M.Phys Option in Theoretical Physics: C6. Problem Sheet 5

- 1.) (Some useful kinematics)
- a) Consider the decay of a particle with mass M into two particles with mass m. Use the general formula for the decay rate Γ in terms of the matrix element \mathcal{M} derived in the lecture to show that

$$\Gamma = \frac{1}{16\pi M} \sqrt{1 - \left(\frac{2m}{M}\right)^2} |\mathcal{M}|^2 \ .$$

- b) Two particle species A_1 and A_2 with masses m_1 and m_2 scatter in a process of the type $A_1 + A_2 \rightarrow A_1 + A_2$. For incoming momenta k_1 , k_2 and outgoing momenta q_1 , q_2 define the Mandelstam variables s, t, u by $s = (k_1 + k_2)^2, t = (k_1 - q_1)^2$ and $u = (k_1 - q_2)^2$. Show that $s + t + u = 2m_1^2 + 2m_2^2$.
- c) Set $m = m_1 = m_2$ for simplicity. In the centre of mass frame, express the Mandelstam variables in terms of the total centre of mass energy E and the scattering angle θ (and the mass m).
- d) Show that the matrix element \mathcal{M} for the scattering process in b) can always be written as a function of s and t.
- 2.) A model with two real scalar fields ϕ_1 and ϕ_2 is described by the Lagrangian density $\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi_1 \partial^{\mu} \phi_1 + \partial_{\mu} \phi_2 \partial^{\mu} \phi_2 - M^2 \phi_1^2 - m^2 \phi_2^2 - \mu \phi_1 \phi_2^2 \right).$
- a) Derive the Feynman rule for the triplet vertex in this theory by computing the appropriate amputated Green function.
- b) Assume that M > 2m and compute the rate Γ for the decay of a ϕ_1 particle into two ϕ_2 particles at leading order.
- c) Compute the matrix element for scattering of two ϕ_2 particles into two ϕ_2 particles at leading order and express it in terms of Mandelstam variables.
- d) Write the matrix element in c) in terms of the total centre of mass energy E and the scattering angle θ . Compute the differential cross section $d\sigma/d\Omega$ for the process in c), assuming, for simplicity, that $E \gg m$.
- 3) For scalar electrodynamics
- a) write down the Feynman diagrams relevant for the scattering of two positively charged scalars into two positively charged scalars through photon exchange at leading order in the coupling.
- b) compute the matrix element of the process in a) and express it in terms of Mandelstam variables.
- c) work out the differential cross section for the process in a) in terms of the total centre of mass energy E and the scattering angle θ .
- 4) Consider a real scalar ϕ with Lagrangian density $\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \partial^{\mu} \phi m^2 \phi^2 \right) \frac{\lambda}{4!} \phi^4$. a) Compute the generating functional W[J] perturbatively, neglecting terms of order λ^2 and higher.
- b) Compute the generating functional Z[J] for connected Green functions perturbatively to order λ .
- c) Use the result from b) to determine the classical field ϕ_c in terms of the current J to order λ and invert the relation perturbatively to obtain J as a function of ϕ_c .
- d) Compute the effective action to order λ . Interpret your result.

- 5) (Low-energy limit)
- a) For the scattering process in 2c) determine an approximate form of the matrix element in the limit $M\gg E$.
- b) In a field theory for ϕ_2 with the only interaction $\frac{\lambda_2}{4!}\phi_2^4$, which value of λ_2 is needed to produce the same approximate matrix element as in a)? Interpret your result.
- 6) For a free complex scalar field ϕ with mass m
- a) compute the generating functional W[J].
- b) compute the two-point Green function from the result in a).