GEOMETRICALLY FRUSTRATED MAGNETS

John Chalker
Physics Department, Oxford University

Outline

How are geometrically frustrated magnets special?

What they are not

Evading long range order

Degeneracy and fluctuations - models and experiment

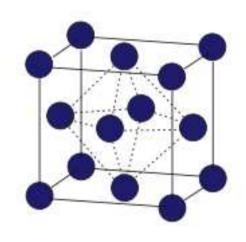
Statistical physics of underconstrained systems

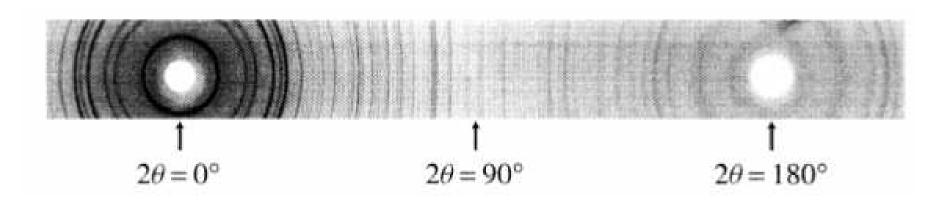
Emergent degrees of freedom and classical fractionalization

Condensed matter at low temperature

Symmetry breaking as the norm

Crystalline solids

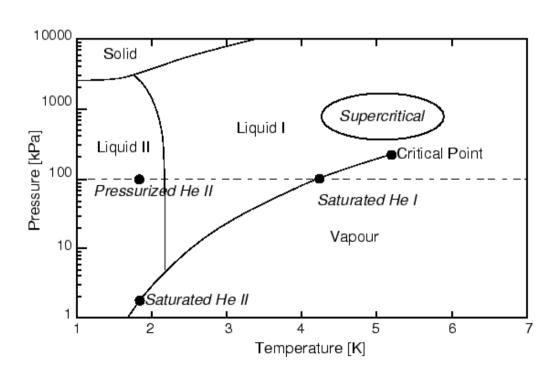


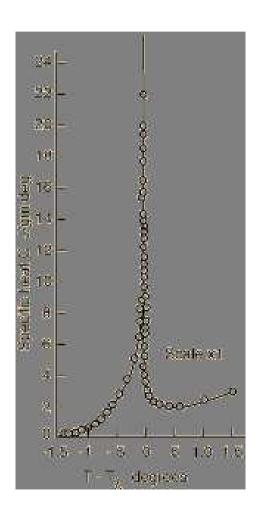


Broken symmetry in Bose liquids

Quantum fluctuations suppress crystalisation

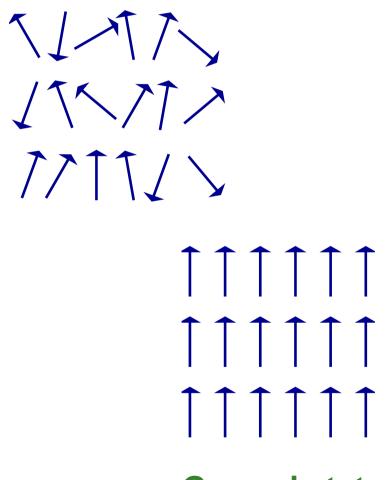
⁴He phase diagram





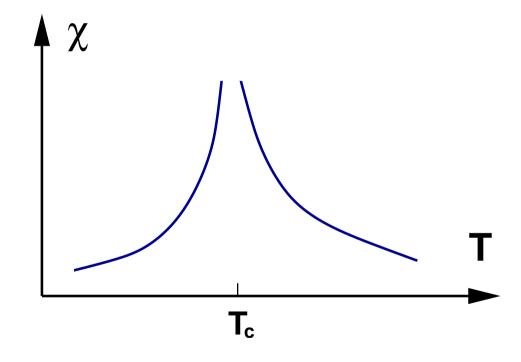
Ordering in ferromagnets

High temperature



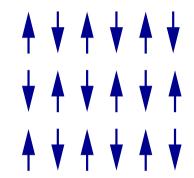
Ground state

Susceptibility

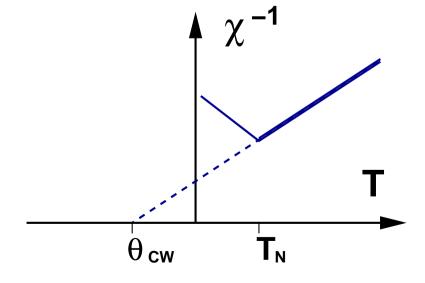


Unfrustrated antiferromagnetic order

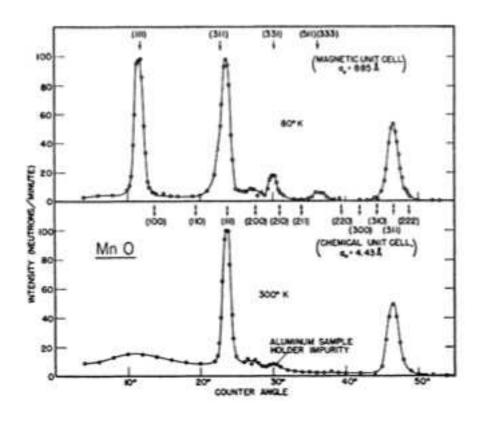
Néel order



Inverse susceptibility



Neutron diffraction

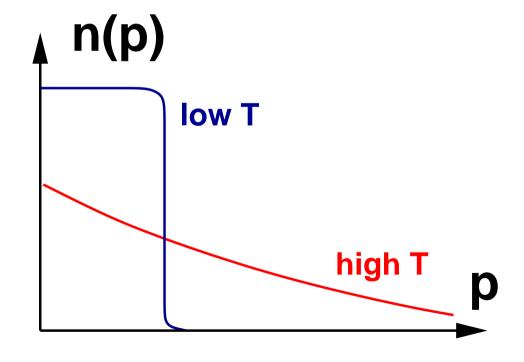


Shull and Smart (1949)

Alternative to symmetry breaking # 1

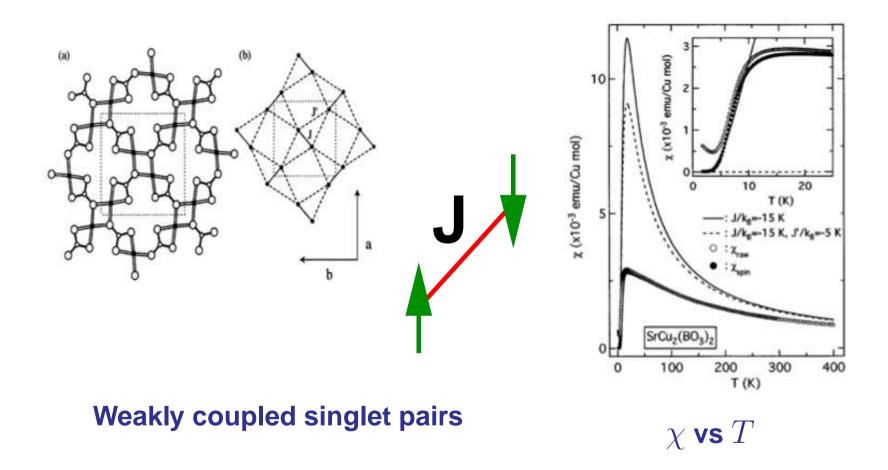
...a unique ground state

In the Fermi gas



Momentum distribution

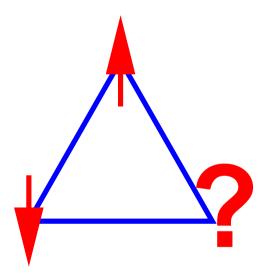
Spin system with unique ground state



 $SrCu_2(BO_3)_2$

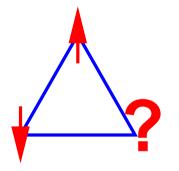
Alternative to symmetry breaking # 2 ... strong fluctuations

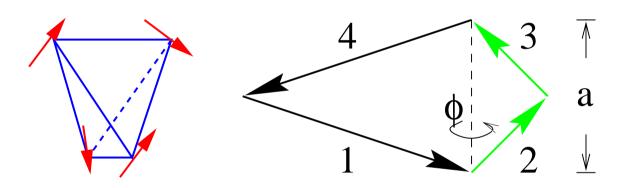
Frustration and degeneracy



Antiferromagnetic spin clusters - frustration and degeneracy

Ising triangle





Ground states: cluster spin $\mathbf{L} \equiv \sum_i \mathbf{S}_i$ minimised

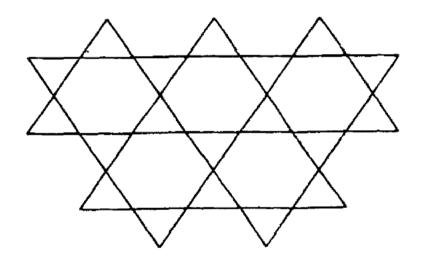
$$\mathcal{H} = J \sum_{\text{pairs}} \mathbf{S}_i \cdot \mathbf{S}_j \equiv \frac{J}{2} |\mathbf{L}|^2 + c$$

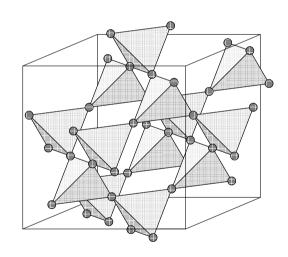
Examples of frustrated lattices

Building block: corner-sharing frustrated units

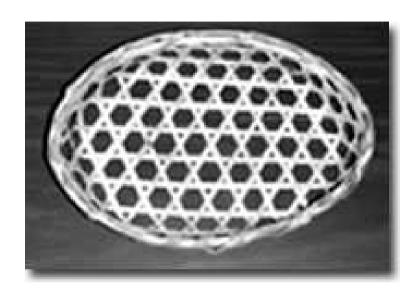
2D: kagome lattice

3D: pyrochlore lattice





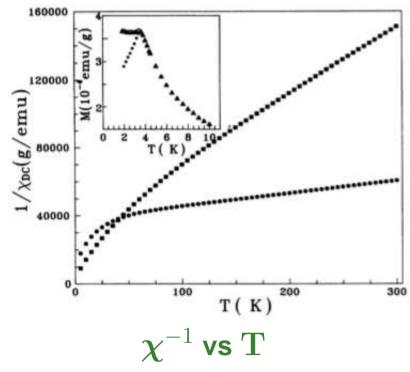
Frustrated lattices beyond physics ...



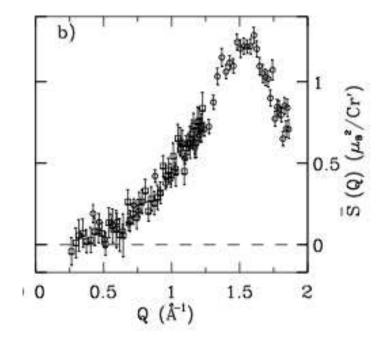
Characteristics of frustrated magnets

 $SrGa_{12-x}Cr_{x}O_{19}$ (SCGO) as an example

Paramagnetic even for $T \ll |\Theta_{\rm CW}|$ Strong short-range correlations



Martinez et al, PRB 46, 10786 (1992)



Elastic neutron scattering

S.H. Lee et al, Europhys Lett **35**, 127 (1996)

Selected examples of frustrated magnets

Layered materials

SCGO

pyrochlore slabs

$$Cr^{3+}$$
 $S=3/2$ $\Theta_{
m CW}\sim 500{
m K}$ $T_{
m F}\sim 4{
m K}$

hydromium iron jarosite

kagome layers

$$Fe^{3+}$$
 $S=5/2$ $\Theta_{
m CW}\sim 700{
m K}$ $T_{
m F}\sim 14{
m K}$

Herbertsmithite

kagome layers

$$Cu^{2+} \quad S=1/2 \ \Theta_{
m CW} \sim 300 {
m K}$$

Pyrochlore antiferromagnets

$Y_2Mo_2O_7$

$$Mo^{4+} \hspace{0.5cm} S=1 \ \Theta_{
m CW} \sim 200 {
m K} \hspace{0.5cm} T_{
m F} \sim 22 {
m K}$$

Cs Ni Cr F₆

$$Ni^{2+}\,S = 1 \ Cr^{3+}\,S = 3/2 \ \Theta_{
m CW} \sim 70{
m K} \ T_{
m F} \sim 2.3{
m K}$$

Spin ice materials

$Dy_2Ti_2O_7$ and $Ho_2Ti_2O_7$

ferromagnets with single-ion anisotropy

— hence frustration

$$J_{
m eff} \sim 1{
m K}-2{
m K}$$

Ground state degeneracy in classical Heisenberg models

Maxwellian constraint-counting

I. On the Calculation of the Equilibrium and Stiffmess of Frames. By J. Clerk Maxwell, F.R.S., Professor of Natural Philosophy in King's College, London*.

THE theory of the equilibrium and deflections of frameworks subjected to the action of forces is sometimes considered as more complicated than it really is, especially in cases in which the framework is not simply stiff, but is strengthened (or weaksened as it may be) by additional connecting pieces.

I have therefore stated a general method of solving all such questions in the least complicated manner.

Ground state degeneracy in Heisenberg pyrochlore AFM

$$\mathcal{H} = J \sum_{\text{bonds}} \mathbf{S}_i \cdot \mathbf{S}_j \equiv \frac{J}{2} \sum_{\text{units}} |\mathbf{L}_{\alpha}|^2 + c$$

Total number of degrees of freedom: $F = 2 \times (\text{number of spins})$

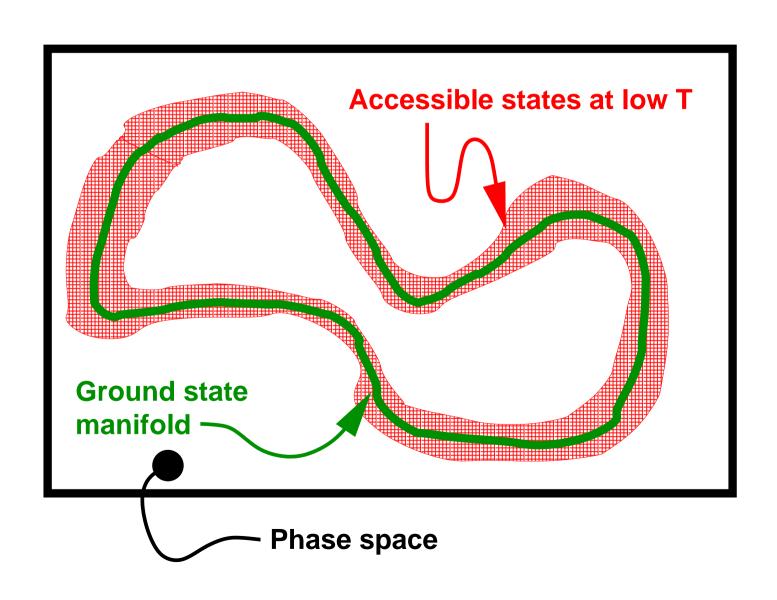
Constraints satisfied in ground state: $K = 3 \times \text{(number of units)}$

Ground state dimension:

Geometric Frustration o Macroscopic D

Schematics of behaviour at low temperature

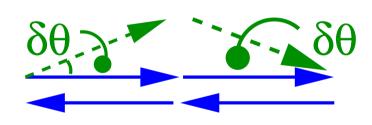
Classical cooperative paramagnet: $JS \ll k_{\rm B}T \ll JS^2$



Ground state selection by fluctuations?

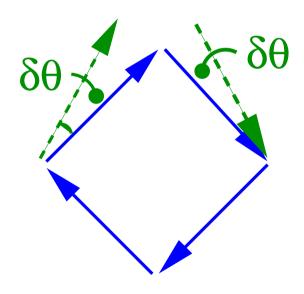
'Order by disorder' Villain (1980), Shender (1982)

Some states have soft modes



$$E = \frac{J}{2} |\mathbf{L}|^2 \propto (\delta \theta)^4$$

Others don't

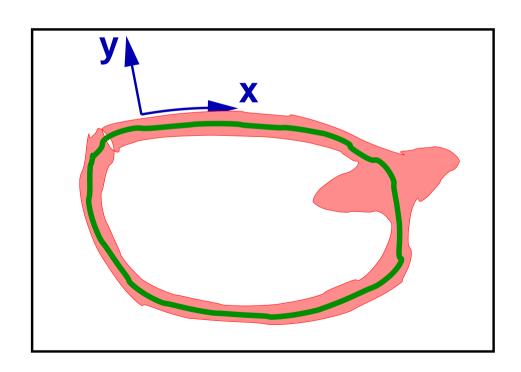


$$E = \frac{J}{2} |\mathbf{L}|^2 \propto (\delta \theta)^2$$

Ground state selection?

Thermal fluctuations

Probability distribution on ground states



$$\int dy e^{-\omega y^2/k_B T} \propto \sqrt{\frac{k_B T}{\omega}}$$

$$P(\mathbf{x}) \propto \prod_{l} \left(\frac{k_{\mathrm{B}}T}{\omega_{l}(\mathbf{x})} \right)$$

Thermal fluctuations

kagome → coplanar

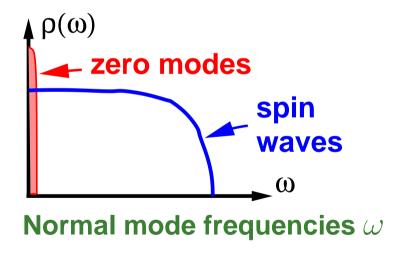
 $\textbf{pyrochlore} \rightarrow \textbf{disordered}$

Dynamics of Heisenberg systems

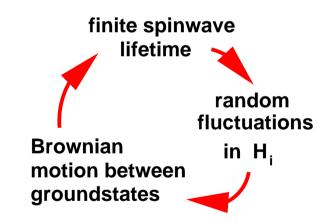
How does system explore ground state manifold?

Equation of motion: $\hbar \frac{d\mathbf{S}_i}{dt} = \mathbf{S}_i \times \mathbf{H}_i = -J\mathbf{S}_i \times \sum_j \mathbf{S}_j$

Harmonic approximation



Anharmonic interactions



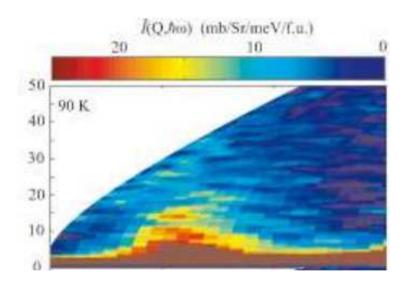
Langevin: $d\mathbf{S}/dt(0) = \mathbf{S} \times \mathbf{h}(t)$

 $\langle \mathbf{S}(0) \cdot \mathbf{S}(t) \rangle \approx \exp(-ck_{\mathrm{B}}Tt/\hbar)$

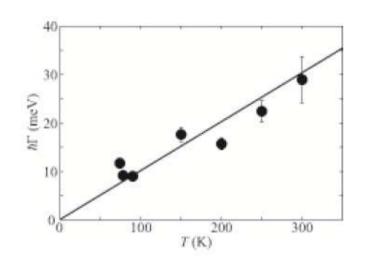
Quasielastic neutron scattering in Y₂Ru₂O₇

$$\Theta_{\rm CW} = -1100 \text{K}$$
$$T_{\rm N} = 77 \text{K}$$

Scattering vs Q & ω



Linewidth vs temperature

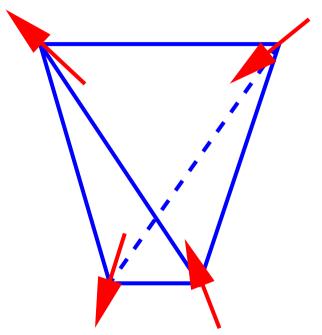


$$\hbar\Gamma = \mathcal{C}k_{\rm B}T$$
$$\mathcal{C} = 1.17$$

Frustration and residual entropy

Spin ice

Water ice



Anisotropy + ferromagnetic exchange

Pauling 1935

Ground states: 'two-in, two-out'

Pauling's entropy estimate

One tetrahedron

Total number of states: 16

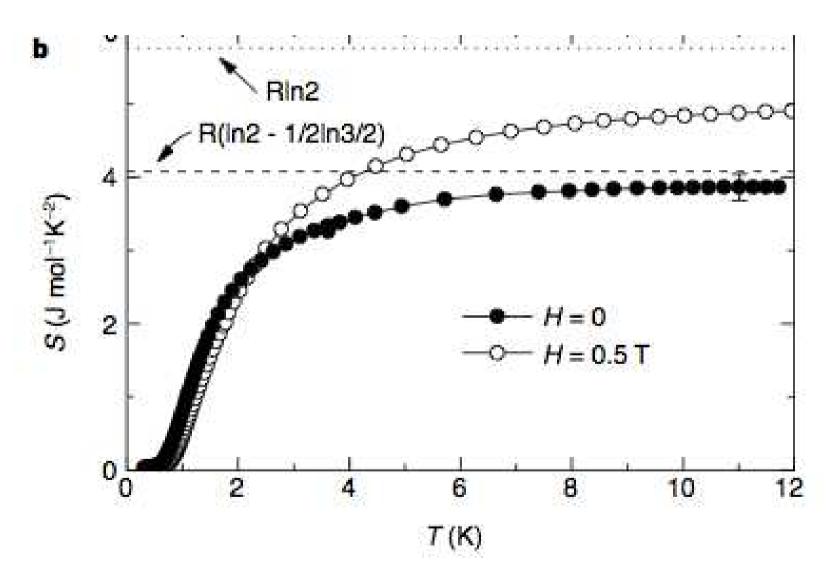
Fraction that are ground states: $\frac{6}{16}$

Pyrochlore lattice

Estimate for number of ground states:

$$(total \# states) \times \left(\frac{6}{16}\right)^{(\# \text{ tetrahedra})} = \left(\frac{3}{2}\right)^{(\# \text{ spins}/2)}$$

Pauling entropy in experiment

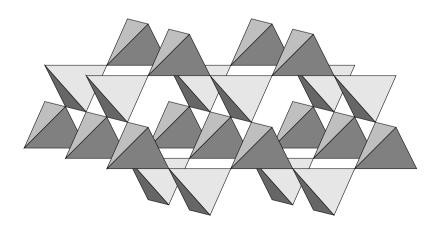


 $\mathrm{Dy_2Ti_2O_7}$, Ramirez et al, Nature 399, 333 (1999).

Correlations induced by ground state constraints

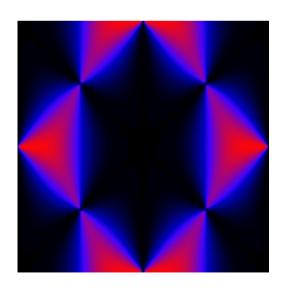
Local constraints

$$\sum_{tet} \mathbf{S}_i = \mathbf{0}$$



Long range correlations

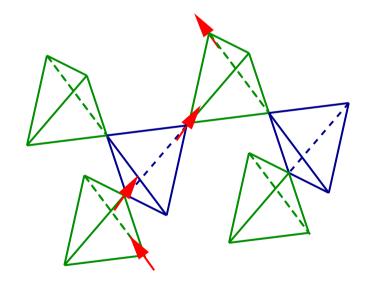
Sharp structure in $\left\langle S_{-q}\cdot S_{q}\right\rangle$

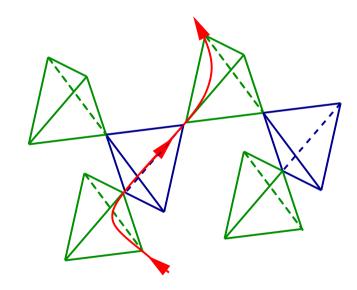


Gauge theory of ground state correlations

Youngblood et al (1980), Huse et al (2003), Henley (2004)

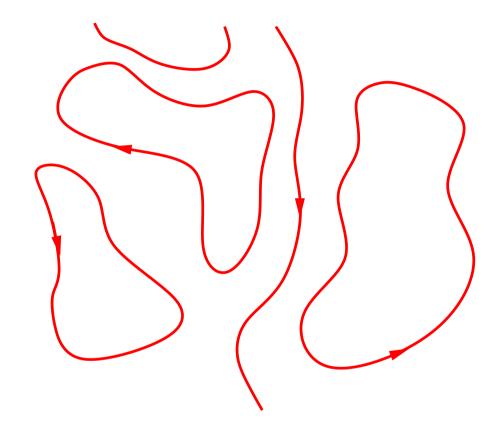
Map spin configurations ... to vector fields $\mathbf{B}(\mathbf{r})$





'two-in two out' groundstates map to divergenceless $\, {f B}({f r}) \,$

Ground states as flux loops

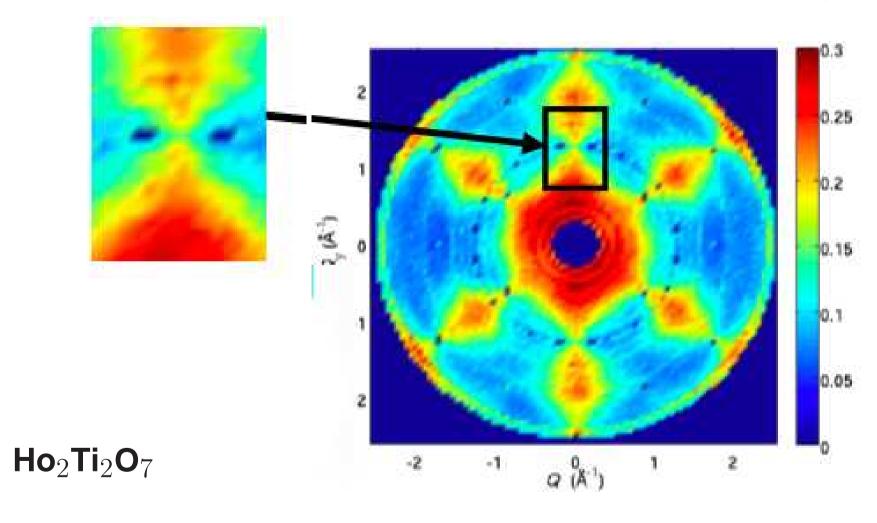


Entropic distribution: $P[\mathbf{B}(\mathbf{r})] \propto \exp(-\kappa \int \mathbf{B}^2(\mathbf{r}) d^3\mathbf{r})$

Power-law correlations: $\langle B_i(\mathbf{r})B_j(\mathbf{0})\rangle \propto r^{-3}$

Low T correlations from neutron diffraction

Bramwell and Harris, unpublished

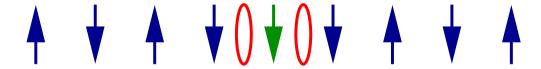


Classical fractionalised excitations

Fractionalisation in one dimension

Ground state

An excited state

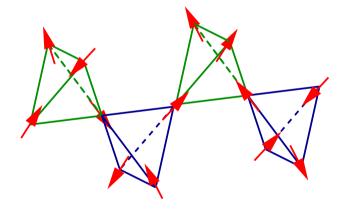


...two separated excitations

Fractionalisation in spin ice

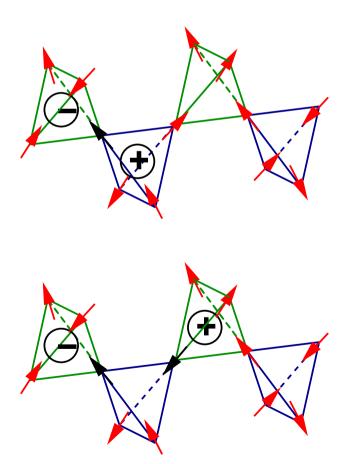
Monopole excitations

Ground state



Castelnovo, Moessner and Sondhi (2008)

Excited states

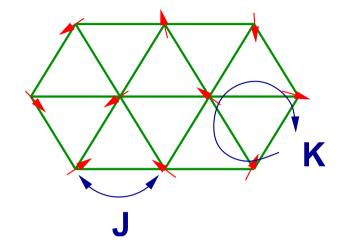


Candidate quantum Spin Liquids

 κ -(ET)₂Cu₂(CN)₃

Interaction scale $J\sim250\,\mathrm{K}$

No order to $T=30\,\mathrm{mK}$

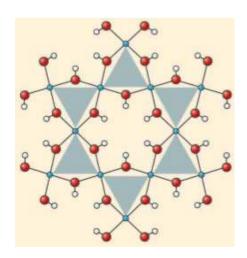


Herbertsmithite

 $ZnCu_3(OH)_6CI_2$

Interaction scale $J\sim 200\,\mathrm{K}$

No order to $T=50\,\mathrm{mK}$

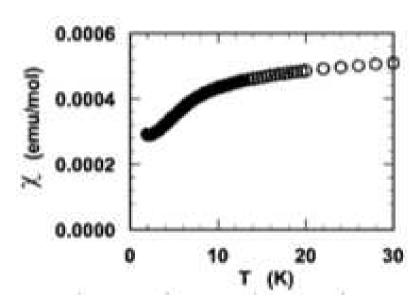


Metallic characteristics in an insulator

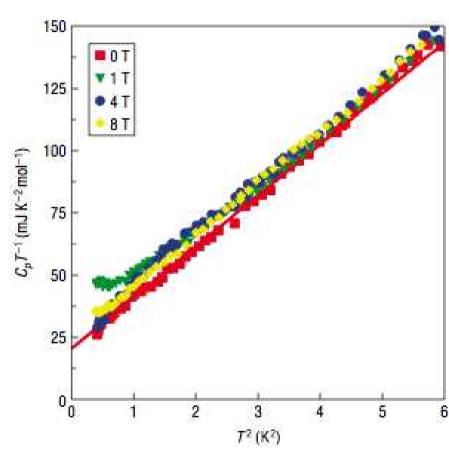
 κ -(ET)₂Cu₂(CN)₃

Interaction scale $J\sim250\,\mathrm{K}$

No order to $T=30\,\mathrm{mK}$



Finite low-T susceptibility



Heat capacity $\sim aT + bT^3$

Summary

Geometric frustration

macroscopic classical degeneracies

long-range order avoided

Frustrated magnets at low T

soft modes and slow dynamics

emergent degrees of freedom

exotic excitations

Collaborators

M. J. Bhaseen

R. Coldea

P. Conlon

J. F. G. Eastham

P.C.W. Holdsworth

L. D. C. Jaubert

R. Moessner

T. S. Pickles

T. E. Saunders

E. F. Shender

S. E. Palmer

S. Powell

M. Y. Veillette