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How are geometrically frustrated magnets special?

What they are not

Evading long range order

Degeneracy and fluctuations - models and experiment

Statistical physics of underconstrained systems

Emergent degrees of freedom and classical fractionalizati on



Condensed matter at low temperature

Symmetry breaking as the norm

Crystalline solids

26= 180"



Broken symmetry in Bose liquids

Quantum fluctuations suppress crystalisation

‘He phase diagram
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Ordering Iin ferromagnets

High temperature
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Unfrustrated antiferromagnetic order

Néel order

* + * + + + Neutron diffraction
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Alternative to symmetry breaking # 1

...a unigue ground state

In the Fermi gas
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Spin system with unique ground state

3

E

a 1] e T

0 10 20

T(K)

2 Sf — Wkg=-15K

x

=

lllll

Weakly coupled singlet pairs

SrCu-(BO3)9



Alternative to symmetry breaking # 2

... strong fluctuations

Frustration and degeneracy

Anderson 1956, Villain 1979



Antiferromagnetic spin clusters
- frustration and degeneracy

: . Heisenberg tetrahedron
Ising triangle

Ground states: clusterspin L =) . S; minimised
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Examples of frustrated lattices

Building block: corner-sharing frustrated units

2D: kagome lattice 3D: pyrochlore lattice




Frustrated lattices beyond physics ...




Characteristics of frustrated magnets

SrGajs_CryO19 (SCGO) as an example

Paramagnetic even for T < |O¢w|  Strong short-range correlations
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Selected examples of frustrated magnets

Layered materials
SCGO
pyrochlore slabs
Cr3t S§=3/2
Ocw ~ 500K Ty ~ 4K
hydromium iron jarosite
kagome layers
Fe3t S=5/2
Ocw ~ 700K Ty ~ 14K

Herbertsmithite
kagome layers

Cu*t S=1/2
Ocw ~ 300K

Pyrochlore antiferromagnets
Y2Mo02Or
Mo*t S=1
Ocw ~ 200K T¢ ~ 22K
CsNiCrFg

N#*t* S =1 Cr3t8S=3/2
Ocw ~ 70K Tf ~ 2.3K

Spin ice materials

Dy TioOr and Ho 5 TioOr

ferromagnets with  single-ion anisotropy
— hence frustration

Jog ~ 1K — 2K



Ground state degeneracy in classical
Helsenberg models

Maxwellian constraint-counting
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Ground state degeneracy in
Heisenberg pyrochlore AFM

H:JZSZ-.S]-E%Z\L&PJM:

bonds units
Total number of degrees of freedom: F = 2 x (number of spins)
Constraints satisfied in ground state: K = 3 X (number of units)

Ground state dimension:

D=F-K

Geometric Frustration — Macroscopic 1)



Schematics of behaviour at low temperature

Classical cooperative paramagnet: JS < kpT < JS?

Accessible states at low T

Ground state
manifold

Phase space



Ground state selection by fluctuations?
‘Order by disorder’ Villain (1980), Shender (1982)

Some states have soft modes Others don’t
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Ground state selection?

Thermal fluctuations

: kT
Probability distribution on / dy eV /il oy [ 222
ground states “
y kpT
P
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Thermal fluctuations

kagome — coplanar

pyrochlore — disordered




Dynamics of Heisenberg systems
How does system explore ground state manifold?

Equation of motion: h% = S; x H; = —JS; X Zj S

Harmonic approximation Anharmonic interactions

ﬁ p(w) finite spinwave

- Zero modes  lifetime \

spin random
A\ aves | fluctuations
Brownian in H.
w |

- motion between
_ groundstates </
Normal mode frequencies w

Langevin:  dS/dt(0) =S x h(t)
(S(0) - S(t)) ~ exp(—ckgTt/h)



Quasielastic neutron scatteringin Y  oRus0Or7

Ocw = —1100K
In=77K
Scatteringvs () & w Linewidth vs temperature
[{h L
Al' = CkpT
C=1.17

van Dujin et al (2008)



Frustration and residual entropy

Spin ice

Water ice
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Anisotropy + _
_ Pauling 1935
ferromagnetic exchange

Ground states: ‘two-in, two-out’



Pauling’s entropy estimate

One tetrahedron

Total number of states: 16

Fraction that are ground states: —

Pyrochlore lattice

Estimate for number of ground states:

(total # states) x (L)1) — (3)(Feane/2
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Pauling entropy Iin experiment
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et al, Nature 399, 333 (1999).



Correlations induced by ground state
constraints

Local constraints Long range correlations

Ztet S, =0 Sharp structure in
<S—q ' Sq>




Gauge theory of ground state correlations
Youngblood et al (1980), Huse et al (2003), Henley (2004)

Map spin configurations . . . ...to vector fields B(r)

‘two-in two out’ groundstates ... ... map to divergenceless B(r)



Ground states as flux loops

Entropic distribution:  P[B(r)] o exp(—& [ B*(r)d’r)

Power-law correlations: (Bi(r)B;(0)) 3



Low T correlations from neutron diffraction

Bramwell and Harris, unpublished
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Classical fractionalised excitations

Fractionalisation in one dimension
Ground state

by dbvdbv by

An excited state

by A v0vly 4 v o

... two separated excitations

by dovlr 4 ovfy 4



Fractionalisation In spin ice

Monopole excitations

Excited states

Ground state

nwkw

Castelnovo, Moessner and Sondhi (2008)




Candidate quantum Spin Liquids

|

K-(ET)2Cu2(CN)3

Interaction scale J ~ 250K

No orderto 1T' = 30mK

Herbertsmithite
ZnCu3(OH)Clo

Interaction scale J ~ 200K

No orderto 1T' = 50mK




Metallic characteristics in an insulator

K-(ET)2Cu2(CN)3

150
Interaction scale J ~ 250K
125 |
No orderto 1T = 30mK
= 100
E
0.0008 ——————— — y
. = 75k
.-;:r:n:::n$ -
g 0.0004 | /"’" I & 1
£3 _5|:| o
=~ 0.0002 | : '
- - 25 |
Ll He . il - | .
0 10 20 10 U 1 2 3 4 5 3
T (K) 7 (k%)

Finite low- 1" susceptibility Heat capacity ~ a7 + bT"



Summary

Geometric frustration
macroscopic classical degeneracies

long-range order avoided

Frustrated magnets at low T
soft modes and slow dynamics
emergent degrees of freedom

exotic excitations
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