M .Phys Option in Theoretical Physics: C6. Problem Sheet 1

Qu 1. Consider pathX = X(7), wherer is a parameter, and the functional

i dX dX
I[X] = / drn(X)/ 2 2

0

wheren = n(X) is a function. (The minima of this functional can be intetprkas light rays propagating in a
medium with refractive index n.)

a) Vary the above functional and derive the differentialaen which has to be satisfied by minimal pa¥s

b) Consider a two-dimensional situation with patk$r) = (X (7),Y(r)) in the z,y plane and a function
n = ng + (n1 — ng) #(x). (The Heaviside functiod(z) is defined to beé) for x < 0 and1 for z > 0. Re-
call thatd’(x) = §(x).) Solve the differential equation in a) for this situatiaising the coordinate as parameter
7 along the path.

¢) Show that the solution in b) leads to the standard law fisaction at the boundary between two media with
refractive indicesyy andn;.

Qu 2. The gamma functioi' is defined by
T'(s) :/ drz®le™™ .
0
a) Show thal’(1) = 1 andI'(s + 1) = sI'(s). (Hencel'(n + 1) = n!)
b) Through a suitable change of the integration variablgrite the above expression for the gamma function in
the formI(s) = f(s) [~ dy exp(—A(y)/£(s)) and indentify the functiong(s), A(y) and&(s).

c) Evaluatd(s) in the steepest descent approximation.

Qu 3. Consider the generating function

1
WilA,J] = /d"y exp <—§yTAy - AV (y) + Jy)

with a quartic interactio (y) = 4 >0, y.
a) Using Wick's theorem, compute the two-point Green'’s fiorcg; ) 1o order)2, neglecting all terms of order
A3 or higher.

b) Draw the Feynman diagrams associated to the result in a).
c) Compute the two-point functiofy;y; ) to orderA? and show that it only consists of connected Feynman dia-
grams.

Qu 4. In this question the objective is to evaluate the Feynmahn jpd¢gral in one of the relatively few cases,
besides those treated in lectures, for which exact resailtsbe obtained. The system we consider consists of a
particle of massn moving on a circle of circumferende The quantum Hamiltonian is

h? a2

2m da?

and wavefunctions obey(z + L) = ¢ (x). You are asked to evaluate a matrix element of the Boltzmactof
(1| exp(—FH)|z2) .

First, do this in a standard way, by finding the eigenfunctiand eigenvalues df, and show that

7n)2h? T —x
(x1] exp(—BH)|z2) = Z Zexp< B2mn)" R~ +2ﬂ'inM> . Q)

C2mL? L

n=—oo

Next, approach this using a path integral in which paths for 0 < 7 < gh satisfy the boundary conditions
z(0) = x1 andz(Sh) = z2. The special feature of a particle moving on a circle is thahgpaths may wind any
integer numbet times around the circle. To build in this feature, write

x(r) =x1 + %[(:172 —x1) + L] + s(7),



where the contribution(7) obeys the simpler boundary conditios(®) = s(6k) = 0 and doesot wrap around
the circle. Show that the Euclidean action for the systenugh & path is

m Phm (ds\?
Slz(1)] = Si + S[s(7)] where S; = %[(IQ —x1) +1L]? and  S[s(r)] = /0 dr— (d—)

Hence show that

oo

(x1|exp(—0H)|x2) = 2o Z exp (—W%[(xl —x9) + ZL]Q) 2

l=—00

whereZ, is the diagonal matrix elemett|e =¥ |z) for afree particle (i.e. without periodic boundary conditions)
moving in one dimension. By taking results from your lectomdes for the time evolution operator for a free
particle, and making the substitutién= g#, show that

1/2
2 _(_m
’ (2w6h2) ‘

Finally, of course, you should show that the expressionsgn(E) and Eq. (2) are indeed equal. To do so, you
should use th&oisson summation formula, which is

Z §(y—l): Z e~ 2miny

l=—0o0 n=-—oo

(think about how to justify this). Introduce the left handeiof this expression into Eg. (2) by using the relation,
valid for any smooth functiorf (y),

S = a Y dw-nsw).

l=—00 - l=—o00

substitute the right hand side of the summation formulayaaut the (Gaussian) integral gnand hence establish
the required equality.

Qu 5. This question is concerned with the central limit theorem.
(i) Show explicitly that forNV >> 1, pN > 1 the binomial distribution

N' n —n
"N ptg=1

o = =

becomes

sz(n):\/zjT7 exp (W)

whereo? = Npq. Check that the same result follows from the central limétaem.
(if) Consider a random walk in one dimension, for which the prditabf taking a step of length: — z + dz is

gl

Z 7 dx.

flz)dz = %

Find the probability distribution for the total displacem@fter N steps. Does it satisfy the central limit theorem?
Should it? What are the cumulants of this distribution?

Qu 6. Lety = +1. Show that

sy b ~2y(t—t)) L Fp )
Pyt [y/s¢) =5 {1+e Fon +5{1-e - ®3)
obeys the Chapman-Kolmogorov equation.
Show that )
Pi(y,t) = 5(0y,1 +y,-1) “4)



is a stationary solution. Writ&,; as a2 x 2 matrix and formulate the Chapman-Kolmogarov equation asp-p
erty of that matrix.

Qu 7. This question is about a continuous random walk, also knasa\Wiener process.
Show that for-co < y < oo andts > t; the Chapman-Kolmogarov equation is satisfied for

P (y2 t2|y1 tl)ziexp_{w}- (5)
th ’ ’ 27T(t2 —tl) 2(t2_t1)
ChooseP; (y1,0) = §(y1). Show that fort > 0
_ 1 —y’
Show thatP; (y, t) obeys the diffusion equation
oP 0*pP
ot DTyQ (7)

for D = % What is the solution for arbitrarlp > 0?

Qu 8. A particle suspended in a fluid undergoes Brownian motionnia dimension with position:(¢) and
velocity v(t). This motion is modelled by the Langevin equation

dv
- = + T](t)a

dt
wheren(t) is a Gaussian random variable characterised completelyebgnterage$)(t)) = 0 and(n(t1)n(t2)) =
['6(t; — t2). Discuss the physical origin of each of the terms in the Laimgequation.
What is meant by the termilarkov process? lllustrate your answer by discussing which of the follogvare
Markov processes: (a)t) alone; (b)z(t) alone; (cyv(¢) andz(t) together.
Show that fort > 0

t 131
xm:ﬁga_gm+/d@/dbgwﬁmmm
Y 0 0
is a solution of the Langevin equation with initial conditio(0) = 0. Calculate the averade(t) v(¢)) and discuss
its limiting behaviour at short and long times.



