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Qu 1. Consider pathsX = X(τ), whereτ is a parameter, and the functional

l[X] =

∫ τ1

τ0

dτ n(X)

√

dX

dτ
· dX
dτ

,

wheren = n(X) is a function. (The minima of this functional can be interpreted as light rays propagating in a
medium with refractive index n.)
a) Vary the above functional and derive the differential equation which has to be satisfied by minimal pathsX.
b) Consider a two-dimensional situation with pathsX(τ) = (X(τ), Y (τ)) in the x, y plane and a function
n = n0 + (n1 − n0) θ(x). (The Heaviside functionθ(x) is defined to be0 for x < 0 and1 for x ≥ 0. Re-
call thatθ′(x) = δ(x).) Solve the differential equation in a) for this situation,using the coordinatex as parameter
τ along the path.
c) Show that the solution in b) leads to the standard law for refraction at the boundary between two media with
refractive indicesn0 andn1.

Qu 2. The gamma functionΓ is defined by

Γ(s) =

∫ ∞

0

dxxs−1e−x .

a) Show thatΓ(1) = 1 andΓ(s+ 1) = sΓ(s). (HenceΓ(n+ 1) = n!)
b) Through a suitable change of the integration variable, rewrite the above expression for the gamma function in
the formΓ(s) = f(s)

∫ ∞

0 dy exp(−A(y)/ξ(s)) and indentify the functionsf(s),A(y) andξ(s).
c) EvaluateΓ(s) in the steepest descent approximation.

Qu 3. Consider the generating function

Wλ[A,J] =

∫

dny exp

(

−1

2
yT Ay − λV (y) + Jy

)

with a quartic interactionV (y) = 1
4!

∑n
i=1 y

4
i .

a) Using Wick’s theorem, compute the two-point Green’s function G(2)
ij to orderλ2, neglecting all terms of order

λ3 or higher.
b) Draw the Feynman diagrams associated to the result in a).
c) Compute the two-point function〈yiyj〉λ to orderλ2 and show that it only consists of connected Feynman dia-
grams.

Qu 4. In this question the objective is to evaluate the Feynman path integral in one of the relatively few cases,
besides those treated in lectures, for which exact results can be obtained. The system we consider consists of a
particle of massm moving on a circle of circumferenceL. The quantum Hamiltonian is

H = − ~
2

2m

d2

dx2

and wavefunctions obeyψ(x + L) = ψ(x). You are asked to evaluate a matrix element of the Boltzmann factor

〈x1| exp(−βH)|x2〉 .

First, do this in a standard way, by finding the eigenfunctions and eigenvalues ofH , and show that

〈x1| exp(−βH)|x2〉 =

∞
∑

n=−∞

1

L
exp

(

−β(2πn)2~
2

2mL2
+ 2πin

[x1 − x2]

L

)

. (1)

Next, approach this using a path integral in which pathsx(τ) for 0 ≤ τ ≤ β~ satisfy the boundary conditions
x(0) = x1 andx(β~) = x2. The special feature of a particle moving on a circle is that such paths may wind any
integer numberl times around the circle. To build in this feature, write

x(τ) = x1 +
τ

β~
[(x2 − x1) + lL] + s(τ),

1



where the contributions(τ) obeys the simpler boundary conditionss(0) = s(β~) = 0 and doesnot wrap around
the circle. Show that the Euclidean action for the system on such a path is

S[x(τ)] = Sl + S[s(τ)] where Sl =
m

2β~
[(x2 − x1) + lL]2 and S[s(τ)] =

∫ β~

0

dτ
m

2

(

ds

dτ

)2

.

Hence show that

〈x1| exp(−βH)|x2〉 = Z0

∞
∑

l=−∞

exp

(

− m

2β~2
[(x1 − x2) + lL]2

)

(2)

whereZ0 is the diagonal matrix element〈x|e−βH |x〉 for a free particle (i.e. without periodic boundary conditions)
moving in one dimension. By taking results from your lecturenotes for the time evolution operator for a free
particle, and making the substitutionit = β~, show that

Z0 =

(

m

2πβ~2

)1/2

.

Finally, of course, you should show that the expressions in Eq. (1) and Eq. (2) are indeed equal. To do so, you
should use thePoisson summation formula, which is

∞
∑

l=−∞

δ(y − l) =

∞
∑

n=−∞

e−2πiny

(think about how to justify this). Introduce the left hand side of this expression into Eq. (2) by using the relation,
valid for any smooth functionf(y),

∞
∑

l=−∞

f(l) =

∫ ∞

−∞

dy

∞
∑

l=−∞

δ(y − l)f(y) ,

substitute the right hand side of the summation formula, carry out the (Gaussian) integral ony, and hence establish
the required equality.

Qu 5. This question is concerned with the central limit theorem.
(i) Show explicitly that forN ≫ 1, pN ≫ 1 the binomial distribution

PN (n) =
N !

n!(N − n)!
pnqN−n, p+ q = 1

becomes

PN (n) =
1√

2πσ2
exp

(−(n− < n >)2

2σ2

)

whereσ2 = Npq. Check that the same result follows from the central limit theorem.
(ii) Consider a random walk in one dimension, for which the probability of taking a step of lengthx→ x+ dx is

f(x)dx =
1

π

γ

x2 + γ2
dx.

Find the probability distribution for the total displacement after N steps. Does it satisfy the central limit theorem?
Should it? What are the cumulants of this distribution?

Qu 6. Let y = ±1. Show that

P1|1(y, t | y′, t′) =
1

2

{

1 + e−2γ(t−t′)
}

δy,y′ +
1

2

{

1 − e−2γ(t−t′)
}

δy,−y′ (3)

obeys the Chapman-Kolmogorov equation.
Show that

P1(y, t) =
1

2
(δy,1 + δy,−1) (4)
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is a stationary solution. WriteP1|1 as a2 × 2 matrix and formulate the Chapman-Kolmogarov equation as a prop-
erty of that matrix.

Qu 7. This question is about a continuous random walk, also known as a Wiener process.
Show that for−∞ < y <∞ andt2 > t1 the Chapman-Kolmogarov equation is satisfied for

P1|1(y2, t2 | y1, t1) =
1

√

2π(t2 − t1)
exp−

{

(y2 − y1)
2

2(t2 − t1)

}

. (5)

ChooseP1(y1, 0) = δ(y1). Show that fort > 0

P1(y, t) =
1√
2πt

exp

{−y2

2t

}

. (6)

Show thatP1(y, t) obeys the diffusion equation

∂P

∂t
= D

∂2P

∂y2
(7)

forD = 1
2 . What is the solution for arbitraryD > 0?

Qu 8. A particle suspended in a fluid undergoes Brownian motion in one dimension with positionx(t) and
velocityv(t). This motion is modelled by the Langevin equation

dv

dt
= −γv + η(t),

whereη(t) is a Gaussian random variable characterised completely by the averages〈η(t)〉 = 0 and〈η(t1)η(t2)〉 =
Γδ(t1 − t2). Discuss the physical origin of each of the terms in the Langevin equation.

What is meant by the termMarkov process? Illustrate your answer by discussing which of the following are
Markov processes: (a)v(t) alone; (b)x(t) alone; (c)v(t) andx(t) together.

Show that fort > 0

x(t) =
v(0)

γ
(1 − e−γt) +

∫ t

0

dt1

∫ t1

0

dt2 e−γ(t1−t2) η(t2)

is a solution of the Langevin equation with initial conditionx(0) = 0. Calculate the average〈x(t) v(t)〉 and discuss
its limiting behaviour at short and long times.
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