EXOTIC CRITICAL PHENOMENA IN CLASSICAL SYSTEMS

Loops and strings on lattices

John Chalker Physics Department, Oxford University

Work with

Ludovic Jaubert & Peter Holdsworth (ENS Lyon), & Roderich Moessner (Dresden)

Adam Nahum (Oxford), Miguel Ortuño, Andres Somoza, & Pedro Serna (Murcia)

Outline

Statistical mechanics with extended degrees of freedom

Coulomb phases

Geometrically frustrated magnets, dimer models

Correlations from constraints

Close-packed loop models

Loop colours as non-local degrees of freedom

See also poster session

Phase transitions

Ordering transitions from the Coulomb phase

Transitions between extended-loop and short-loop phases

Spin Ice

 $Ho_2Ti_2O_7$ and $Dy_2Ti_2O_7$

'Two-in, two-out' ground states

Pyrochlore ferromagnet with single-ion anisotropy

$$\mathcal{H} = -J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - D \sum_i (\hat{\mathbf{n}}_i \cdot \mathbf{S}_i)^2 - \mathbf{h} \cdot \sum_i \mathbf{S}_i$$

Gauge theory of ground state correlations

Youngblood et al (1980), Huse et al (2003), Henley (2004)

Map spin configurations ... to vector fields $\mathbf{B}(\mathbf{r})$

'two-in two out' groundstates map to divergenceless $\, {f B}({f r}) \,$

Ground states as flux loops

Entropic distribution: $P[\mathbf{B}(\mathbf{r})] \propto \exp(-\kappa \int \mathbf{B}^2(\mathbf{r}) d^3\mathbf{r})$

Power-law correlations: $\langle B_i(\mathbf{r})B_j(\mathbf{0})\rangle \propto r^{-3}$

Low T correlations from neutron diffraction

Fennell et al Science 326, 415 (2009)

Engineering transitions in spin ice Select ordered state with Zeeman field or strain

Kasteleyn transition

in staggered field

vs
$$h^{\mathrm{eff}}/T$$
 for $h^{\mathrm{eff}},T\ll J$

Magnetisation

Engineering transitions in spin ice Select ordered state with Zeeman field or strain

Kasteleyn transition

in staggered field

Magnetisation

vs
$$h^{\rm eff}/T$$
 for $h^{\rm eff}, T \ll J$

Ferromagnetic ordering

strain + magnetoelastic coupling

Magnetic order for

$$T \ll \Delta$$

Coulomb phase for

$$\Delta \ll T \ll J$$

Jaubert, JTC, Holdsworth + Moessner, PRL (2008) + (2010)

A Kasteleyn transition

Magnetisation induced by applied field

Magnetisation vs temperature

In a paramagnet

A Kasteleyn transition

Magnetisation induced by applied field

Magnetisation vs temperature

In a paramagnet

From the Coulomb phase

One-sided transition

- Continuous from low-field side
- First-order from high-field side

Description of the transition

Reference state: fully polarised Excitations: spin reversals

String excitation

'Vacuum'

Thermodynamics of isolated string, length L:

Energy $L \cdot h$ Entropy $L \cdot k_{\rm B} \ln(2)$ Free energy $L \cdot [h - k_{\rm B} T \ln(2)]$

String density: finite for $h/k_{\rm B}T < \ln(2)$ zero for $h/k_{\rm B}T > \ln(2)$

Classical to quantum mapping

View strings as boson world lines

3D classical
$$\equiv (2+1)D$$
 quantum

$$Z = \operatorname{Tr}(T^L)$$
 $T \equiv e^{\mathcal{H}}$

 ${\cal H}$ hard core bosons hopping on $\langle 100 \rangle$ plane

magnetic field \Leftrightarrow boson chemical potential

Coulomb phase correlations \Leftrightarrow **Goldstone fluctuations of condensate**

monopole deconfinement \Leftrightarrow off-diagonal long range order

Quantum Description as XY ferromagnet

Kasteleyn transition

$$\mathcal{H} = -\mathcal{J} \sum_{\langle ij \rangle} [S_i^+ S_j^- + S_i^- S_j^+] - \mathcal{B} \sum_i S_i^z$$

Correspondence with classical description: $\mathcal{B} \equiv h/T$

$${\cal B} > {\cal B}_{
m c}$$
 Quantum spins polarised along z

$$\mathcal{B} < \mathcal{B}_{\mathrm{c}}$$
 Quantum spins have xy order

Kasteleyn: Simulation and Experiment

Magnetisation vs T

$$h/J = 0.58, \ 0.13, \ 10^{-3}$$

Magnetisation vs H

Data for $\mathrm{Dy}_2\mathrm{Ti}_2\mathrm{O}_7$ at $1.8\mathrm{K}$

(Fukazawa et al. 2002)

$$k_{\rm B}T \simeq 1.6J_{\rm eff}$$

Ferromagnetic ordering in strained spin ice

Classical-quantum mapping: ordering as reorientation of quantum spins

Low energy configurations High energy configuration

$$\mathcal{H} = -\mathcal{J} \sum_{\langle ij \rangle} [S_i^+ S_j^- + S_i^- S_j^+] - \mathcal{D} \sum_{\langle ij \rangle} S_i^z S_j^z$$

 $\mathcal{D} < \mathcal{J}$ quantum spins in xy plane $\mathcal{D} \equiv \Delta/T$

$$\mathcal{D} \equiv \Delta/T$$

 $\mathcal{D} > \mathcal{J}$ quantum spins along z

 $\mathcal{D} = \mathcal{J}$ emergent SU(2) symmetry at critical point

Exotic features of ordering in strained spin ice

Transition is 'infinite order' multicritical point

- Magnetisation (maximally) discontinuous
- ullet Susceptibility divergent as $T o T_{
 m c}^+$
- ullet Domain wall width divergent as $T
 ightarrow T_{
 m c}^-$

Ordering from the Coulomb phase of dimer models

Allowed states of close-packed dimer models

Dimer crystallisation

favour parallel pairs

$$\mathcal{H} = -J(n_{||} + n_{//} + n_{=})$$

Crystal for $\,T\ll J\,$

Coulomb phase for $T\gg J$

Simulations:

continuous transition possible classical non-LGW critical point

Alet et al: 2006, 2010

Classical dimer ordering in 3d and bosons in 2d

From 3d classical to (2+1)d quantum

favour parallel pairs

Expect non-LGW critical point

Map to bosons on kagome lattice

1/6 filling with hard-core repulsion

Dimer liquid maps to superfluid

Dimer crystal maps to boson crystal

Powell + JTC, 2009

Loop models

Continuum problem

Lattice formulation

Close-packed loops with n colours on lattice of (directed) links

Nahum, JTC, Serna, Ortuño, and Somoza, arXiv:1104.4096

Phase transitions in loop models

$$\sum_{\mathbf{p}} \sum_{\mathbf{or} = \mathbf{(1-p)}} Z = \sum_{\mathrm{configs}} p^{n_{\mathbf{p}}} (1-p)^{n_{1-\mathbf{p}}} n^{n_{\mathrm{loops}}}$$

To define model: specify lattice, link directions and nodes

2D model

Sample configuration

Phase transitions in loop models

$$Z = \sum_{\text{configs}} p^{n_{p}} (1 - p)^{n_{1-p}} n^{n_{\text{loops}}}$$

To define model: specify lattice, link directions and nodes

Configuration of 3D model

Lattice designed so that:

p = 0 only short loops

p=1 all curves extended

(Alternative has symmetry

under $p \leftrightarrow [1-p]$

Loop models and non-intersecting random curves in 3D

Random curves appear in many contexts

2D random curves

- zero-lines of random scalar field

Lattice version – percolation hulls

Loop models and non-intersecting random curves in 3D

Random curves appear in many contexts

2D random curves

- zero-lines of random scalar field

Lattice version – percolation hulls

3D random curves

zero-lines of random 2-cpt field

Lattice version – tricolour percolation

Scaling properties match

n=1 loop model

Local Description and Continuum Theory

$$Z = \sum_{\text{configs}} p^{n_{p}} (1 - p)^{n_{1-p}} n^{n_{\text{loops}}}$$

Introduce n component complex

unit vector $ec{z}_l$ on each link l

Calculate
$$\mathcal{Z} = \mathcal{N} \prod_l \int \mathrm{d}\vec{z}_l \,\,\mathrm{e}^{-\mathcal{S}}$$

with
$$e^{-\mathcal{S}} = \prod_{\text{nodes}} \left[p(\vec{z}_A^\dagger \cdot \vec{z}_B) (\vec{z}_C^\dagger \cdot \vec{z}_D) + (1-p) (\vec{z}_A^\dagger \cdot \vec{z}_D) (\vec{z}_C^\dagger \cdot \vec{z}_B) \right]$$

Expand $\prod_{\text{nodes}}[\ldots]$ Loops contribute factors

$$\sum_{\alpha,\beta,\dots\gamma} \int d\vec{z}_1 \dots \int d\vec{z}_L \ z_1^{*\alpha} z_2^{\alpha} z_2^{*\beta} \dots z_L^{*\gamma} z_1^{\gamma}$$

Hence: (i) factor of n per loop (ii) invariance under $\vec{z_l}
ightarrow \mathrm{e}^{\mathrm{i} arphi_l}$

Local Description and Continuum Theory

$$Z = \sum_{\text{configs}} p^{n_{p}} (1 - p)^{n_{1-p}} n^{n_{\text{loops}}}$$

Introduce n component complex unit vector $\vec{z_l}$ on each link l

Calculate
$$\mathcal{Z} = \mathcal{N} \prod_l \int \mathrm{d}\vec{z}_l \, \mathrm{e}^{-\mathcal{S}}$$

with
$$e^{-\mathcal{S}} = \prod_{\text{nodes}} \left[p(\vec{z}_A^\dagger \cdot \vec{z}_B) (\vec{z}_C^\dagger \cdot \vec{z}_D) + (1-p) (\vec{z}_A^\dagger \cdot \vec{z}_D) (\vec{z}_C^\dagger \cdot \vec{z}_B) \right]$$

Continuum limit CP(n-1) model

$$S = \frac{1}{g} \int \mathrm{d}^d \mathbf{r} \left| (\nabla - \mathrm{i} A) \vec{z} \right|^2$$
 with $A = \frac{\mathrm{i}}{2} (z^{*\alpha} \nabla z^{\alpha} - z^{\alpha} \nabla z^{*\alpha})$

with $|\vec{z}|^2=1$ and invariance under $\vec{z} \to \mathrm{e}^{\mathrm{i} \varphi(\mathrm{r})} \vec{z}$

see also: Candu, Jacobsen, Read and Saleur (2009)

Phase transitions in CP^{n-1} model

Gauge-invariant degrees of freedom: 'spins' $Q\equiv zz^\dagger-1/n$

(Mapping to Heisenberg model for n=2 via $S^{\alpha}=z^{\dagger}\sigma^{\alpha}z$)

Correlations

 $\langle \operatorname{tr} Q(\mathbf{0}) Q(\mathbf{r}) \rangle \propto G(r)$ – prob. points $\mathbf{0}$ and \mathbf{r} lie on same loop

Paramagnetic phase

— only finite loops

$$G(r) \sim \frac{1}{r} e^{-r/\xi}$$

Critical point

— fractal loops

$$G(r) \sim r^{-(1+\eta)}$$

$$d_f = \frac{5-\eta}{2}$$

Ordered phase

Brownian loops escape to infinity

$$G(r) \sim r^{-2}$$

Results from simulations

Phase diagram

Critical exponents

n	ν	γ
1	0.9985(15)	2.065(18)
2	0.708(6)	1.39(1)
3	0.50(2)	1.01(2)

 $n \geq 5$: 1st order

— consistent at n=2 with best estimates for classical

Heisenberg model: $\nu = 0.7112(5)$ $\gamma = 1.3960(9)$

Summary

Two classes of system having non-local degrees of freedom:

- Coulomb phases in spin Ice + dimer models
- Loop models

Exotic critical behaviour at ordering transitions:

- Symmetry-sustaining:
 one-sided Kasteleyn transition
- Symmetry-breaking:
 - non-standard critical behaviour at Curie transition non-LGW critical point for dimer ordering transition
- Symmetry-breaking: loops as representation of $\mathbb{C}P^{n-1}$ model