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Statistical mechanics with extended degrees of freedom

Coulomb phases

Geometrically frustrated magnets, dimer models

Correlations from constraints

Close-packed loop models

Loop colours as non-local degrees of freedom

See also poster session
Phase transitions
Ordering transitions from the Coulomb phase

Transitions between extended-loop and short-loop phases



Spin Ice

“Two-in, two-out’
HooTioO7 and DyoTisOr

ground states

Pyrochlore ferromagnet with single-ion anisotropy

HZ—JZ<U>S¢'SJ'—DZi(ﬁz’-Sz'f—h'ZiSi



Gauge theory of ground state correlations
Youngblood et al (1980), Huse et al (2003), Henley (2004)

Map spin configurations . . . ...to vector fields B(r)

‘two-in two out’ groundstates ... ... map to divergenceless B(r)



Ground states as flux loops

Entropic distribution:  P[B(r)] o exp(—& [ B*(r)d’r)

Power-law correlations: (Bi(r)B;(0)) 3



Low T correlations from neutron diffraction
Fennell etal Science 326, 415 (2009)
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Engineering transitions in spin ice
Select ordered state with Zeeman field or strain

Kasteleyn transition

in staggered field

W : 4

Magnetisation

vs het/T
for R T < J



Engineering transitions in spin ice
Select ordered state with Zeeman field or strain

Kasteleyn transition Ferromagnetic ordering
in staggered field strain + magnetoelastic coupling
<
uniaxial

compression

A

Magnetisation Magnetic order for

vs het/T r<a
o Coulomb phase for

Jaubert, JTC, Holdsworth + Moessner, PRL (2008) + (2010)



A Kasteleyn transition
Magnetisation induced by applied field

Magnetisation vs temperature

In a paramagnet

Am

h/T

No transition



A Kasteleyn transition
Magnetisation induced by applied field

Magnetisation vs temperature

In a paramagnet From the Coulomb phase
A m A M sub
eff
h/T h/
T
=

One-sided transition

No transition _ _ _
e Continuous from low-field side

e First-order from high-field side



Description of the transition

Reference state: fully polarised Excitations: spin reversals

‘Vacuum’ String excitation
Thermodynamics of isolated string, length L:
Energy L-h Entropy L-kgln(2) Freeenergy L -|h— kgT In(2)]

String density: finite for ~ h/kpT < In(2) zerofor h/kgT > In(2)



Classical to quantum mapping

View strings as boson world lines

3D classical = (2 + 1)D quantum

Z=Tr(TY) T ="
H  hard core bosons hopping on ~ (100) plane

magnetic field < boson chemical potential
Coulomb phase correlations < Goldstone fluctuations of condensate

monopole deconfinement < off-diagonal long range order



Quantum Description as XY ferromagnet

Kasteleyn transition

H=-T>» [SS; +575/1-B) 5;
(i7) !
Correspondence with classical description: B=h/T

B > B. Quantum spins polarised along 2

B < B. Quantum spins have  xy order



Kasteleyn: Simulation and Experiment

Magnetisation vs T Magnetisation vs H
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Ferromagnetic ordering in strained spin ice

Classical-quantum mapping: ordering as reorientation of g uantum spins

Low energy configurations High energy configuration

Mo Ysis + 55 - DY s
(i) (i)

D < J quantumspinsin xy plane D=A/T

D > J quantum spins along 2

D = emergent SU(2) symmetry at critical point



Exotic features of ordering in strained spin ice

Transition is ‘infinite order’ multicritical point
e Magnetisation (maximally) discontinuous

e Susceptibility divergent as T—TF"
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Ordering from the Coulomb phase of dimer models

Dimer crystallisation

f llel pai
Allowed states of avour parallel pairs

close-packed dimer models ‘ ‘ ‘ ‘

—D— G —

T

H = —J(n” N/ n:)

Crystal for 1T < J
Coulomb phase for 1" > J

Simulations:

continuous transition possible
classical non-LGW critical point
Alet et al: 2006, 2010



Classical dimer ordering in 3d and bosons in 2d

Dimer crystallisation

favour parallel pairs

—— q—

—D— G —

T

Expect non-LGW critical point

From 3d classical to (2+1)d quantum
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Map to bosons on kagome lattice

Hn
SOOPX

08

1/6 filling with hard-core repulsion

Dimer liquid maps to superfluid

Dimer crystal maps to boson crystal
Powell + JTC, 2009



Continuum problem

/Q\V

/2

T

mop

Loop models

Lattice formulation

Close-packed loops with 7 colours

on lattice of (directed) links

Nahum, JTC, Serna, Ortu no, and Somoza, arXiv:1104.4096



Phase transitions in loop models

> < X 4 = Zconﬁgs pnp(l o p)nl_pnmmps

or (1-p)

To define model: specify lattice, link directions and nodes

2D model Sample configuration




Phase transitions in loop models

> < X 4 = Zconﬁgs pnp(l o p)nl_pnnbOpS

or (1-p)

To define model: specify lattice, link directions and nodes

Configuration of 3D model
Lattice designed so that:

p =0 only short loops

p =1 all curves extended

(Alternative has symmetry

under p <« |1 — p])




Loop models and non-intersecting random curves in 3D

Random curves appear in many contexts

2D random curves

— zero-lines of random scalar field

Lattice version — percolation hulls



Loop models and non-intersecting random curves in 3D

Random curves appear in many contexts

3D random curves
2D random curves — zero-lines of random 2-cpt field

— zero-lines of random scalar field

Lattice version — tricolour percolation

Lattice version — percolation hulls

Scaling properties match

n = 1 loop model



Local Description and Continuum Theory

Z = Zconﬁgs pnp(l — p)nl_pnmmpg

Introduce 7 component complex

unit vector z; on each link [

Calculate Z =NTJ[, [dZ e®

with e_S — Hnodes {p(’gjﬁl ZB)(ZC' ZD) + (1 B p)(ZA ZD)(gg ZB)}

Expand [] . 4esl---]  Loops contribute factors
>oap.n ) Az [dZL 202820 202

Hence: (i) factor of n perloop (i) invariance under 2} — el



Local Description and Continuum Theory

/= Zconﬁgs pnp(l o p)nl_pnmoops

Introduce 71 component complex

unit vector Z; on each link [

Calculate Z =NT[, [dz e®

with €= = [T,oqes |P(Zh - Zp)(EL - 2p) + (1= p)(E) - 2p) (- 2)
Continuum limit CP(n-1) model

S=1[d|(V—-id)z" wih A=5(z"*V2* —20Vz")
ip(r) 7

—

with |Z]> =1 and invariance under Z —

see also: Candu, Jacobsen, Read and Saleur (2009)



Phase transitions in  C' P! model

Gauge-invariant degrees of freedom: ‘spins’ Q= 22l — 1/n

(Mapping to Heisenberg model for n =2 via S% = zTOO‘z)

Correlations

(tr Q(0)Q(r)) o< G(r) —prob. points 0 and 1 lie on same loop

Paramagnetic phase

1 _
— only finite loops G(r) ~ e r/€

Critical point
— fractal loops G(r) ~ r—(14n) dp = 5—777

Ordered phase
— Brownian loops G(r) ~ 2
escape to infinity



Results from simulations

Phase diagram

Critical exponents

10 ——
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n > 5 : 1storder

— consistentat 7 = 2 with best estimates for classical

v = 1.3960(9)

Heisenberg model:

v =0.7112(5)




Summary

Two classes of system having non-local degrees of freedom:
e Coulomb phases in spin Ice + dimer models

e Loop models

Exotic critical behaviour at ordering transitions:

® Symmetry-sustaining:
one-sided Kasteleyn transition

e Symmetry-breaking:

non-standard critical behaviour at Curie transition
non-LGW critical point for dimer ordering transition

e Symmetry-breaking:

loops as representation of C' P"* 1 model



