
M.Phys Option in Theoretical Physics: C6. Revision Problem Sheet 1

Qu 1. A particle undergoes Brownian motion in one dimension. Its speedv(t) as a function of timet satisfies
the Langevin equation

dv(t)

dt
= −γv(t) + η(t) ,

whereη(t) is a Gaussian random variable, characterised by the averages〈η(t)〉 = 0 and〈η(t1)η(t2)〉 = Γδ(t1−t2).
Discuss the physical origin of each term in this equation. Show that, with initial conditionv(0) = 0, the function

v0(t) ≡
∫ t

0

e−γ(t−t′)η(t′)dt′

is a solution to the Langevin equation fort > 0.
Evaluate〈v0(t0)v0(t0 + t)〉 for t0 → ∞. Consider both casest < 0 andt > 0. Explain how the result enables

one to expressΓ in terms of temperature and other parameters characterising the system.
In the presence of an additional force on the particle, the Langevin equation has the modified form

dv(t)

dt
= f − γv(t) + η(t) .

Show for constantf that the solution to this modified equation may be written in the formv(t) = v0(t) + u(t),
and findu(t).

A force is applied to the particle that depends linearly on its positionx(t), sof = −κx(t). Forγ2 ≫ κ, the
motion of the particle may be described approximately by theequation

dx(t)

dt
= −gx(t) + n(t) ,

wheren(t) is a Gaussian random variable, characterised by the averages 〈n(t)〉 = 0 and〈n(t1)n(t2)〉 = Gδ(t1 −
t2). Discuss the justification for this approximation and derive expressions forg andG in terms ofγ, Γ andκ.

Qu 2. The time evolution of a stochastic system is represented by amaster equation of the form

dpn(t)

dt
=
∑

m

Wnmpm(t) .

Explain briefly the meaning of this equation and discuss the assumptions on which it is based. What general
conditions should the matrix elementsWnm satisfy?

A molecule lies between two atomic-scale contacts and conducts charge between them. A simple model of
this situation is illustrated below. The model has three states: the molecule may be uncharged, or may carry a
single charge at either siteA or siteB but not both. Charges hop between these sites, and between the sites and
the contacts, at the rates indicated in the figure. (For example, a charge at siteA has probabilityf2 per unit time of
hopping to siteB.)

A B

f2 ff 31

Write down a master equation for this model. For the system inequilibrium, calculate the occupation probabilities
of the three states, and show that the average number of charges flowing through the molecule per unit time is

f1f2f3

f1f2 + f1f3 + f2f3
.

Consider the casef1 = f2 = f3 ≡ f . The molecule is uncharged at timet = 0. Show that the probabilityp(t)
for it to be uncharged at a later timet is

p(t) =
1

3
+

2

3
exp

(

−3

2
ft

)

cos

(√
3

2
ft

)

.
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Qu 3. Explain in outline how transfer matrices may be used in statistical mechanics to calculate properties of
one-dimensional models with short-range interactions.

The Hamiltonian for a one-dimensional ferromagnetic Isingmodel is

H = −J

L−1
∑

n=0

σnσn+1 ,

whereJ > 0 andσn = ±1. Write down the transfer matrix for this model and find its eigenvalues and eigenvectors.
Let F (σ0, σL) be the free energy of this model, calculated for fixed values of σ0 andσL, and let∆F be the

free energy difference given by
∆F = F (+1,−1)− F (+1, +1).

Calculate∆F and put your result into the scaling form

∆F = kBTf(L/ξ),

giving an expression for the scaling functionf(x). Show that

ξ = {ln[coth(βJ)]}−1
.

Find the leading temperature dependence of∆F in the high and low temperature limits. Describe the ground
states ofH for each choice of boundary conditions, and hence interpretthe behaviour of∆F at low temperature.

Qu 4. Bosons move in a one-dimensional system of lengthL with periodic boundary conditions. Plane-wave
basis states have the form

ϕk(x) =
1√
L

eikx

with k = 2πn/L, n integer. The operatora†
k creates a boson in the stateϕk(x).

Write down an expression fora†(x), the creation operator for a boson at the pointx, in terms ofa†
k. Give also

the inverse expression, fora†
k in terms ofa†(x).

A two-boson state is defined by

|Ψ〉 =
1√
L

∑

k

fka†
k a†

−k |0〉,

where|0〉 is the vacuum, withfk real andfk = f−k.
Find the normalisation condition satisfied byfk in order that〈Ψ|Ψ〉 = 1. Write the statea†

k a†
−k|0〉 as a

two-particle wavefunction in coordinate space. Hence showthat|Ψ〉 may be written in coordinate space as

Ψ(x1, x2) =

√
2

L3/2

∑

k

fkeik(x1−x2) .

The kinetic energy for the boson system is, withm the particle mass,

H0 =
∑

k

~
2k2

2m
a†

k ak

and the interaction energy is

HI =
1

2

∑

kpq

Vqa
†
k+q a†

p ap+q ak .

Find 〈Ψ|H0|Ψ〉 in terms offk, and find〈Ψ|HI|Ψ〉 in terms offk andVq.
The Hamiltonian for the system isH = H0 + HI. Show that minimisation of

E =
〈Ψ|H |Ψ〉
〈Ψ|Ψ〉

with respect tofk yields a Schrödinger equation satisfied byfk, of the form

~
2k2

m
fk +

1

2

∑

Q

VQ(fk−Q + fk+Q) = Efk.
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Qu 5. The spectrum of a Heisenberg ferromagnet at temperatures much less than the ordering temperature can
be calculated using the following approximation. The spin operators at a given site are replaced by

Sx + iSy ≡ S+ ≃
√

2S a

Sx − iSy ≡ S− ≃
√

2S a†

Sz ≃ S − a†a

where thea, a† are boson operators satisfying the commutation relations

[a, a†] = 1, [a, a] = 0, [a†, a†] = 0.

(a) Show that this replacement respects the spin commutation relations if〈a†a〉 ≪ S.

(b) Substituting the above expressions into the HeisenbergHamiltonian

H = −J
∑

<ij>

Si · Sj ,

where the summation is over neighbouring pairs of sites, obtain the Hamiltonian in terms of boson operators to
ordera†

iaj .

For a simple cubic lattice show that the spectrum of excitations is

E(k) = SJ
∑

µ

{1 − cos(k · eµ)}

where theeµ are the lattice vectors between nearest neighbours andk is the wave-vector of the excitation.
Show thatE ≃ αk2 for smallk. Evaluateα.

(c) Obtain an expression for the deviation of〈Sz〉 from its maximum possible valueS and show that it is indeed
small at low temperatures for spatial dimension three or more. What happens in two dimensions?
[

Spin operators satisfy the commutation relations[S+, S−] = 2Sz and[Sz, S±] = ±S±

]

Past C6 exam questions that may be useful for revision [not for discussion in class]

Stochastic Processes: 2005, Qu. 5; 2002, Qu. 1; 1999, Qu. 2.

Many-Body Quantum Mechanics: 2007, Qu.8; 2006, Qu 5; 2006, Qu. 6; 2005, Qu. 7; 2005, Qu. 8.
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