencies Ωi are
then constructed by mapping the volume within a fundamental cell of this lattice onto the
direct product of n unit circles.

So, these angle coordinates θ = (θ1, ..., θn) label points within the torus. We could label
each torus by the values (I1, ..., In) of the n integrals of motion, but it is better to use the Poincare
invariants

Ji ≡
1

2π

∮
γi

p · dq, (5.11)

where γi is any closed loop that involves incrementing θi by 2π, with all other θj returning to their
original values. (A generalisation of Stokes’ theorem means that this integral is independent of the
precise path taken by γi.) There are n such integrals, because any n-dimensional torus admits n
independent loops that can’t be deformed into one another. The J1, ..., Jn defined in (5.11) are
the actions of the torus. The actions are functions Ji = Ji(I1, ..., In) of the original integrals of
motion.

The (θ,J) coordinates are canonical: the mapping (q,p) ↔ (θ,J) is described by the type-2
generating function (5.6)

F2(q,J) = S(q,J) =

∫ q

q0

p(q′,J) · dq′, (5.12)

where q0 is some arbitrary reference point. It is immediately obvious that p = ∂S/∂q. Inte-
grate (5.12) along any loop γi along which θi increases by 2π with the other θj returning to their
initial values. The quantity S increases by ∆S =

∮
γi
p · dq = 2πJi using (5.11), showing that∮

γi
p · dq =

∮
γi
J · dθ and therefore that Ji is the momentum conjugate to θi.

Let’s take the value c1 = E of the Hamiltonian H(q,p) as the first of the n integrals of motion.
Then S(q,J) must satisfy the Hamilton–Jacobi equation,

H

(
q,
∂S

∂q

)
= E, (5.13)

in which it is understood that J is held fixed. Solving this first-order PDE for S(q,J) allows us to
construct mappings to action–angle variables (θ,J) given a Hamiltonian H(q,p).

In summary, if a Hamiltonian H(q,p) is integrable, then we can carry out a canonical map
(q,p) → (θ,J) to new phase-space coordinates in terms of which the Hamiltonian becomes H =
H(J) and the equations of motion are simply

J̇ = 0, θ̇ = Ω, (5.14)

where the vector of frequencies,

Ω ≡ ∂H

∂J
, (5.15)

gives the rate at which the system whizzes around the torus labelled by the actions J. This torus
is sometimes called an invariant torus because a trajectory that starts on the torus remains on
it.
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5.3 Angle–action variables for the simple harmonic oscilla-
tor

As an example, consider the Hamiltonian H(q, p) = 1
2p

2 + 1
2ω

2q2. The Hamilton–Jacobi equa-
tion (5.13) for S(q, J) in this case is

1

2

(
∂S

∂q

)2

+
1

2
ω2q2 = E, (5.16)

which yields
∂S

∂q
= ±

∫ [
2E − ω2q2

]1/2
dq. (5.17)

Substituting q = (
√
2E/ω) sinu and integrating,

S(q, J) =
E

ω
(u+

1

2
sin 2u) + F (J), (5.18)

where F (J) is an arbitrary function of J . The variable u changes by 2π as we move around one
complete orbit. The corresponding increase in S is 2πE/ω. Then by (5.11), the action integral for
this orbit is

J =
1

2π

∮
∂S

∂q
dq =

1

2π

∮
∂S

∂u
du =

E

ω
. (5.19)

Expressed as a function of J , the Hamiltonian is therefore

H(J) = ωJ, (5.20)

and, from (5.18), the generating function is

S(q, J) = J(u+
1

2
sin 2u) + F (J), (5.21)

in which u(q, J) is given implicitly by q =
√

2J/ω sinu. The only effect of the arbtirary F (J) is to
set the “origin” of the angle coordinate θ = 0. Choosing F = 0, the angle conjugate to J is given
by

θ =
∂S

∂J
= u+

1

2
sin 2u+ J(1 + cos 2u)

∂u

∂J

∣∣∣∣
q

= u+
1

2
sin 2u− (1 + cos 2u)

cosu

sinu
= u. (5.22)

Using p = ∂S/∂q = J(1 + cos 2u)(∂u/∂q)|J , the transformation from (θ, J) to (q, p) is

q =

√
2J

ω
sin θ, p = ω

√
2J

ω
cos θ. (5.23)

So (
√
2J, θ) are polar coordinates in a rescaled (q, p) plane.

5.4 Angle–action variables for 2d axisymmetric potentials

We can use the same procedure to construct angle–action variables for any system with two or
more degrees of freedom provided we can find a coordinate system in which the Hamilton–Jacobi
equation (5.13) separates into

n∑
i=1

Hi

(
qi,

∂Si

∂qi

)
= E, (5.24)
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with

S(q,J) =

n∑
i=1

Si(qi,J). (5.25)

Unfortunately, most Hamiltonians are not separable, which means that we have to find alternative
methods to construct angle–action variables for them. The most important class of Hamiltonian
for which the Hamilton–Jacobi separates are those for spherically symmetric potentials. Each orbit
in a spherically symmetric potential is confined to its own orbital plane, so that the problem
reduces to one of motion in a two-dimensional axisymmetric potential. We now focus on this
simpler two-dimensional case before turning our attention to the full three-dimensional problem.

We rotate our coordinate system in the Hamiltonian (4.14) so that ϑ = π/2 and pϑ = 0. The
Hamiltonian becomes

H(r, pr, pφ) =
1

2

[
p2r +

p2φ
r2

]
+Φ(r). (5.26)

Writing S(q,J) = Sr(r,J) + Sφ(φ,J), the Hamilton–Jacobi equation is

1

2

[(
∂Sr

∂r

)2

+
1

r2

(
∂Sφ

∂φ

)2
]
+Φ(r) = E, (5.27)

which, separating variables in the usual way, yields the separation constant

L2
z =

(
∂Sφ

∂φ

)2

= p2φ,

(5.28)

which is simply the square of the total angular momentum. We choose Lz to have the same sign
as pφ. Around one complete cycle of φ, Sφ increases by 2πpφ, so the azimuthal action

Jφ = Lz = pφ. (5.29)

The Hamilton–Jacobi equation becomes

1

2

[(
∂Sr

∂r

)2

+
L2
z

r2

]
+Φ(r) = E. (5.30)

Integrating r around a loop from pericentre r− to apocentre r+ and back to pericentre, the radial
action is

Jr =
1

2π

∮
pr dr =

1

2π

∮
∂Sr

∂r
dr =

1

π

∫ r+

r−

[
2(E − Φ)− L2

z

r2

]1/2
dr, (5.31)

because pr < 0 on the return journey from apocentre back to pericentre.
There are few potentials Φ(r) for which we can use (5.27) to construct an explicit expression for

E = H(Jr, Jφ). We always have explicit expressions for the frequency vector Ω ≡ ∂H/∂J though.
Differentiating (5.45) at constant Lz = Jφ, noting that the limits r− and r+ depend on (E,Lz),
but that the integrand vanishes at both endpoints, we have that

1

Ωr
≡
(
∂Jr
∂E

)
Lz

=
1

π

∫ r+

r−

dr[
2(E − Φ)− L2

z

r2

]1/2 . (5.32)

Notice from (5.32) that 2π/Ωr is simply the radial period Tr of (3.11), as you’d expect. To find
Ωφ we differentiate (5.45) with respect to Lz at constant E to obtain(

∂Jr
∂Lz

)
E

=
Lz

π

∫ r+

r−

dr

r2
[
2(E − Φ)− L2

z

r2

]1/2 , (5.33)
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which we recognise as 1/(2π) times the increment ∆φ in azimuthal angle per radial period, equa-
tion (3.12). Then

1

Ωφ
=

(
∂Lz

∂E

)
Jr

=

(
∂Lz

∂Jr

)
E

(
∂Jr
∂E

)
Lz

=
2π

∆φ

1

Ωr
, (5.34)

showing that the angular period Tφ = 2π/Ωφ = 2πTr/∆φ, in agreement with our earlier derivation
in §3.2.

The angles themselves are given by θi = ∂S/∂Ji, where

S(r, φ,J) = Sr(r,J) + Sφ(φ,J) =

∫ r ∂Sr(r
′,J)

∂r′
dr′ +

∫ φ ∂Sφ(φ
′,J)

∂φ′ dφ′

=

∫ r

pr(r
′,J) dr′ +

∫ φ

pφ(φ
′,J) dφ′

=

∫ r

r−

±

[
2(H(Jr, Jφ)− Φ(r′))−

J2
φ

r′2

]1/2
dr′ +

∫ φ

0

Jφ dφ′.

(5.35)

In the last line we have chosen θr = 0 to correspond to pericentre, with θφ = 0 at φ = 0. The
positive square root in the first integral is used when r is increasing (i.e., 0 < θr < π), the negative
sign when it is decreasing (π < θr < 2π). So,

θr =
∂S

∂Jr
=
∂H

∂Jr

∫ r

r−

± dr′[
2(H − Φ(r′))− J2

φ/r
′2
]1/2 , (5.36)

with a similar expression for θφ(r, φ,J). Differentiating this expression with respect to time,

recognizing that the denominator of the integrand is ṙ, we have θ̇r = ∂H/∂Jr = Ωr as expected.
Just to spell it out,

θφ =
∂S

∂Jφ
=
∂H

∂Jφ

∫ r

r−

± dr′[
2(H − Φ(r′))− J2

φ/r
′2
]1/2 − Jφ

∫ r

r−

± dr′

r′2
[
2(H − Φ(r′))− J2

φ/r
′2
]1/2 +φ.

(5.37)
The time derivative of the second integral is −Jφ/r2 = −φ̇, which cancels out the φ̇ from the last
term.

5.5 Angle–action variables for spherical potentials

The procedure for the three-dimensional case is only slightly more involved. The Hamiltonian (4.14),

H(r, ϑ, pr, pϑ, pφ) =
1

2

[
p2r +

p2ϑ
r2

+
p2φ

r2 sin2 ϑ

]
+Φ(r), (5.38)

has three independent integrals of motion in involution: H, pφ and p2φ + p2ϑ/ sin
2 ϑ. Writing

S(q,J) = Sr(r,J) + Sϑ(ϑ,J) + Sφ(φ,J), the Hamilton–Jacobi equation is

1

2

[(
∂Sr

∂r

)2

+
1

r2

(
∂Sϑ

∂ϑ

)2

+
1

r2 sin2 ϑ

(
∂Sφ

∂φ

)2
]
+Φ(r) = E, (5.39)

which, separating variables in the usual way, yields the pair of separation constants

L2
z =

(
∂Sφ

∂φ

)2

= p2φ,

L2 =

(
∂Sϑ

∂ϑ

)2

+
L2
z

sin2 ϑ
= p2ϑ +

p2φ

sin2 ϑ
, (5.40)
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which are just the z component of angular momentum and the square of the total angular momen-
tum. These are related to E by

1

2

[(
∂Sr

∂r

)2

+
L2

r2

]
+Φ(r) = E. (5.41)

We choose Lz to have the same sign as pφ, and L to be positive.
Around one complete cycle of φ, Sφ increases by 2πpφ, so the azimuthal action is, as before,

Jφ = Lz = pφ. (5.42)

The variables (ϑ, pϑ) circulate around the loop given by L2 = p2ϑ+L
2
z/ sin

2 ϑ, in which ϑ is limited
to the region sinϑ > |Lz|/L ≡ sinϑmin. Over the course of one cycle Sϑ increases by

∆Sϑ = 4

∫ π/2

ϑmin

∂Sϑ

∂ϑ
dϑ = 4

∫ π/2

ϑmin

[
L2 − L2

z

sin2 ϑ

]1/2
dϑ

= 2π(L− |Lz|), (5.43)

and the latitudinal action is therefore

Jϑ = L− |Lz|. (5.44)

The radial action is again

Jr =
1

π

∫ r+

r−

[
2(E − Φ)− L2

r2

]1/2
dr, (5.45)

where r− and r+ are the orbit’s peri- and apo-centre radii respectively.
The rotational symmetry of the Hamiltonian means that it can depend on the actions Jϑ and

Jφ only in the combination L = Jϑ + |Jφ|. Therefore

H = H(Jr, Jϑ + |Jφ|), (5.46)

and the magnitudes of the azimuthal and latitudinal frequencies are equal, |Ωϑ| = |Ωφ|. So, the
quantity θϑ − sgn(Jφ)θφ an integral of motion in addition to (Jr, Jϑ, Jφ).

Angle-action coordinates are not unique, however: we can always construct new angle-action
variables (θ′,J′) by taking appropriate linear combinations of the old ones (θ,J), as follows (Mor-
bidelli, 2002, §1.9.1). Let A be a 3 × 3 matrix with integer coefficients having unit determinant.
Then the map

J′ = (A−1)TJ, θ′ = Aθ, (5.47)

to new coordinates (θ′,J′) is canonical (exercise: why?). Moreover, increasing any one of the θ′i
by 2π defines a distinct closed loop on the torus, so the new (θ′,J′) are angle–action coordinates.

Let us use this idea to promote L = Jϑ + |Jφ| to the status of an action. TakeJ1J2
J3

 =

0 0 1
0 1 sgn(Jφ)
1 0 0

JrJϑ
Jφ

 ,

θrθϑ
θφ

 =

0 0 1
0 1 0
1 sgn(Jφ) 0

θ1θ2
θ3

 , (5.48)

the matrix in the first inequality being (A−1)T, the second its transpose A−1. That is,

θ1 = θφ − sgn(Jφ)θϑ, J1 = Jφ = Lz,

θ2 = θφ, J2 = Jϑ + |Jφ| = L,

θ3 = θr, J3 = Jr.

(5.49)

In these new coordinates H = H(J2, J3), so that the angle θ1 becomes a fourth integral of motion
in addition to (J1, J2, J3).
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To understand the geometrical meaning of these coordinates, recall that in a spherical potential
the orbit is confined to a plane whose normal is set by the direction of the angular momentum vec-
tor L. Following §2.3, let (x′, y′) be Cartesian coordinates in this plane. Changing the orientation
of L away from (0, 0, 1) changes the particle’s coordinates toxy

z

 =

cosΩ − sinΩ 0
sinΩ cosΩ 0
0 0 1

1 0 0
0 cos i − sin i
0 sin i cos i

x′y′
0

 , (5.50)

the inclination angle i and longitude of the ascending node Ω set by the direction of L. From this
it is clear that the magnitude of cos i gives the magnitude of the normal to the orbital plane L
onto the z-axis, with the sign chosen so that Jφ > 0 when i < π

2 . Therefore

cos i =
J1
J2
. (5.51)

By considering the Hamilton–Jacobi equation expressed in these new coordinates, the angles θi
(i = 1, 2, 3) are given by θi = ∂S/∂Ji, where

S(r, ϑ, φ, J1, J2, J3) =

∫
pr(r

′,J) dr′ +

∫
pϑ(ϑ

′,J) dϑ′ +

∫
pφ(φ

′,J) dφ′

=

∫ r

r−

sr

[
2(H(J2, J3)− Φ(r′))− J2

2

r′2

]1/2
dr′ +

∫ ϑ

π/2

sϑ

[
J2
2 − J2

1

sin2 ϑ′

]1/2
dϑ′ + J1φ,

(5.52)

with the signs sϑ = ±1, sr = ±1 chosen to ensure that the integrals increase monotonically along
the orbit.1 Consider the orbit just after it has passed upwards through the plane z = 0, so that
ż > 0 and ϑ̇ < 0. Then pϑ < 0, meaning sϑ = −1. Differentiating (5.52) and using (5.51)

θ1 =
∂S

∂J1
= sgn(J1)

∫ ϑ

π/2

dϑ′

sinϑ′
√
sin2 ϑ′/ cos2 i− 1

+ φ.

(5.53)

To perform the integral, consider

d
[
sin−1(cot i cotϑ)

]
= − cot i

sin2 ϑ

dϑ√
1− cos2 i cot2 ϑ

= − sgn(cos i) dϑ

sinϑ
√

(1 + tan2 i) sin2 ϑ− cos2 ϑ
(5.54)

= − sgn(cos i)
dϑ

sinϑ
√
sin2 ϑ/ cos2 i− 1

. (5.55)

But sgn(J1) = sgn(cos i) and so equation (5.53) becomes θ1 = −u + φ, where u is given by
sinu = cot i cotϑ. In §2 we saw (2.27) that this sinu = cot i cotϑ = sin(φ− Ω). Considering how
u and φ vary over the course of an orbit, it follows that u = φ− Ω. Therefore

θ1 = Ω, (5.56)

the longitude of the ascending node. This is the fourth integral of motion in a general spherically
symmetric potential.

5.6 Angle–action variables for the Kepler Hamiltonian: De-
launay elements

Taking Φ(r) = −GM/r in (5.38) gives the Kepler Hamiltonian. In this case radial action can be
calculated analytically. It is

Jr =
1

π

∫ r+

r−

√
2

(
E +

GM

r

)
− L2

r2
dr =

GM√
−2E

− L. (5.57)

1In the integral for each of (r, ϑ, φ) we are free to add an arbitrary constant function of the other two coordinates.
The choice here, set by the lower bounds on the integrals, corresponds to the convention that θ = 0 at (r, ϑ, φ) =
(r−, π

2
, 0).
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Therefore the Kepler Hamiltonian is a very simple function of the actions, namely

H = − (GM)2

2(Jr + Jϑ + |Jφ|)2
= − (GM)2

2(Jr + L)2
. (5.58)

Following (5.48), this becomes the even simpler

H = − (GM)2

2J2
3

, (5.59)

when we use (5.47) to define a third set of angle–action variables, (θ1, θ2, θ3, J1, J2, J3) through

J1 = Jφ = Lz, θ1 = θφ − sgn(Jφ)θϑ,︸ ︷︷ ︸
(H,h)

J2 = Jϑ + |Jφ| = L, θ2 = θϑ − θr,︸ ︷︷ ︸
(G,g)

J3 = Jr + L, θ3 = θr.︸ ︷︷ ︸
(L,l)

(5.60)

These new angle–action coordinates are the Delaunay elements of the orbit: the underbraces
in the equation above give the more usual labels for them. Notice that the frequencies are Ω1 =
Ω2 = 0, Ω3 = (GM)2/J3

3 .

There is a simple relationship between these Delaunay elements and the orbital elements intro-
duced in §2.3. Clearly J2

3 = GMa and J2
2 = GMa(1 − e2), so that J2

1 = GMa(1 − e2) cos2 i. To
understand the angles, apply θi = ∂S/∂Ji to to the Hamilton–Jacobi generating function (5.52).
We have already seen (equ 5.56) that θ1 = Ω, the longitude of the ascending node. Making the
substitution x = cosϑ/ sin i to carry out the ϑ integral in (5.52) gives

θ2 =
∂S

∂J2
= −

∫ r

r−

sr
Ldr′

r′2
[
2(H(J2, J3)− Φ(r′))− L2

r′2

]1/2 + sin−1

(
cosϑ

sin i

)
, (5.61)

bearing in mind that the value of the arcsine in the second term must be chosen so that θ2 varies
smoothly. The integrand of the first term is Ldr′/r′2vr = L dt/r′2 = dψ, where ψ is the angle in the
orbital plane measured from the origin between the particle’s present position and its pericentre.2

Therefore the first term is simply −ψ. Substituting (x′, y′) = r(cosψ, sinψ) into (2.20) and looking
at the z = r cosϑ component of the result shows that cosϑ/ sin i = sin(ω+ψ). So, the second term
is ω + ψ. Adding both contributions we have that θ2 = ω, the argument of pericentre.

The remaining angle,

θ3 =
∂S

∂J3
=
∂H

∂J3

∫ r

r−

sr
dr′[

2(H(J2, J3)− Φ(r′))− L2

r′2

]1/2 , (5.62)

the integrand of which is simply Ωrdr/vr = Ωrdt. Therefore θ3 = w, the mean anomaly.

In summary, we’ve shown that H = −(GM)2/2J2
3 with

J1 =
√
GMa(1− e2) cos i, θ1 = θφ − sgn(Jφ)θφ = Ω,︸ ︷︷ ︸

(H,h)

J2 =
√
GMa(1− e2), θ2 = θϑ − θr = ω,︸ ︷︷ ︸

(G,g)

J3 =
√
GMa, θ3 = θr = w.︸ ︷︷ ︸

(L,l)

(5.63)

2In the two-dimensional nursery of §2.2 we called this angle φ.
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A problem with these Delaunay variables is that the angles (Ω, ω, w) are not well defined
whenever i = 0 or e = 0. To remedy this, let us introduce modified Delaunay variables via

Jϖ =
√
GMa(1−

√
1− e2), θϖ = −(Ω + ω),︸ ︷︷ ︸
(P,p)

JΩ =
√
GMa(1− e2)(1− cos i), θΩ = −Ω,︸ ︷︷ ︸

(Q,q)

Jλ =
√
GMa, θλ = λ ≡ Ω+ ω + w,︸ ︷︷ ︸

(Λ,λ)

(5.64)

in terms of which H = −(GM)2/2J2
λ. Here we have introduced two new angles,

(longitude of pericentre) ϖ ≡ ω +Ω,

(mean longitude) λ ≡ Ω+ ω + w. (5.65)

λ is always well defined, whereas ϖ and Ω are undefined when the corresponding action is zero:
these are polar coordinates. Notice that

Jϖ ∝ e2, e≪ 1,

JΩ ∝ i2, i≪ 1. (5.66)

5.7 Other potentials with explicit expressions for actions

5.7.1 Isochrone

The isochrone potential is

Φ(r) = − GM

b+
√
b2 + r2

. (5.67)

In the limit b → 0 this becomes the Kepler potential, whereas in the limit b → ∞ it becomes the
spherical simple harmonic oscillator. The isochrone is important because it is the most general
poetntial for which all angle–action variables can be obtained analytically from the ordinary phase-
pace coordinates (x,p). See §3.5 of Binney & Tremaine (2008) for details.

Why the name? In this potential the radial period of an orbit having energy E per unit mass
is Tr = 2πGM/(−2E)3/2, which is independent of angular momentum.

5.7.2 Stäckel potentials

The German mathematician Paul Stäckel showed that only coordinate system in which the Hamiltonian–
Jacobi equation H = 1

2p
2+Φ(x) = E separates is confocal ellipsoidal coordinates, of which Carte-

sian, spherical polar and cylindrical polars are just limiting cases. Confocal spheroidal coordinates
(u, v, φ) are the axisymmetric version. They are related to cylindrical coordinates via

R = ∆sinhu sin v,

z = ∆coshu cos v. (5.68)

If the potential is of the form

Φ(u, v) =
U(u)− V (v)

sinh2 u+ sin2 v
, (5.69)

for some functions U(u) and V (v), then it is easy to show that the Hamilton–Jacobi equation
separates, providing two action integrals in addtion to Jφ = Lz (e.g., §3.5 of Binney & Tremaine,
2008). de Zeeuw (1985) is the canonical reference for the properties of these Stäckel potentials,
including the case of triaxial symmetry.
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5.8 Numerical construction of angle–action variables

Numerical experiments show that in most realistic galaxy Hamiltonians most orbits are regular: i.e.,
orbits have as many isolating integrals of motion as the degrees of freedom (2 or 3) of the system.
How to show this? For systems with two degrees of freedom (e.g., axisymmetric potentials) this
is most easily shown simply by plotting surfaces of section, which reduce four-dimensional phase
space to a sequence of two-dimensional slices. Each surface of section is a slice through the orbits’
phase-space tori.

This does not work in systems with three degrees of freedom. Instead one can use the fact that
regular orbits are quasiperiodic, whereas irregular orbits are not. Fourier analysis of the x(t) time
series of numerically integrated orbits is the natural way to identify their fundamental frequencies
(if any) and therefore to test for regularity. The details are subtle though: see §3.7.3 of Binney &
Tremaine (2008).

How to construct angle–action variables for these more general Hamiltonians H(x,p)? One
way is to start from a “toy” Hamiltonian H ′(J′,θ′) for which we can map easily between (x,p)
and (θ′,J′). An example of such a toy Hamiltonian is that of the isochrone model in §5.7.1. Having
chosen H ′, we construct canonical map between these toy coordinates (θ′,J′) and the angle–action
coordinates (θ,J) of the target H as follows. Exploit the periodicity of the angle variables and
represent the map by a type-2 generating function

S(θ′,J) = θ′ · J+
∑
n

Sn(J)e
in·θ′

, (5.70)

so that

J′ =
∂S

∂θ′
= J+

∑
n

inSn(J)e
in·θ′

,

θ =
∂S

∂J
= θ′ +

∑
n

∂Sn

∂J
(J)ein·θ

′
. (5.71)

Note that Sn(J) = S⋆
−n(J) if S is to be real.

Here is one way of choosing the coefficients Sn(J) that specify this generating function. We
start by choosing a value of J and setting up a regular grid in toy angles θ′. For a given choice
of Sn then the first of equations (5.71) gives the corresponding toy actions. We can use the toy
Hamiltonian H0 to turn these (θ′,J′) into values of (q,p) and then to values of our target H(q,p).
By adjusting the coefficents Sn to minimise the spread in the values of H(q,p) we construct a
mapping that lies on the torus of action J generated by H.

An alternative is is to use numerical orbit integration in the target H. This sets J, albeit implic-
itly. We can use orbit integration to produce time series (q(t), p(t)) and then map these into angle-
action variables (θ′(t),J′(t)) for the toy Hamiltonian H ′. Then, writing θ = Ωt, equation (5.71)
becomes a set of linear simultaneous equations for Ω, J, Sn(J) and their derivatives ∂Sn/∂J.

A third way is to average the first of equs (5.71) over toy angles θ′, obtaining J = 1
(2π)3

∫
J′ dθ′.

The problem reduces to carrying out this integral numerically given irregularly sampled points
in θ′.

Here we’ve just touched on the general idea, but success depends on details such as the choice
of toy Hamiltonian H ′ and limiting |n|. Sanders & Binney (2016) review these and other action-
estimation methods in galactic dynamics.

5.9 Resonances and degeneracy

Apart from some special situations, the frequencies Ω are in general incommensurable: that is,
the only vector of integers k ≡ (k1, ..., kn) for which k ·Ω = 0 is the trivial k = 0. The motion is
then quasi-periodic or non-resonant. Given any function f(θ) on the torus, it follows then by
expanding f(θ) =

∑
k fke

ik·θ that the mean value of f averaged over the torus is

⟨f⟩θ =
1

(2π)n

∫
f(θ)dnθ =

1

(2π)n

∑
k

fk

∫
eik·θdnθ = f0, (5.72)
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where f0 is the k = 0 component in the Fourier expansion of f(θ). On the other hand, using
θ(t) = Ωt+ θ0 the time averaged value of the function f(θ(t)) is

⟨f⟩T ≡ lim
T→∞

1

T

∫ T

0

f(θ(t))dt = lim
T→∞

1

T

∫ T

0

∑
k

fke
i(Ωt+θ0)dt

= f0 + lim
T→∞

1

T

∑
k ̸=0

fk
eiΩT − 1

iΩ · k
= f0, (5.73)

provided there is no k for which k · Ω ̸= 0. That is, the time average of a function defined on
a nonresonant torus is equal to its angle average. In particular, the length of time that an orbit
spends within an chunk V of the torus is proportional to the volume occupied by V . A consequence
of this is that any single orbit fills the torus densely: starting from any θ0, we come arbitrarily
close to any other θ in the limit t→ ∞.

Exercises

1. (a) Sketch the (x, p) phase plane for the pendulum Hamiltonian

H = 1
2p

2 − ω2
0 cosx (5.74)

and identify three different orbit families.

(b) Let h =

√
1
2

(
1 + H

ω2
0

)
. Show that orbits with 0 ≤ h < 1 have actions given by

J =
8ω0

π

[
E(h)− (1− h2)K(h)

]
(5.75)

and frequencies

Ω =
πω0

2K(h)
, (5.76)

where

K(k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

,

E(k) =

∫ π/2

0

dθ
√
1− k2 sin2 θ

(5.77)

are the complete elliptic integrals of the first and second kinds, respectively. [Hint: substitute
sin 1

2x = h sin θ.]
(c) Obtain expressions for J and Ω when h > 1. Summarise your results by explaining how to
calculate actions and frequencies for each of the three orbit families identified in (a).
(d) We can think of the pendulum as modelling a free particle having Hamiltonian H0 = 1

2p
2

that is subject to a perturbation ϵH1(x) = −ω2
0 cosx. The perturbation introduces a qualitative

change in the nature of the orbits within some area of the phase plane. How does this area
scale with the strength ϵ of the perturbation?

2. This question, based on Exercise 3.34 of Binney & Tremaine (2008), is intended as a (mostly)
straightforward demonstration of the construction of actions for Stäckel potentials (5.69).

(a) Sketch contours of constant u and contours of constant v in the (R, z) plane. What limits
should we place on the range of u and v to ensure that each point of the plane is covered just
once?

(b) Obtain expressions for the momenta pu and pv conjugate to (u, v) and show that each
may be expressed as ∆2(sinh2 u + sin2 v) times a generalised velocity, u̇ or v̇. Construct the
Hamiltonian H(u, v, pu, pv, pφ).
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(c) Assuming a generating function S(u, v,J) = Su(u,J)+Sv(v,J)+Sφ(φ,J), how are pu and
pv related to Su and Sv? Separate the Hamilton–Jacobi equation H(u, v, pu, pv, pφ) = E to
show that

I = [E sinh2 u− U(u)]− 1

2∆2

[
p2u +

p2φ

sinh2 u

]

= −[E sin2 v + V (v)] +
1

2∆2

[
p2v +

p2φ

sin2 v

] (5.78)

is an integral of motion.

(d) By eliminating E from this pair of expressions show that

I =
(p2v − 2∆2V ) sinh2 u− (p2u + 2∆2U) sin2 v

2∆2(sinh2 u+ sin2 v)
+

p2φ

2∆2 sinh2 u sin2 v
. (5.79)

Show also that [f(a, b), A] = ∂f
∂a [a,A]+

∂f
∂b [b, A] for any sufficiently smooth functions a, b, f(a, b)

and A and, hence or otherwise, that [I,H] = 0.

(e) Write down an expression for each the actions Ju and Jv as an integral over a functions that
involves E, I and either U(u) and V (v). Hence show that Ju and Jv are involution, [Ju, Jv] = 0.
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Chapter 6

Perturbation theory: orbits

Suppose that we have constructed angle–action variables for the Hamiltonian H0. As we have seen,
Hamilton’s equations are then simply

J̇ = 0, θ̇ = Ω(J), (6.1)

where the angles θ increase at the rate Ω(J) = ∂H0/∂J.
Now add a perturbation ϵH1 to our original H0, where ϵ is a small parameter. Our mastery

of angle–action variables means that we can express H1 = H1(θ,J). Hamilton’s equations for this
perturbed system are

θ̇ = Ω(J) + ϵf(θ,J), J̇ = ϵg(θ,J), (6.2)

with f = ∂H1/∂J and g = −∂H1/∂θ. Our mastery does not extend, however, to constructing
angle–action variables for the new Hamiltonian H0+ϵH1, which depends on θ as well as J. On the
other hand, we are usually more interested in the long-term behaviour of the system (e.g., in how
the semimajor axes and eccentricities of the planets evolve) than in the details of how the rapidly
varying angles θ change. It turns out that the averaged system,

J̇ = ϵḡ(J), (6.3)

where

ḡ(J) ≡ 1

(2π)n

∫
g(θ,J)dnθ, (6.4)

is often a good approximation to the evolution produced by the original equations (6.2). This is
an ancient idea: when studying perturbations of planets, Gauss proposed to distribute the mass
of each planet proportionally to the fraction of time it spent in each segment of the orbit. This
reduces the solar system to a system of interacting massive rings.

This averaging principle can be couched in more formal language (see §6.5 later), but for now
let’s just assume that it works. To verify that there are cases for which it really does work, consider
the toy example of a one-dimensional Hamiltonian H0 = H0(J) for which Ω = dH/dJ ̸= 0. Apply
a perturbation ϵg(θ), which for simplicity we take to be independent of J . Then the full solution
to Hamilton’s equation J̇ = ϵg is

J(t)− J(0) = ϵ

∫ t

0

g(θ0 +Ωt′)dt′

= ϵḡt+ ϵ

∫ t

0

[g(θ0 +Ωt′)− ḡ]dt′,

(6.5)

where θ0 is the initial angle. The second term in the RHS is a periodic function. Therefore it is
bounded and the evolution of J(t) consists of small oscillations (second term) superimposed on
the long-term growth, ϵḡt (first term). The averaged equation of motion (6.3) for this system is
J̇ = ϵḡ, which, although it ignores the oscillations on timescales ≲ Ω−1, correctly captures the
longer-term, secular evolution over many orbital periods.

43
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We have not yet used the fact that the perturbation is (usually) Hamiltonian, so that g =
−∂H1/∂θ. By the periodicity of H1 in the angles, we can write H1 =

∑
k Sk(J)e

ik·θ for some
Sk(J). Therefore g(θ,J) = −i

∑
k Sk(J)ke

ik·θ and so ḡ = 0: there should be no secular evolution
in Hamiltonian systems! But this argument relies on the assumption that the averaging principle
is approximately correct. This is not true close to resonances, k ·Ω ≃ 0, which makes the dynamics
vastly more interesting.

6.1 The restricted three-body problem

Over the following few sections we’ll develop these ideas with application to the restricted three-
body problem of a test particle (such as an asteroid or Pluto), moving in the combined potential
of the sun plus a large planet (such as Jupiter or Neptune). We have already worked out the full
Hamiltonian (4.29) for this system in the general case, but in the restricted problem we focus on the
motion of the test particle, imposing the motion of the more massive sun and planet from without.
So our first task is to obtain an effective Hamiltonian for the test particle. Let the positions of the
sun, large planet and test particle referred to an inertial frame be x0, xp and x respectively and
their masses be m0, mp and m. The equations of motion are

m0ẍ0 =
Gmpm0

|xp − x0|3
(xp − x0) +

Gmm0

|x− x0|3
(x− x0),

mpẍp =
Gm0mp

|x0 − xp|3
(x0 − xp) +

Gmmp

|x− xp|3
(x− xp),

mẍ =
Gm0m

|x0 − x|3
(x0 − x) +

Gmpm

|xp − x|3
(xp − x). (6.6)

Now introduce the heliocentric coordinates rp ≡ xp − x0 and r ≡ x − x0. By taking appropriate
combinations of (6.6) we find that

r̈ = −Gm0r

|r|3
+
Gmp(rp − r)

|rp − r|3
− Gmprp

|rp|3

(6.7)

which corresponds to motion in the Hamiltonian H(r,p) = H0 + ϵH1, where

H0(r,p) =
1

2
p2 − Gm0

|r|
,

ϵH1(r; rp) = −Gmp

(
1

|rp − r|
− r · rp

|rp|3

)
. (6.8)

Here H0 is just the Kepler Hamiltonian for a central mass m0. The perturbation H1 is composed
of a direct term ∝ 1/|rp − r| due to the influence of the planet plus an indirect term ∝ r · rp that
accounts for the noninertial frame. Notice that H1 is smaller than H0 by a factor ∼ mp/m0, which
may take as our definition of the scale ϵ. In the limit mp → 0 (ϵ → 0) the motion reduces to the
simple Keplerian case.

[At this point it would make sense to set Gm0 = 1 and ϵ = mp/m0, followed by ap = 1 below.
But let’s plod along without doing that, if only to keep our frequencies clear.]

Exercise: Explain how one can obtain (6.8) directly from (4.29). [Hint: remember that (i)
pn ̸= mnṙn in (4.29); (ii) we are free to add a total time derivative dΛ/dt to the Hamiltonian,
where Λ(q,p) is any function of the phase-space coordinates.]

6.2 Example: Lidov–Kozai oscillations

Now consider the even more special situation in which the test particle is much closer to the sun
than the planet (r ≪ rp) and suppose that the planet is on a circular orbit, but the test particle
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is not confined to the orbital plane of the planet. The following is a simplified version of Tremaine
(2014); see also Tremaine & Yavetz (2014).

Use |rp − r|2 = r2p − 2rp · r+ r2 to expand the first term in the perturbation (6.8) as

1

|rp − r|
=

1

rp

[
1 +

2rp · r− r2

2r2p
+

3

8

(
2rp · r− r2

r2p

)2

+ · · ·

]
. (6.9)

Dropping a constant term, the perturbation is then

ϵH1 = −Gmp

(
1

|rp − r|
− rp · r

|rp|3

)
=
Gmp

r3p

[
1

2
r2 − 3(rp · r)2

2r2p

]
+O(r3/r4p). (6.10)

We need to average this over the motion of both the test particle and the planet. Let (ê, û, n̂) be
unit vectors in a right-handed coordinate system centred on the sun with ê pointing towards the
pericentre of the test particle (which has true anomaly φ = 0), û pointing towards φ = π/2 and
n̂ normal to the test particle’s orbit plane. Let (êp, ûp, n̂p) be corresponding unit vectors for the
planet.1 Then r = r(φ)(cosφê+ sinφû) and rp = rp(φp)(cosφpêp + sinφpûp). Averaging (6.10)
gives

ϵH̄1 =
Gmp

a3p

[
1

2
⟨r2⟩ − 3⟨cos2 φp⟩

2a2p

(
⟨r2 cos2 φ⟩(êp · ê)2 + ⟨r2 sin2 φ⟩(êp · û)2

)
− 3⟨sin2 φp⟩

2a2p

(
⟨r2 cos2 φ⟩(ûp · ê)2 + ⟨r2 sin2 φ⟩(ûp · û)2

) ]
, (6.11)

where the triangular brackets denote time averages. By assumption the planet is on a circular
orbit. So, ⟨cos2 φp⟩ = ⟨sin2 φp⟩ = 1

2 . Similarly, going back to (2.23), we have that

⟨r2⟩ = a2
(
1 +

3

2
e2
)
, ⟨r2 cos2 φ⟩ = 1

2
a2(1 + 4e2), ⟨r2 sin2 φ⟩ = 1

2
a2(1− e2), (6.12)

and so the averaged perturbation becomes

ϵH̄1 =
Gmpa

2

4a3p

[
2 + 3e2 − 3

2
(1 + 4e2)(êp · ê)2 − 3

2
(1− e2)(êp · û)2

− 3

2
(1 + 4e2)(ûp · ê)2 − 3

2
(1− e2)(ûp · û)2

]

=
Gmpa

2

4a3p

[
2 + 3e2 − 3

2
(1 + 4e2)

(
(êp · ê)2 + (ûp · ê)2

)
− 3

2
(1− e2)

(
(êp · û)2 + (ûp · û)2

) ]
.(6.13)

Now use the relations (êp · ê)2 + (ûp · ê)2 + (np · ê)2 = 1 and (êp · û)2 + (ûp · û)2 + (np · û)2 = 1
to eliminate the dependence of ϵH1 on êp and ûp. The result is

ϵH̄1 =
Gmpa

2

4a3p

[
− 1− 3

2
e2 +

3

2
(1 + 4e2)(np · ê)2 + 3

2
(1− e2)(np · û)2

]
. (6.14)

We define the orbital elements of the test particle with reference to the orbital plane of the planet.
Then n̂p · ê = sin i sinω and n̂p · û = sin i cosω from (2.20), and

ϵH̄1 =
Gmpa

2

8a3p

[
1− 6e2 − 3(1− e2) cos2 i+ 15e2(1− cos2 i) sin2 ω

]

=
Gmpa

2

8a3p

[
− 5 + 6

J2
2

J2
3

− 3
J2
1

J2
3

+ 15

(
1− J2

2

J2
3

)(
1− J2

1

J2
2

)
sin2 θ2

]
, (6.15)

https://arxiv.org/abs/1309.5244
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Figure 6.1: Lidov–Kozai oscillations Level surfaces of the Lidov–Kozai averaged Hamilto-
nian (6.17) for C = 1

2 .

when expressed in terms of the Delaunay elements (5.60): recall that J2 is the total angular
momentum, which you’d normally call L (but which celestial mechanicians might label G; they
keep the label L for J3.).

The unperturbed Hamiltonian H0 = H0(J3). Averaging H = H0 + ϵH̄1 over θ3 we’re left
with J3 =

√
GMa = constant and J1 =

√
GMa(1− e2) cos i = constant. The dynamics are

then determined by the level surfaces of (6.15) as a function of (θ2, J2). The semimajor axis a is
constant, but orbits can trade eccentricity e for inclination i, with

cos i = cos i0

√
1− e20
1− e2

, (6.16)

where (e0, i0) are the initial values of (e, i). Eliminating cos i in favour of e, the averaged Hamil-
tonian (6.15) becomes

ϵH̄1 =
Gmpa

2

8a3p

[
1− 6e2 − 3C + 15e2

(
1− C

1− e2

)
sin2 ω

]
,

(6.17)

where the constant C = (1 − e20) cos
2 i0. Figure 6.1 shows the level surfaces of this ϵH̄1 for

(e0, i0) = (0, 60◦).
Suppose that the test particle starts on a circular orbit e0 = 0 with inclination i0. Conservation

of ϵH̄1 implies either that e = 0 (particle remains on a circular orbit) or that

2(1− e2) + 5(e2 − sin2 i0) sin
2 ω = 0, (6.18)

in which case it executes Lidov–Kozai oscillations about ω = ±90◦. It is easy to see from (6.18)
that the condition for these oscillations to be possible is that sin2 i0 > 2/5, or i0 > 39.2◦. The
maximum eccentricity of emax = [(5 sin2 i0 − 2)/3]1/2 occurs at ω = ±90◦.

1Made explicit here in case you feel inspired to generalize to the case in which the perturbing planet is on a
noncircular orbit...
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Notice that the existence of these oscillations is independent of the strength of the perturbation
from the distant planet: changing the prefactor in (6.17) just changes the period of the oscillations.
So, an arbitrarily small external force can in principle excite these oscillations.

Perhaps the most “down-to-earth” application of these oscillations is the stability of artificial
satellites orbiting the earth. There the moon acts as the “distant perturber”, but a more complete
model of their motion would account for the additional perturbation due to the flattening of the
earth: see Tremaine & Yavetz (2014).

6.3 Another example: when average is not good enough

Now let us consider a different regime of the restricted three-body problem. Suppose that the test
particle and planet both move in the same plane, but relax the assumption that the test particle
is much closer to the central star than the planet. Let ϕ = cos−1(r · rp/rrp) be the angle between
them. The perturbation from the planet is then, using the cosine rule,

ϵH1 = −Gmp

rp

(1 + ( r

rp

)2

− 2

(
r

rp

)
cosϕ

)−1/2

−
(
r

rp

)
cosϕ

 . (6.19)

We want to be able to express this in terms of the angle-action variables for H0, or, equivalently,
in terms of the semimajor axis a, eccentricity e, argument of pericentre and mean anomaly.

We can remove the explicit time dependence by adding a term Ωλp
Jλp

to our unperturbed H0

and extending the phase space to include λp. The full Hamiltonian is therefore

H(λ,ϖ, Jλ, Jϖ, λp) = −1

2

(
Gm0

Jλ

)2

+ΩλpJλp︸ ︷︷ ︸
H0

−Gmp

ap

∑
jkl

Cjkl(Jλ, Jϖ; ap, ep)e
i(jϖ+kλ+lλp)

︸ ︷︷ ︸
ϵH1

,

(6.20)
in which the coefficients Cjkl are found by simply(?) Fourier expanding the perturbation (6.19) in
the angles (ϖ,λ, λp). The details of how to do that are left as an exercise at the end of this chapter,
but for now let’s look at the equations of motion for the Fourier-expanded Hamiltonian (6.20). They
are

J̇ϖ = − ∂H

∂(−ϖ)
= −Gmp

ap
i
∑
jkl

jCjkle
i(jϖ+kλ+lλp),

J̇λ = −∂H
∂λ

= +
Gmp

ap
i
∑
jkl

kCjkle
i(jϖ+kλ+lλp),

−ϖ̇ = θ̇ϖ =
∂H

∂Jϖ
= −Gmp

ap

∑
jkl

∂Cjkl

∂Jϖ
ei(jϖ+kλ+lλp),

λ̇ = θ̇λ =
∂H

∂Jλ
=

[Gm0]
2

J3
λ

− Gmp

ap

∑
jkl

∂Cjkl

∂Jλ
ei(jϖ+kλ+lλp),

(6.21)

If we integrate, say, the first of these equations in the usual way by substituting the unperturbed
motion λ = Ωλt+ const, λp = Ωλp

t+ const into the RHS, we obtain

Jϖ(t) = −Gmp

ap

∑
jkl

jCjkl

kΩλ + lΩλp

ei(kΩλ+lΩλp )tei(jϖ+const) + const. (6.22)

The denominator in this expression means that the supposedly small correction to Jϖ blows up
whenever the frequencies Ωλ and Ωλp

are close to resonance. The reason for this misbehaviour is
simple: the (j, k, l) component of the perturbation acts for a period T = 2π/(jΩϖ + kΩλ + lΩλp

);
the closer we are to resonance, the longer this perturbation is applied and the stronger the deviation
of the resulting orbit from its first-order unperturbed form.
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6.4 How to treat orbits close to resonance?

Consider the case in which Ω and Ωp are related through KΩ ≃ KpΩp, where K and KP are
integers. That is, for every K orbits the planet makes, the test body completes Kp. This is known
as a Kp : K mean-motion resonance. For example, the Pluto–Neptune system has 3Ω = 2Ωp, so
that K = 3, Kp = 2: they are in a 2 : 3 mean-motion resonance. Another example is provided by
the Hilda asteroids, which are in a 3 : 2 resonance with Jupiter. We assume that K ̸= Kp in the
following.

In the expansion (6.20) of H0 + ϵH1 let us focus on the (j, k, l) = (0, 0, 0) term plus the
(j, k, l) = (j,K,−Kp) and (j,−K,Kp) resonant terms that lead to the small denominators problem.
Some good news: we need only a very restricted range of values of j. To see this, consider rotating
our coordinate system by an angle ∆φ about the z axis. This increases the Euler angle Ω by ∆φ,
which, from (5.64), means thatϖ, λ and λp increase by the same amount. But ϵH1 in (6.20) must be
unchanged under such rotations. So we must have j+k+ l = 0. That is, j = −(k+ l) = −(K−Kp)
when k = +K, l = −Kp, and j = (K −Kp) when k = −K.2 Then the troublesome, resonant part
of the perturbation can be written as

ϵH1,res = −Gmp

ap
[A(J) +B(J) cos((Kp −K)ϖ +Kλ−Kpλp + β)] , (6.23)

where A = C000 and the amplitude B and phase β of the cosine term are set by the pair of functions
Cjkl(J) having (j, k, l) = ±(Kp −K,K,−Kp).

Now we make a couple of transformations to new angle–action variables. The resonance occurs
when Jλ is equal to

Jres ≡
(
K

Kp

(Gm0)
2

Ωλp

)1/3

. (6.24)

Introduce
∆Jλ = Jλ − Jres (6.25)

to measure how far we are from the resonance, and let ∆λ = λ+ 1
Kβ, so that the resonant part of

the perturbation becomes

ϵH1,res = −Gmp

ap
[A(J) +B(J) cos ((Kp −K)ϖ +K∆λ−Kpλp)] . (6.26)

Then transform to new angle–action coordinates (θs, θf1, θf2, Js, Jf1, Jf2) in which θs is defined by
the argument of the cosine. For example, for the Kp : K = 2 : 3 resonance of the Neptune–Pluto
system, we can take θs

θf1
θf2

 =

1 3 −2
0 1 0
0 0 1

−ϖ
∆λ
λp

 ,

 Jϖ
∆Jλ
Jλp

 =

 1 0 0
3 1 0
−2 0 1

Js
Jf1
Jf2

 ,

(6.27)

so that the resonant perturbation becomes simply

ϵH1 = −Gmp

ap
[A(J) +B(J) cos θs], (6.28)

which depends only on the “slow” angle θs = (3∆λ − 2λp) − ϖ. Adding H0, the full resonant
Hamiltonian (6.20) in these new coordinates is given by

Hres = − (Gm0)
2

2 (3Js + Jf1 + Jres)
2︸ ︷︷ ︸

=(∆Jλ+Jres)2

+Ωλp
(Jf2 − 2Js)︸ ︷︷ ︸

=Jλp

−Gmp

ap
[A(J) +B(J) cos θs], (6.29)

plus a remainder term Hremainder that includes all the other (j, k, l) terms from our original ϵH1.
Ignoring this Hremainder we see that the “fast” variables Jf1, Jf2 are integrals of motion in Hres. So

2This is one of the so-called d’Alembert rules. See §1.9.3 of Morbidelli (2002).
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Figure 6.2: Phase plane for the pendulum Hamiltonian (6.30). There are fixed points at (θs, Js) =
(0, 0) (stable) and (π, 0) (unstable). The separatrix orbit (red) divides the plane into three regions,
which we label R−, R0 and R+ according to the sign of θ̇s. Inside the separatrix (R0) orbits librate
around the stable fixed point, with θ̇s having boths signs. Outside the separatrix in regions R+

and R− they circulate with θ̇s > 0 and θ̇s < 0, respectively.

the behaviour of the system is completely determined by the level surfaces of Hres(θs, Js), with Jf1
and Jf2 playing the role of parameters.

The part of Hres that is independent of θs will have an extremum for some Js = Js,0. Writing
∆Js ≡ Js − Js,0 and Taylor expanding, then, provided B(Js,0) ̸= 0, we can approximate

Hres(θs,∆Js) = const + C∆J2
s − Gm1

ap
B cos θs +O(∆J3

s ), (6.30)

where B and C are independent of θs and ∆Js. This is the Hamiltonian of a pendulum. Its phase
plane is shown in Figure 6.2. Suppose that BC > 0. Then Hres has two equilibrium points: a stable
one (an elliptic fixed point) at (θs,∆Js) = (0, 0) and an unstable one (hyperbolic fixed point) at
(θs,∆Js) = (±π, 0). The red curve in Figure 6.2 that joins the unstable fixed point to its periodic
image is the separatrix; it separates the (θs,∆Js) phase plane into three sections. Above the
separatrix (region R+) the angle θs circulates with θ̇s > 0. Within the separatrix (region R0) θs
librates about the stable equilibrium point θs = 0. Below the separatrix (region R−) θs circulates,
but with θ̇s < 0. Pluto avoids colliding with Neptune by librating around the stable equilibrium
position of θs.

6.5 Perturbation theory by canonical maps

Let’s consider a slightly more sophisticated way of treating the perturbation Hamiltonian ϵH1. In
general, the perturbed problem can be described by a Hamiltonian

H0(θ0,J0) = H0(J
0) + ϵH1(θ

0,J0), (6.31)

where we are able to construct angle-action coordinates (θ0,J0) for some unperturbed Hamiltonian
H0, and ϵ is a small parameter that controls the size of the perturbation H1. For solar system
problems H0 is the Kepler Hamiltonian due to the Sun. The dominant contribution in H1 is the
perturbation due to Jupiter, which has a mass 10−3M⊙. Therefore ϵ ∼ 10−3.

Idea: look for a canonical map, close to the identity, of the form

θ0 = θ1 + ϵ∆θ1(θ1,J1), J0 = J1 + ϵ∆J1(θ1,J1), (6.32)

in terms of which the Hamiltonian, expressed as a function of the new coordinates,

H1(θ1,J1) = H0(J
1 + ϵ∆J1) + ϵH1(θ

1 + ϵ∆θ1,J1 + ϵ∆J1), (6.33)
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is independent of θ1 to first order in ϵ:

H1(θ1,J1) = H0(J
1) + ϵH̄1(J

1) + ϵ2H2(θ
1,J1). (6.34)

For instance, H̄1 could be obtained by averaging (6.33) over θ1, with H2 scooping up the leftovers.
Then, the equations of motion for our new first-order Hamiltonian H0(J

1) + ϵH̄1(J
1) are simply

J̇1 = 0 and θ̇
1
= ∂

∂J1 (H0+ϵH̄1), which can be transformed back to our original (θ0,J0) coordinates
using (6.32)

We can iterate this procedure. Let

θr−1 = θr + ϵ∆θr(θr,Jr), Jr−1 = Jr + ϵ∆Jr(θr,Jr). (6.35)

Then

Hr(θr,Jr) = H0(J
r) + ϵH̄1(J

r) + · · ·+ ϵrH̄r(J
r) + ϵr+1Hr+1(θ

r,Jr), (6.36)

with each H̄r and Hr+1 obtained by averaging the preceding Hr−1(θr−1,Jr−1) over the new θr.
Unfortunately this simple procedure does not work up to arbitrarily high order: resonances are

unavoidable. A more immediate problem is that we need to ensure that the maps (6.32) and (6.35)
are canonical. Let’s consider these in turn.

6.5.1 Lie transforms

In doing this we need to make sure that the maps (6.32) and (6.35) are canonical. The neat way
of achieving this is to use the fact that in the limit ϵ → 0 they reduce to the identity map. That
is, they must be generated by some phase flow. Write wr = (θr,Jr). Then we can express (6.35)
as

wr−1 = exp[ϵLχr ]w
r (6.37)

and the problem reduces to finding a generating function χr that takes Hr to Hr−1. We focus on
the first such generating function, χ1, and write w0(ϵ) = eϵLχ1w1.

Exercise: The Lie transform of the function f(w) under the flow generated by another
function χ is defined as f̃(w) ≡ f(eϵLχw). Show that f̃ = exp[ϵLχ]f .

Now use the fact that H0 and H1 refer to the the same perturbed Hamiltonian, just expressed
in different coordinates. To make this distinction clear, write H (unadorned, without superscript)
for the underlying (coordinate-free) Hamiltonian function and introduce a pair of (symplectic)
coordinate maps, φ0 and φ1, so that

H0(w0) = H ◦ φ0(w
0),

H1(w1) = H ◦ φ1(w
1). (6.38)

Clearly φ0(w
0) = φ1(w

1). Now consider two different ways of looking at the flow generated by χ1.
One is that χ1 has no effect on H itself, but instead changes the phase-space location of the point
P = φ0(w

0) = φ1(w
1) that is fed to H. The output of the function after the flow has acted is then

H ◦ φ1(e
ϵLχ1w1). Another view is that the flow leaves P unchanged but modifies H, changing it

to a new function eϵLχ1H. In that case the result of applying the function is (eϵLχ1H) ◦ φ1(w
1).

These two outputs should be equal. So,

H ◦ φ1(e
ϵLχ1w1) = (eϵLχ1H) ◦ φ1(w

1). (6.39)

Using w0 = eϵLχ1w1 and φ1(w
1) = φ0(w

0) this becomes

H ◦ φ1(w
0) = (eϵLχ1H) ◦ φ0(w

0). (6.40)

Replacing the argument w0 by w1 = (θ1,J1) and switching back to more conventional notation,
we obtain our formal expression for H expressed in terms of the new coordinates:

H1(θ1,J1) = eϵLχ1H0(θ1,J1). (6.41)
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Substitute H0 = H0 + ϵH1 and expand, giving

H1 = H0 + ϵ[H0, χ1] +
1

2
ϵ2[[H0, χ1], χ1] +O(ϵ3)

= H0 + ϵH1 + ϵ[H0, χ1] + ϵ2[H1, χ1] +
1

2
ϵ2[[H0, χ1], χ1] +O(ϵ3), (6.42)

in which everything has arguments (θ1,J1).

6.5.2 Averaging

Look at the O(ϵ) terms in this expression. Comparing to (6.34), the O(ϵ) factors agree if we take

H1 + [H0, χ1] = H̄1(J
1). (6.43)

To find this generating Hamiltonian χ1, expand H1 and χ1 as Fourier series in the (new) angles:

H1(θ
1,J1) =

∑
n

cn(J
1)ein·θ

1

,

χ1(θ
1,J1) =

∑
n

dn(J
1)ein·θ

1

. (6.44)

Using H0 = H0(J
1) from (6.34) and defining Ω0(J

1) ≡ ∂H0/∂J
1, we find that

[H0, χ1] = −i
∑
n

dn(J
1)n ·Ω0(J

1)ein·θ
1

. (6.45)

Then choosing coefficients

d0 = 0, dn(J
1) = −i

cn(J
1)

n ·Ω0(J1)
(6.46)

gives H1 + [H0, χ1] = c0. That is, the mapping generated by the function χ1 in (6.44) with
coefficients (6.46) annihilates the first-order dependence of H1 on the angles. The function

H̄1(J
1) = c0(J

1), (6.47)

which is just the perturbation H1(θ
1,J1) averaged over θ1.

6.5.3 Higher order

Notice the n ·Ω(J1) in the denominator in the expression for dn: resonances or almost resonances
between the components of the frequency vector Ω0 leads to the notorious “small denominators”
problem. Let’s ignore that for now and continue to second order by applying exp[ϵ2Lχ2

] to the
transformed first-order Hamiltonian (6.42). The result is

H2 = H0 + ϵH̄1 + ϵ2 (H2 + [H0, χ2]) + ϵ3[H̄1, χ2] +O(ϵ4), (6.48)

and we can eliminate the θ dependence of the O(ϵ2) term by choosing χ2 to satisfy H2+[H0, χ2] =
H̄2(J

2), the angle-averaged H2. Similarly, we could proceed order by order following (6.35), choos-
ing χ3 to eliminate the angle-dependence of the O(ϵ3) perturbation, and so on.

We can do better than this, however. Notice how simple the O(ϵ3) term in (6.48) is. That
means we can choose χ3 at the same time as χ2, pushing the angle dependence of the transformed
Hamiltonian to its O(ϵ4) term. Then we can choose χ4, ..., χ7 to make the leading angle-dependent
term be O(ϵ8), and so on (see §§2.5,2.6 of Lichtenberg & Lieberman (1992) for details or the 2017
miniproject for an example). This is one of two key ingredients used in showing that convergent
perturbation series expansions can be found sufficiently far from resonances. The other is explained
in Appendix 8 of Arnold (1978); see also Box 3.5 of Binney & Tremaine (2008) or §2.3 of Morbidelli
(2002)
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6.6 Adiabatic invariants

Now we turn to the special case of how Hamiltonian systems respond to perturbations that develop
on timescales much slower than any of the characteristic frequencies Ω. Let us begin with a system
having one degree of freedom and corresponding angle-action coordinates (θ, J). Applying a slow
perturbation ϵH1(θ, J, ϵt), the Hamiltonian of the system becomes

H(θ, J, t) = H0(J) + ϵH1(θ, J, ϵt). (6.49)

We assume that the derivatives ∂H1/∂θ ∼ ∂H1/∂J ∼ |H1| ∼ |H0|; the ϵ factor in the time
dependence of H1 is chosen to ensure that ∂H1/∂t ∼ ϵ|H1| too.

Now we construct a time-dependent canonical map to new angle-action coordinates (θ1, J1) in
which to O(ϵ) the transformed Hamiltonian is independent of θ1. We use the type-2 generating
function

F2(θ, J
1, t) = θJ1 + ϵS(θ, J1, t), (6.50)

which, to first order in ϵ, maps

θ = θ1 − ϵ
∂S

∂J1
, J = J1 + ϵ

∂S

∂θ
, (6.51)

and, from equation (5.10), transforms the Hamiltonian to

H1(θ1, J1, t) = H(θ, J, t) + ϵ
∂S(θ, J1, t)

∂t
. (6.52)

Putting these last four equations together, we have that

H1(θ1, J1, t) = H0(J1) + ϵ
∂H0(J

1)

∂J

∂S

∂θ1
+ ϵH1(θ

1, J1, ϵt) + ϵ
∂S(θ1, J1, t)

∂t
+O(ϵ2). (6.53)

Introducing the angle-averaged

H̄1(J
1, ϵt) ≡ 1

2π

∫
H1(θ

1, J1, ϵt) dθ1 (6.54)

we can eliminate the θ1 dependence in the O(ϵ) terms of the transformed Hamiltonian (6.53) by
choosing S to make

Ω0
∂S

∂θ1
+ (H1 − H̄1) = 0, (6.55)

where Ω0 ≡ ∂H0/∂J ; this choice of S demotes the ϵ∂S/∂t term in (6.53) to second order in ϵ. The
new action is given by

J1(θ, J) = J − ϵ
∂S

∂θ
+O(ϵ2)

= J + ϵ
1

Ω(J)
(H1 − H̄1)(θ, J) +O(ϵ2).

(6.56)

That is, to first order in ϵ, the new action just oscillates around its old value. We can make these
oscillations arbitrarily small by slowing down the rate of change ϵ of the perturbation.

An adiabatic invariant is any function I(q, p, t) of the phase space coordinates and time that
satisfies the condition that, for any δ > 0, we can find some ϵ0 > 0 for which

|I(q(t), p(t), ϵt)− I(q(0), p(q), 0)| < δ (6.57)

for all 0 < t < 1/ϵ and ϵ < ϵ0. The action is an example of an adiabatic invariant, as is any
function of the action.

The situation is less clear cut in systems with more than one degree of freedom. Then equa-
tion (6.55) becomes

Ω · ∂S
∂θ1

+ (H1 − H̄1) = 0, (6.58)

which is subject to the small denominators problem for almost-resonant orbits: when linear com-
binations of frequencies are low, the perturbation is no longer slow. This can have interesting
consequences.
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6.7 Capture into resonance

Fourier expanding S(θ,J1, t) =
∑

n sn(J
1, t)ein·θ and (H1−H̄1)(θ,J

1, t) =
∑

n hn(J
1, t)ein·θ in the

Hamiltonian (6.53), we encounter the small-denominators problem for any n for which n ·Ωsn+hn
cannot be eliminated. Following §6.4, let us suppose that there is a single dominant such value of n
for some J1, and introduce the slow angle θs = n·(θ−θ0) with phase offset θ0 = arg hn = − arg h−n.
Then the best we can do is reduce (6.53) to the time-dependent pendulum Hamiltonian

H = H0(Js) + ϵH̄1(Js, ϵt)− ϵV (Js, ϵt) cos θs, (6.59)

where V = −2|hn|, Js is a slow action conjugate to θs and we have suppressed all dependence on the
remaining, fast variables. We have already seen the phase-plane for this Hamiltonian (Figure 6.2),
but now the location and size of the separatrix change slowly with time. As usual, the closer we
get to the separatrix, the lower the orbital frequency Ωs = ∂H/∂Js becomes. So what happens
when a resonance sweeps slowly through action space? This was worked out by Henrard (1982).
The following summary borrows from §6.3 of Tremaine (2023).

We are interested in the behaviour of orbits close to the separatrix. We do this by defining the
relative energy

K(θs, Js, ϵt) = H(θs, Js, ϵt)−H(θ, J±
s , ϵt),

where J±
s (θs, Js, ϵt) is the action of the closest branch of the separatrix to (θs, Js): we use J

+
s (θs, ϵt)

for the action of the θ̇s > 0 segment of the separatrix (in the example shown in Figure 6.2 this is
the upper segment) and J−

s for the θ̇s < 0 segment (lower segment in the figure).
Holding (θs, Js) fixed, the rate of change of the relative energy is

∂

∂t
K(θs, Js, ϵt) =

∂

∂t
H(θs, Js, ϵt)−

∂

∂t
H(θs, J

±
s , ϵt)−

∂J±
s

∂t

∂

∂Js
H(θs, J

±
s , ϵt). (6.60)

When Js is very close to J±
s , Henrard (1982) shows that first two terms almost cancel, leaving only

the third. Dividing by θ̇s = ∂H/∂Js, we are left with

dK

dθs
= − ∂

∂t
J±
s (θs, ϵt) (6.61)

along orbits near the separatrix. Integrating from θs = −π to π, the change in the relative energy
K as an orbit crosses either segment of the separatrix is given by

∆K± = ∓
∫ π

−π

∂J±
s (θs, ϵt)

∂t
dθs, (6.62)

in which for orbits just inside the separatrix the integral really goes from just over −π to just
under π, a detail that Henrard (1982) shows we can safely ignore. More importantly, he addresses
the issue of particles lingering for longer and longer as they approach the unstable fixed point at
θs = ±π and shows that this expression nevertheless is a good approximation to the energy change
in crossing the separatrix.

For the example plotted in Figure 6.2 the fixed point (θs, Js) = (0, 0) is a minimum of the
Hamiltonian. The relative energy K increases from K < 0 in region R0 of trapped, librating orbits,
passing though K = 0 on the separatrix, to K > 0 in the circulating regions R+ and R−. ∆K+

is directly proportional to the orbit-averaged rate at which the upper segment of the separatrix
moves downwards in the plot. ∆K− measures the corresponding rate at which the lower segment
moves upwards. Particles that librate with θs > 0 (region R+) gain energy ∆K+ every libration
period. Those that librate with θs < 0 (region R−) gain energy ∆K−. Particles that circulate
(region R0) close to the separatrix alternately gain ∆K+ when θ̇s > 0 and then ∆K− when θ̇s < 0.

Now consider the fate of a particle in region R+, with K > 0 and θ̇s > 0. It will encounter the
separatrix only if ∆K+ < 0. Once it does then K becomes negative, indicating that the particle
is in region R0. When θ̇s flips from positive to negative then the particle is closer to the lower half
of the separatrix and its behaviour is governed by ∆K−. There are three cases to consider:

1. If ∆K− < 0 then the lower separatrix is moving away, downwards, and K continues to
decrease: the particle becomes trapped in the librating region R0.
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2. If ∆K− > 0 (lower separatrix moving up) with ∆K+ +∆K− > 0 then K becomes positive
again and the particle tunnels directly from region R+ to region R−.

3. If ∆K− > 0, but ∆K+ + ∆K− < 0 then the particle’s fate depends on its relative energy
K⋆ just as it enters the slow zone where θs ≃ π. Assume that K⋆ is uniformly distributed in
the range [∆K+, 0]. If K⋆ +∆K− > 0 then after the particle has moved from θs = π back
to θs = −π it will have K > 0 and so will be in region R−. The probability of this escape
is ∆K−/(−∆K+). On the other hand, if K⋆ +∆K− < 0 the particle will have K < 0 and
will be trapped in region R0. The probability of this capture is (∆K− +∆K+)/∆K+.

We can apply similar reasoning to the fate of a particle that starts in the trapped region R0.
The particle remains trapped there unless ∆K+ + ∆K− > 0 (i.e., unless the trapped region is
shrinking). Then

1. if ∆K+ > 0 and ∆K− < 0 (both segments of separatrix moving downwards) it escapes to
region R+;

2. if ∆K+ < 0 and ∆K− > 0 (both segments moing upwards) it escapes to region R−;

3. if ∆K+ > 0 and ∆K− > 0 it escapes to region R+ with probability ∆K+/(∆K+ +∆K−)
and to region R− with probability ∆K−/(∆K+ +∆K−).

This resonant trapping mechanism is the most plausible explanation for the origin of the 3:2
Neptune–Pluto resonance: see §6.4 of Tremaine (2023) for discussion. It has applications in galaxy
dynamics too. Sridhar & Touma (1996) have shown how it can lead to vertical thickening of
galactic discs, although in practice scattering of stars by molecular clouds is a much more effective
fattening mechanism. Chiba et al. (2021) and Chiba & Schönrich (2021) discuss the observational
signatures of orbit trapping by the slowing Galactic bar.

Exercises

1. Let (θ0,J0) be angle-action variables for the Hamiltonian H0(J
0). We wish to construct ap-

proximate angle-action variables (θ1,J1) for the perturbed Hamiltonian H = H0 + ϵH1, where
ϵH1(θ

0,J0) is a known function of the (θ0,J0). Explain why it is appropriate to construct these
new (θ1,J1) by using a type-2 generating function of the form F2(θ

1,J0) = θ1 ·J0+ ϵS(θ1,J0).
What is the relationship between (θ0,J0) and (θ1,J1) in terms of the function S? Obtain an
expression for H = H0 + ϵH1 as a function of θ1,J1, correct to first order in ϵ. By Fourier
expanding

S(θ1,J0) =
∑
n

Sn(J
0)ein·θ

1

and making a similar expansion for the perturbation H1, explain how it is possible to choose
the Sn(J

0) to eliminate the O(ϵ) dependence of the Hamiltonian on the angles θ1.

2. A satellite orbits an axisymmetric planet of mass M , whose potential may be expanded as
Φ(r, θ) = −GM/r +Φ1, where

Φ1(r, θ) =
GM

r

∞∑
l=2

JlR
l

rl
Pl(cos θ). (6.63)

Here R is the mean radius of the planet, the Pl(cos θ) are Legendre polynomials and the Jl are
multipole moments. Treating Φ1 as a perturbation and considering only its l = 2 term, show
using (2.26) or otherwise that the orbit-averaged perturbation Hamiltonian is given by

⟨H1⟩ =
GMJ2R

2

4a3(1− e2)3/2
(3 sin2 i− 2), (6.64)

where a, e and i are the semimajor axis, eccentricity and inclination of the satellite’s orbit. By
expressing this in terms of Delaunay variables, show that a, e and i are constants of motion,
but that the argument of periapse ω undergoes prograde precession if cos i > 1/

√
5, retrograde

if cos i < 1/
√
5.
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3. Let us consider another way of deriving the equations of motion for the perturbed orbit-averaged
Kepler problem. Introduce the dimensionless angular momentum

j ≡ 1√
GMa

L. (6.65)

Directly from the usual properties of Poisson brackets it follows that the components of j satisfy

[ji, jj ] =
1√
GMa

ϵijkjk. (6.66)

(a) Show that the components of the eccentricity vector (2.21) similarly satisfy

[ei, ej ] =
1√
GMa

ϵijkjk, (6.67)

and that

[ji, ej ] =
1√
GMa

ϵijkek. (6.68)

(b) Now let H̄ be a perturbation Hamiltonian that is independent of the mean anomaly. Show
that under the influence of this H̄ the vectors j and e evolve according to

dj

dt
= − 1√

GMa

(
j× ∂H̄

∂j
+ e× ∂H̄

∂e

)
,

de

dt
= − 1√

GMa

(
e× ∂H̄

∂j
+ j× ∂H̄

∂e

)
,

(6.69)

which are known as the Milankovich equations.

4. In the notes above we investigated a couple of special cases of the restricted three-body problem.
Let us now consider it more generally before looking at an interesting application. Using the
notation introduced in §6.2 we can substitute r = a(cosφê + sinφû) and rp = ap(cosφpêp +
sinφpûp) into the Hamiltonian (6.8) and – in principle – expand the result as a Fourier series
in the Delaunay variables of planet and test particle.

(a) State why the semimajor axes a and ap become constants of motion when we average the
Hamiltonian over the mean anomalies w and wp.

(b) After this averaging, the planet and test-particle orbits both become Keplerian ellipses,
each of which we can characterise by its angular momentum and eccentricity vectors. Explain
why the magnitude of the test particle’s angular momentum vector changes much more slowly
than its direction. How does the precession rate of the test particle’s ellipse scale with mp?

(c) Averaging over the precession period of each ellipse, the system becomes a pair of circular
annuli, whose relative orientation evolves according to their averaged torque. Write down an
order-of-magnitude estimate for this torque in terms of mp and the characteristic radius R,
assuming that a ∼ ap ∼ R. What sets the shortest timescale for which we can assume that
this torque acts?

(d) Now let us apply this to a cluster of stars around a black hole: the central, dominant body
becomes a black hole of massM•, while the “planet” and test particle turn into stars that orbit
this black hole. We suppose that there are such N stars, each of mass m, but with Nm≪M•.
Averaging the stars’ orbits into circular annuli as above, write down an order-of-magnitude
expression for the characteristic torque felt by each star in terms of G, N , m and R.

(e) Stating clearly any assumptions that you make, estimate how long it takes for the direction
of a star’s angular momentum vector to lose memory of its initial condition. Comment on how
your result differs from the two-body relaxation timescale (3.7). See also Rauch & Tremaine
(1996).

5. In §6.4 we skipped over the problem of calculating the constants C and B that appear in the
resonant Hamiltonian (6.30) for the planar restricted three-body problem (6.19). This exercise
rectifies that.
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(a) Writing r = a(1 − e cos η) and rp = ap(1 − ep cos ηp), where η and ηp are the eccentric
anomalies of the test particle and the planet, respectively, and Taylor expanding the square
root in (6.19) in powers of α ≡ a/ap, show that the perturbation Hamiltonian can be written
as

ϵH1 = −Gmp(1− ep cos ηp)

ap

[ ∞∑
j=0

b
(j)
1/2(α) cos jϕ

+ (α− cosϕ)α (e cos η − ep cos ηp)

∞∑
j=0

b
(j)
3/2(α) cos jϕ

− α(1− e cos η + ep cos ηp) cosϕ

]
+O(e2), (6.70)

where the Laplace coefficients

b(j)s (α) ≡

{
1
π

∫ π

0
dϕ

(1+α2−2α cosϕ)s , j = 0,
2
π

∫ π

0
cos jϕ dϕ

(1+α2−2α cosϕ)s , j ̸= 0,
(6.71)

come from the Fourier expansion
[
1 + α2 − 2α cosϕ

]−s
=
∑∞

j=0 b
(j)
s cos jϕ.

(b) Now we need to rewrite the cos jϕ and e cos η factors that appear here in terms of the
modified Delaunay angles (5.64) θ = (θϖ, θΩ, θλ) = (−ϖ,−Ω, λ). Use Kepler’s equation to
show that

cosw = cos η + e sin2 η +O(e2),

sinw = (1− e cos η) sin η,
(6.72)

and hence obtain an expression for e cos η in terms of λ and ϖ that is correct to first order in e.

(c) To deal with the cos jϕ factors, notice that the angle between the test body and planet is
ϕ = (φ+ϖ)− (φp +ϖp), where φ and φp are the respective true anomalies. Using (2.25), or
otherwise, show that

cos j(φ+ϖ) = cos jλ− 2je sin(λ−ϖ) sin jλ+O(e2), (6.73)

sin j(φ+ϖ) = cos jλ+ 2je sin(λ−ϖ) cos jλ+O(e2). (6.74)

(d) For simplicity let us assume that the planet is on a circular orbit so that ep = 0. Then we
may set ϖp = 0 and have ηp = φp = λp. Show that

cos jϕ = cos j(λ− λp)− 2je sin(λ−ϖ) sin j(λ− λp) +O(e2). (6.75)

(e) By substituting these expressions for cos η and cos jϕ into (6.70) and comparing to the
K : Kp = 3 : 2 resonant perturbation Hamiltonian (6.23) obtain an expression for the constants
β and B(J) in the latter. Express your answer for B(J) in terms of α, e and Laplace coefficients.

(f) Estimate the constant C that appears in the full resonant Hamiltonian (6.30) and comment
on how well this resonant Hamiltonian describes the motion of the real Sun–Neptune–Pluto
system.



Chapter 7

Galaxies: equilibrium models

We make the collisionless approximation (§3.1) for the motion of stars and dark matter. Then,
assuming that stars are neither created nor destroyed, the phase-space distribution function (DF)
f(x,x, t) of each stellar (or DM) population satisfies the CBE (3.8),

∂f

∂t
+ [f,H] = 0, (7.1)

in which H = 1
2v

2+Φ(x, t) is one-body Hamiltonian, with Φ the gravitational potential sourced by
all matter in the system. If the galaxy has distinct stellar populations (e.g., different ages, metal-
licities) then we can either make this f a function of the stellar populations too f(x,v, τ, Z, ..., t),
or we could introduce a distinct DF f1, ..., fn for each stellar (or dark matter) population. These
distinct populations are then coupled only by their effect on the overall potential Φ.

Note that in these lectures I define the DF f to be the phase-space mass density of one such
population. We could equally well define it to be the number density, probability density or
luminosity density of stars in phase space: for most purposes all are equivalent, save for some
normalisation constants. We do not assume that this DF f is the only source of matter that
contributes to the potential Φ, unless stated otherwise.

7.1 The Jeans and virial equations

The velocity moments of the DF are

ρvαx v
β
y v

γ
z (x, t) ≡

∫
vαx v

β
y v

γ
z f(x,v, t) d

3v, (7.2)

in which α, β, γ ≥ 0 are integers. The zeroth-order moment (α = β = γ = 0) is the mass density,
ρ(x, t).

The first-order velocity moments are the density-weighted mean-streaming velocities,

ρv̄i(x, t) ≡
∫
vi f(x,v, t) d

3v, (7.3)

for i = x, y or z. We can split the second-order moments

ρv̄ivj(x, t) ≡
∫
vivj f(x,v, t) d

3v

= ρ (v̄iv̄j + σij)

(7.4)

into contributions from mean-streaming (first term) plus randommotions, quantified by the velocity
dispersion tensor (second term). The third- and higher-order moments do not have such direct
physical interpretations.
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7.1.1 Jeans equations

Multiplying the CBE
∂f

∂t
+ vj

∂f

∂xj
− ∂Φ

∂xj

∂f

∂vj
= 0 (7.5)

by powers of vi and integrating over velocities gives the sequence of Jeans equations, namely

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0,

∂

∂t
(ρvi) +

∂

∂xj
(ρvivj) + ρ

∂Φ

∂xi
= 0, (7.6)

and so on, where we have used integration by parts assuming that f vanishes sufficiently quickly as
v → ∞. These are sometimes called the equations of “stellar hydrodynamics”: the first is simply
the continuity equation; the second is the momentum equation. Writing ¯vivj = v̄iv̄j + σij and
using the first equation, the second can be written as

ρ
∂v̄i
∂t

+ ρv̄j
∂v̄i
∂vj

+
∂

∂xj
(ρσ2

ij) + ρ
∂Φ

∂xi
= 0, (7.7)

which is Euler’s equation for fluid flow with ρσ2
ij playing the role of pressure. Unlike the situation

in fluid mechanics, where, e.g., under certain circumstances we might reasonably assume that the
gas is isothermal, in stellar dynamics we do not have an equation of state to tell us what to take
for σ2

ij . We can write down higher-order Jeans equations that express the rate of change of the

nth-order moments to those of order n− 1 and n+ 1, but in the absence of some closure relation
these are of limited use.

7.1.2 Virial equations

Multiplying the second Jeans equation by xk and integrating over all space gives∫
d3xxk

∂

∂t
ρvi +

∫
d3xxk

∂

∂xj
ρvivj +

∫
d3xxkρ

∂Φ

∂xi
= 0. (7.8)

Now take the time derivative outside the integral in the first term, and apply the divergence theorem
to the second, making the reasonable assumption that the second moment vanishes sufficiently
rapidly at infinity. The result is

d

dt

∫
d3x ρxkvi −

∫
d3x ρvivk︸ ︷︷ ︸
2Kik

+

∫
d3xxkρ

∂Φ

∂xi︸ ︷︷ ︸
−Wik

= 0, (7.9)

where

Kij ≡
1

2

∫
d3x ρvivj ,

Wij ≡ −
∫

d3xxjρ
∂Φ

∂xi
,

(7.10)

are the usual kinetic and potential energy tensors. With the help of the continuity equation (7.6),
the integral in the first term can be written as the time derivative of the moment of inertia tensor,

Iij ≡
∫

d3x ρxixj . (7.11)

Then swapping indices i↔ k in (7.9) and adding, we have the virial equations, or tensor virial
theorem,

1

2

d2Iik
dt2

= 2Kik +Wik. (7.12)
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The LHS of this vanishes for steady-state systems . Taking the trace gives

2K +W = 0, (7.13)

which is known as the scalar virial theorem.
From N -body experiments, we know that galaxies settle down into approximate equilibrium

(“virialise”) within a few dynamical times. This suggests that that a good way of understanding
them is to think of them as some underlying equilibrium f(x,v),Φ(x) plus perturbations on top
of this.

7.1.3 Applications of moment equations

We have derived the Jeans and virial equations in Cartesian coordinates, but it is usually more
natural to describe galaxies using either spherical polar or cylindrical polar coordinates. In spherical
polars (r, ϑ, φ) the CBE ∂f/∂t+ [f,H] = 0 becomes

∂f

∂t
+ pr

∂f

∂r
+

1

r3

(
p2ϑ +

p2φ

sin2 ϑ
− r3

∂Φ

∂r

)
∂f

∂vr
+
pϑ
r2
∂f

∂ϑ
+

(
p2ϑ cosϑ

r2 sin3 ϑ
− ∂Φ

∂ϑ

)
∂f

∂pϑ

+
pφ

r2 sin2 ϑ

∂f

∂φ
− ∂Φ

∂φ

∂f

∂pφ
= 0,

(7.14)

with pr = ṙ, pϑ = r2ϑ̇, pφ = r2 sin2 ϑφ̇. For a steady-state, spherical non-rotating galaxy
(∂t = ∂ϑ = ∂φ = v̄r = v̄ϑ = v̄φ = 0) it is natural to assume a velocity dispersion tensor
σ2 = diag(σ2

r , σ
2
ϑ, σ

2
φ) with σ

2
ϑ = σ2

φ, but not necessarily equal to σ2
r . The second-order steady-state

Jeans equations then reduce to
d

dr
ρσ2

r +
2β

r
ρσ2

r = −ρdΦ
dr
, (7.15)

where β(r) ≡ 1 − σ2
φ(r)/σ

2
r(r). This is the “equation of hydrostatic equilibrium” for spherical

galaxies. Observations of distant galaxies provide (line-of-sight projections of) their luminosity-
weighted j(r) and dispersion j(r)σ2

r(r) profiles, but we can immediately rewrite this equation
with ρ(r) replaced by j(r) to deal with this. [This corresponds to taking moments of the phase-
space luminosity density instead of the mass density.] If we knew β(r) then we could deduce the
galaxy’s acceleration profile dΦ/dr and therefore its mass distribution. It is tempting to assume
that the velocity dispersion is isotropic (β = 0), but there is overwhelming evidence (e.g., from
applications of the virial theorem or from more sophisticted modelling – see below) that this
appealing assumption is not respected by real galaxies.

Another example comes from the dynamics of axisymmetric discs. One of the three second-order
Jeans equations is

∂

∂R
ρv2R +

∂

∂z
ρvRvz + ρ

(
v2R − v2φ

R
+
∂Φ

∂R

)
= 0. (7.16)

Multiply by R/ρ and focus on z = 0, where we assume that ∂ρ/∂z = 0:

R

ρ

∂

∂R
ρv2R +R

∂

∂z
vRvz + v2R − v2φ +R

∂Φ

∂R
= 0. (7.17)

Now split v2φ = σ2
φ + v̄2φ (velocity dispersion plus mean-streaming) and split v̄φ further into

v̄φ = vc − va, (7.18)

where v2c ≡ R∂Φ/∂R is the local circular speed and va, the asymmetric drift, is the amount by
which v̄φ lags behind vc. Rearranging, we obtain

σ2
φ − v2R − R

ρ

∂

∂R
ρv2R −R

∂

∂z
vRvz = v2c − v̄2φ

= va(2vc − va) ≃ 2vcva. (7.19)

That is, the larger the velocity disperion σφ of a stellar population, the more it is supported by
“pressure” and the more its mean rotational velocity v̄φ lags behind the local circular speed vc.
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7.2 Jeans’ theorem

The Jeans and virial equations are useful aids for understanding the gross dynamics of galaxies,
but the lack of any closure relations limits their predictive power. To understand the internal
dynamics of galaxies in equilibrium more deeply we need to engage with the orbits that their
potentials Φ(x, t) can support. The most important consequence is Jeans’ theorem: the DF of
an equilibrium galaxy (∂f/∂t = 0) can depend on (x,v) only through integrals of motion. That
is, f = f(I1(r,v), I2(r,v), I3(r,v)), where the Ii are the integrals of motion. For example, in an
axisymmetric galaxy the integrals of motion Ii could be energy E, the z component of angular
momentum Lz and the nonclassical third integral I3.

The strong Jeans’ theorem states that the DF of a steady-state galaxy in which almost all
orbits are regular and nonresonant is a function only of the actions J. To show this we first note
that, by assumption, angle–action variables exist for the potential Φ. Suppose that at time t = 0
the DF is

f(θ,J, t = 0) =
∑
n

fn(J)e
in·θ. (7.20)

Since θ(t) = Ω(J)t + θ(0) and the value of f is unchanged under the θ flow, it follows that at a
later time t

f(θ,J, t) =
∑
n

fn(J)e
i(θ−n·Ωt). (7.21)

Differentiating w.r.t. t,
∂f

∂t
= −i

∑
n

fn(J)n ·Ωei(θ−n·Ωt), (7.22)

which, when the potential is nonresonant (n ·Ω ̸= 0), is zero only if fn̸=0 = 0.

7.3 Simple equilibrium galaxy models

Now let us use Jeans’ theorem to construct some simple galaxy models. We consider only the
simplest examples, which are expressed as functions of the standard integrals of motion (e.g.,
energy and angular momentum) instead of actions. To make things even easier we consider only
the simplest scale-free forms for the potential, a consequence of which is that they have infinite
mass.

The Mestel disc is a razor-thin axisymmetric disc with DF

f(E,Lz) =

{
f0

(
Lz

R0vc

)q
e−E/σ2

, Lz > 0,

0, Lz < 0,
(7.23)

in potential Φ(R) = v2c log(R/R0), where vc, q and σ are free parameters.

Self-consistency requires that

q =
v2c
σ2

− 1, f0 =
Σ0v

q
c

2q/2
√
πΓ
(
q+1
2

)
σ2+q

, (7.24)

where Σ0 is the characteristic surface density. It is not hard to show that v2R = σ2 and that the
larger q is the “colder” the disc becomes in vφ.

As an example of a spherically symmetric model, let’s take the isothermal sphere, for which
the DF

f(E) =
ρ0

(2π)3/2σ3
exp[−E/σ2] =

ρ0
(2π)3/2σ3

exp

[
−
Φ(r) + 1

2v
2

σ2

]
. (7.25)

The density is

ρ(r) =

∫
fd3v = ρ0 exp[−Φ(r)/σ2]. (7.26)
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The velocity dispersion tensor is isotropic with dispersion σ. We can demand that this be consistent
with Poisson’s equation,

1

r2
d

dr

(
r2

dΦ

dr

)
= 4πGρ(r) = 4πGρ0 exp[−Φ(r)/σ2]. (7.27)

We can solve this numerically by marching outwards from r = 0 with assumed initial values of Φ(0)
and dΦ/dr. The only known analytical solution is the singular isothermal sphere, for which
Φ = 2σ2 log r and density ρ ∝ 1/r2. All self-consistent solutions for the DF (7.25) have infinite
mass, ρ ∼ r−2 as r → ∞.

One can use the the same broad idea to deal with more general DFs of the form f(J).

Exercises

1. (a) For a razor-thin disc having DF f(E,Lz) in potential Φ(R) show that the velocity-space
volume element at radius R can be written as

dvRdvφ =
2dEdLz

[2R2(E − Φ(R))− L2
z]

1/2
. (7.28)

Explain the origin of the factor of 2 that appears in the numerator of this expression. The
energy E satisfies E > Φ(R). What are the corresponding bounds on Lz?
(b) Using this, or otherwise, show that the velocity moments of the Mestel DF (7.23) are given
by

ρvαRv
β
ϕ(R) =

2
α+β+q

2 σ2+α+β+q

vqc

(
R

R0

)q

f0Γ

(
q + β + 1

2

)
Γ

(
α+ 1

2

)
e−Φ(R)/σ2

. (7.29)

Hence obtain the constraints (7.24).
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Chapter 8

Galaxies: perturbations

8.1 N-body simulation

The most powerful way of probing how a galaxy model responds to perturbations is by using N -
body simulations. There are two broad types of N -body simulation in galaxy dynamics: collisional
and collisionless. Collisional or “direct” N -body models are what you might immediately think
of when you hear “N -body simulation”: they are direct simulations in which each particle in a
physical star (or planet or whatever). They are often used in simulations of star clusters to study
relaxation, evaporation and similar processes. Because each particle represents a star one can even
include simple models of stellar evolution and include detailed models for what happens when two
stars pass close enough to raise tides or even collide.

Collisionless N -body simulations are a little more subtle (Leeuwin et al., 1993). The CBE,

∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0, (8.1)

is a first-order quasilinear PDE, which suggests we try solving it using the method of characteristics
(e.g., Arnold, 1992). Its characteristic curves are simply

dt =
dxi
vi

=
dvi

−∂Φ/∂xi
, (8.2)

which, when written out, are no more than the equations of motion for a test particle moving in
the potential Φ. The only difficulty is that Φ itself is set by f : we have that

Φ(x) = −GM
∫
f(x′,v′) dx′dv′

|x− x′|
+Φexternal. (8.3)

In a collisionless simulation the particles are simply a Monte Carlo realisation of the underlying
DF, which are evolved forward in time by following the characteristics of the CBE in the (Monte
Carlo-sampled) potential. That’s the general idea. In practice, a collisionless code code has two
main parts: (i) a potential solver, which is used to estimate Φ and its derivatives from the discrete
realisation of f , somehow accounting for the integrable singularity in the integrand in (8.3); (ii)
the integrator, which is used to advance the particles forward in time (8.2). In practice the
integrator is nearly always based on some variant of the leapfrog scheme, but there are many
choices for the Poisson solver, including mesh-based schemes, truncated basis function expansions,
tree expansions, all of which have their pros and cons depending on the problem at hand.

8.2 Linear perturbation theory

Powerful as they are, it is usually quite difficult to extract insight from the output of N -body
simulations. A natural alternative then is to consider the linear response of galaxies to internal or
external perturbations.
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Take a collisionless galaxy model with an equilibrium Hamiltonian H and DF F (w). Apply an
external perturbation ϵhe(w, t), in response to which the stars’ DF changes to F (w) + ϵf(w, t).
Let hf (w, t) be the change in the Hamiltonian caused by this response: usually this will be

hf (x,v, t) = −G
∫
f(x′,v′, t) d3x′d3v′

|x− x′|
. (8.4)

The overall Hamiltonian is then H + ϵh, with h = he + hf and the CBE of the perturbed system
becomes

ϵ

(
∂f

∂t
+ [f,H] + [F, h]

)
+ ϵ2[f, h] = 0. (8.5)

Here our ambition is limited to working out the linearized response. So we throw away the nonlinear
ϵ2[f, h] and write what’s left as

df

dt

∣∣∣∣
H

≡ ∂f

∂t
+ [f,H] = −[F, h], (8.6)

the LHS of which means that the derivative of f is taken along orbits in the unperturbed Hamil-
tonian H.

Integrating this with respect to time under the assumption that the perturbation f was zero
in the distant past, the linearized response satisifes

f(wH(t), t) = −
∫ t

−∞
dt′ [F, h](wH(t′)), (8.7)

where wH(t) is the orbit of any star in the the unperturbed H. To distinguish different orbits, we
make this notation more explicit by writing wH(t|w′, t′) for the time-t phase-space location of an
orbit that at time t′ was at location w′. Then a more complete expression for the response DF is

f(w, t) = −
∫ t

−∞
dt′
∫

dw′ δ (w −wH(t|w′, t′)) [F, h](w′), (8.8)

in which the Dirac delta selects only that w′ at time t′ that arrives at w at time t.

8.2.1 Matrix method

Equation (8.8) is not an explicit expression for f , however, because the integrand in the RHS
depends h = he + hf and hf depends on f . Kalnajs (1976) addressed this problem by introducing
potential–density pairs. We follow his idea by introducing potential–DF pairs (hµ(w), fµ(w)), the
elements of each pair related via

hµ(w) =

∫
d6w′U(w,w′)fµ(w′), (8.9)

where U(w,w′) is the two-body interaction Hamiltonian. For example, if F and f represent
stellar densities then this will usually be U(r, r′) = −G/|r− r′|, but for comparison with N -body
simulation it might be appropriate to use a softened version of this interaction kernel. When
studying resonant relaxation around a black hole we might decide to average orbits over mean
anomaly, in which case U(w,w′) would be the wire–wire interaction Hamiltonian. We assume
that U is real-valued and symmetric in its arguments.

Having chosen fµ(w) and U(w,w′) we can immediately write down a biorthogonality relation∫
[hµ(w)]⋆fν(w) d6w ≡ −Eµν , (8.10)

which uses U(w,w′) to define a scalar product-like relation between different elements (fµ, fν).
(It is not a “good” scalar product though because it is not positive definite.)
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We assume that our set of hµ(w) is complete enough that we can expand the stimulus and
response Hamiltonians as

he(w, t) =
∑
µ

aµ(t)h
µ(w),

hf (w, t) =
∑
µ

bµ(t)h
µ(w).

(8.11)

Then one of the many possible response DFs that produces this hf (w, t) is simply

f(w, t) =
∑
µ

bµ(t)f
µ(w). (8.12)

We can relate b’s to a’s by multiplying the integral expression (8.8) for f(w, t) by hµ⋆, inte-
grating over w and using the orthogonality relation (8.10). The result is that

Eµνbν(t) =

∫ t

−∞
dt′Kµν(t, t′) (aν(t

′) + bν(t
′)) , (8.13)

in which the kernel

Kµν(t, t′) ≡
∫

d6w (hµ(w))⋆
∫

d6w′[F, hν ](w′)δ (w −wH(t|w′, t′))

=

∫
d6w′ (hµ(wH(t|w′, t′)))

⋆
[F, hν ](w′),

(8.14)

The second line makes it clear that Kµν(t, t′) quantifies how much an element of basis function
hν introduced at time t′ contributes to the element hµ at a later time t. If H is autonomous (i.e.,
∂H/∂t = 0) then wH(t|w′, t′) is a map wH(t − t′|w′) that depends only on the time difference
t− t′ and the kernel simplifies to

Kµν(t, t′) = Kµν(t− t′) =

∫
d6w′ (hµ(wH(t− t′|w′)))

⋆
[F, hν ](w′). (8.15)

Equation (8.13) is a linear Volterra equation for the density response bµ(t) expressed as con-
volution with the kernel (8.15) of the stimulus aµ(t) and response bµ(t) at earlier times. Once a
basis has been chosen and the kernel calculated, it is very easy to solve (8.13) numerically to find
the linear response to any stimulus. Then, knowing h(w, t) one can go back to (8.8) to find the
full DF response.

8.2.2 The kernel in angle–action variables

Suppose that our unperturbed H is integrable with angle–action variables (θ,J). Writing w′ =
(θ,J) our time-evolution map is simply

wH(t− t′|w′) = (θ+Ω(t− t′),J), (8.16)

where, as usual, Ω ≡ ∂H/∂J. Now we can immediately write down epressions for the various
factors that appear in the kernel (8.15). The first factor in the integrand involves

hµ(wH(t− t′|w′)) =
∑
m

hµm(J′)eim·Ω(t−t′)eim·θ, (8.17)

and the Poisson bracket is given by

[F, hν ] = −
∑
n

i

(
n · ∂F

∂J

)
hn(J)e

in·θ. (8.18)

Integrating θ, the kernel itself becomes

Kµν(t− t′) = −(2π)3i

∫ ∑
n

n · ∂F
∂J

e−in·Ω(t−t′)(hµn(J))
⋆hνn(J) d

3J. (8.19)
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Figure 8.1: Undressed (left) and dressed (right) projected density response of a cube of mass
0.8MJ with a Maxwell–Boltzmann DF having unit dispersion to a satellite dragged through the
cube with constant velocity Jp = (0.3, 0, 0). Contours are linearly spaced with the same levels on
both panels. Positive densities are solid blue, negative dotted red. The dashed blue contour is the
zero-(projected) density response.

8.3 Example: the periodic cube

The periodic cube is an extremely simple and completely unrealistic model of a galaxy, that
is nevertheless useful for illustrating the application of perturbation theory to stellar dynamics
(Magorrian, 2021). It treats the galaxy as a big box of stars. Stars are confined by making the
box periodic: if a star passes through one wall of the box it immediately emerges on the opposite
wall. We map (x,v) → (θ,J) so that the new coordinates θ are 2π periodic.

Stars interact with some translation-invariant potential,

U(θ1,θ2) = m1m2

∑
n

Une
in·(θ1−θ2), (8.20)

that is completely described by the coefficients Un. Taking Un = −4πG/n2 for n ̸= 0 gives this
produces familiar Newtonian gravity for separations |∆θ| ≪ 1 small compared to the scale of
the box. Independent of the choice of Un the simplest equilibrium models have uniform density
ρ = ρ(θ) = const, for which H(J) = 1

2J
2 and we may choose any non-negative function F (J) as

an equilibrium DF.
For basis functions we take hµ = hm(θ) = eim·θ, with the basis labels µ and ν being integer

triplets m and n. Then the orthogonality relation (8.10) gives Emn = −(2π)3δmn/n
2Un and the

Poisson bracket in the kernel becomes [F, hn] = −i(n · ∂F/∂J)hn. The kernel itself is

Kmn(∆t) = −i(2π)3δmn

∫
n · ∂F

∂J
e−in·Ω∆t d3J. (8.21)

8.3.1 Dynamical friction

Now let us consider a cube through which a satellite of mass Mp is passing through with velocity
Jp. The coefficients representating its potential are then potential is then

an(t) =
MpUn

(2π)3
e−in·Jpt. (8.22)

...
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8.4 Another example: the shearing sheet

The shearing sheet (Julian & Toomre, 1965; Binney, 2020) is an idealised model of the local
dynamics of a differentially rotating stellar disc. We zoom in on a patch of the disc and introduce
a Cartesian coordinate system whose x axis is directed in the outward radial direction and whose y
axis is in the direction of rotation. Binney (2020) shows that, making the epicycle approximation,
a Hamiltonian for this system is

H(x, y, px,∆y) =
1

2
p2x +

1

2
∆2

y − 2xΩ∆y +
1

2
κ2x2

= Hx(x, px,∆y) +Hy(∆y),

Hx(x, px,∆y) =
1

2

[
p2x + κ2(x− x̄)2

]
,

Hy(∆y) = −1

2

(
1− 2Ω2

κ2

)
∆2

y,

(8.23)

where κ and Ω are the familiar epicycle frequencies and x̄ ≡ 2Ω∆y/κ
2.

For our equilibrium DF we adopt the Maxwellian

F (x, px,∆y) =
ΩΣ0

πκσ2
exp[−Hx/σ

2]

=
ΩΣ0

πκσ2
exp

[
−p

2
x + κ2(x− x̄)2

2σ2

]
.

(8.24)

Using d2v = dpxd∆y = (κ2/2Ω)dpxdx̄ it’s easy to see that the equilibrium density of this model
of the shearing sheet is Σ0 and its velocity dispersions are σx = σ and σy = κ

2Ωσ.

8.4.1 Basis

The natural basis to choose to represent perturbations to the potential is

hk(x) = eik·x. (8.25)

The lack of periodicity in the system means that k = (kx, ky) is a continuous variable and so the
sums over ν in the Volterra equation (8.13) are replaced by integrals over k. The corresponding
density is

Σk(x) = − |k|
2πG

eik·x (8.26)

and the scalar product-like relation (8.10) between hk and Σk′
becomes

Ekk′
=

2π|k|
G

δ(k− k′). (8.27)

The Dirac delta in (8.27) means that we can integrate the Volterra equation (8.13) for this
system over µ = k′ and use (8.26) to obtain an equivalent equation for the evolution of the density
response in place of the potential. Expanding the density response as

Σf (x, t) =

∫
dk Σ̃f

k(t)e
ik·x, (8.28)

the time-dependent expansion coefficients Σ̃f
k(t) evolve according to

Σ̃f
k(t) =

∫
dk′G

2π|k′|

∫ t

−∞
dt′Kkk′

(t− t′)
(
Σ̃e

k(t
′) + Σ̃f

k(t
′)
)
, (8.29)

where the Σ̃e
k(t) are the expansion coefficients of an imposed internal matter distribution Σe(x, t).

Alternatively, we can view them as resulting from an external stirring potential Φe(x, t) through

Σ̃e
k(t) = − |k|

(2π)3G

∫
dx e−ik·xΦe(x, t). (8.30)
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8.4.2 Kernel

With these choices of potential/density basis and equilibrium DF, the Poisson bracket that appears
in the kernel (8.15) is given by

[F, hk
′
] = −ik′ · ∂F

∂p
hk′ =

i

σ2
k′ · ∂Hx

∂p
Fhk

′

=
i

σ2

(
k′xpx − 2Ωk′y(x− x̄)

)
Fhk

′
.

(8.31)

and the expression for the kernel becomes

Kkk′
(t− t′) =

i

σ2

∫
d4w e−i(k·x(t)−k′·x(t′)) (k′xpx(t′)− 2Ωk′y(x(t

′)− x̄)
)
F (w). (8.32)

To make the connection with Binney (2020) transparent we choose to perform the integration over
stars’ phase-space locations at t = 0. Instead of using w = (x(0), y(0), px(0),∆y) directly, however,
we replace x(t) by

x′(t) ≡ x(t)− x̄ (8.33)

and ∆y by x̄. Then d4w = κ2

2Ωdx
′(0)dy(0)dpx(0)dx̄ and F (w) becomes a product of Gaussians in

px and x′. We obtain x(t) and px(t) used in (8.32) by integrating the Hamiltonian (8.23) for time
t from these initial conditions. The result is

x(t) = x̄+ x′(0) cosκt+
1

κ
px(0) sinκt,

y(t) = y(0)− 2At− 2Ω

κ

[
x′(0) sinκt+

1

κ
px(0)(1− cosκt)

]
,

px(t) = px(0) cosκt− κx′(0) sinκt,

(8.34)

where the Oort constant A ≡ Ω(1− κ2/4Ω2).
Now all that remains is to carry out the integral (8.32). From equations (8.34) the factor in

the middle of the integrand is a linear combination of px(0) and κx
′(0), namely

k′xpx(t
′)− 2Ωk′yx

′(t′) = Cppx(0) + Cκxκx
′(0), (8.35)

where we have introduced a vector C(k′, t′) = (Cp, Cκx) with components

Cp(k
′, t′) = k′xC

′ − 2Ω

κ
k′yS

′,

Cκx(k
′, t′) = −k′xS′ − 2Ω

κ
k′yC

′,

(8.36)

with C ′ = cosκt and S′ = sinκt. Similarly, the argument of the complex exponential is a linear
combination of all four t = 0 phase-space coordinates:

k · x(t)− k′ · x(t′) = Bκxκx
′(0) + (ky − k′y)y(0) +Bppx(0)

+
(
kx − k′x + 2A(kyt− k′yt

′)
)
x̄,

(8.37)

in which B(k,k′, t, t′) = (Bp, Bκx) is another two-dimensonal vector with components

Bx(k,k
′, t, t′) = kxC − k′xC

′ − 2Ω

κ
(kyS − k′yS

′),

Bp(k,k
′, t, t′) = kxS − k′xS

′ +
2Ω

κ
(kyC − k′yC

′),

(8.38)

with C = cosκt, S = sinκt. Then, using standard Fourier integrals∫ ∞

−∞
dx eikx = 2πδ(k),∫ ∞

−∞
dx eikx(a+ bx)e−x2/2σ2

=
√
2πσ(a+ ibkσ)e−k2σ2/2,

(8.39)
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or by turning to Appendix A of Binney (2020), the kernel (8.32) becomes

Kkk′
(t− t′) = (2π)2Σ0δ(ky − k′y)δ (kx − k′x + 2Aky(t− t′))

×B ·C exp

[
−1

2
σ2B ·B

]
.

(8.40)

As expected, the kernel depends on t and t′ only through their difference t − t′: the expression
on the right-hand side obscures this, but notice that adding some ∆t to both t and t′ rotates the
vectors B and C by the same angle κ∆t, leaving the scalar products B ·C and B ·B unchanged.

The Dirac deltas in this expression mean that a perturbation with wavenumber k(t′) = (k′x, k
′
y)

at time t′ evolves after time t − t′ to another wavenumber k(t) = (k′x + 2Aky(t − t′), k′y), with a
new amplitude. This is good news, because it shows that the kernel is diagonal, albeit not on the
main diagonal. It couples basis vectors hk, hk

′
in an awkward, time-dependent way.

8.4.3 Swing amplification
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Appendix A

Orbit integration code

Here is the implementation of a simple leapfrog code that was used to generate the orbits plotted
in Figure 3.3. It is also available here.

#!/usr/bin/env python3

# Examine orbits in rotating flattened logarithmic potential

import numpy as np

import matplotlib.pyplot as plt

class RotLogPot:

def __init__(self):

self.q = 0.8

self.Rc = 0.1

self.Omegap = 1.0

def Phi(self,x):

return 0.5*np.log(self.Rc**2+x[0]**2+x[1]**2/self.q**2)

def dPhidx(self,x):

dnom = self.Rc**2+x[0]**2+x[1]**2/self.q**2

return np.array([x[0],x[1]/self.q**2])/dnom

def HJ(self,x,p):

"return the value of the Jacobi integral"

return p.dot(p)/2 - self.Omegap*(x[0]*p[1]-x[1]*p[0]) + self.Phi(x)

def drift(self,x,p,dt):

"Carry out a drift leapfrog step."

alpha = -dt*self.Omegap # This is the angle by which frame rotates in time dt

rotmat = np.array([[ np.cos(alpha), -np.sin(alpha)],

[np.sin(alpha), np.cos(alpha) ]])

return np.dot(rotmat,x+dt*p), np.dot(rotmat,p)

def kick(self,x,p,dt):

"Carry out a kick leapfrog step"

return x,p-self.dPhidx(x)*dt

def stepit(pot,x,p,dt=0.01,nstep=10000):

ans = []

for istep in range(nstep):

x,p = pot.drift(x,p,0.5*dt)

x,p = pot.kick(x,p,dt)

x,p = pot.drift(x,p,0.5*dt)

ans.append([ x[0],x[1], p[0], p[1], pot.HJ(x,p) ])

return np.array(ans)

if __name__ == "__main__": ## An example of how to use
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pot = RotLogPot()

x = np.array([0.0, 0.9])

p = np.array([-1.0, 0.0 ])

xx = stepit(pot,x,p)

plt.plot(xx[:,0],xx[:,1])
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