Dynamics of a 2D quantum spin liquid: signatures of emergent excitations in Kitaev's honeycomb model

John Chalker, Oxford

Johannes Knolle and Roderich Moessner, Dresden

Dmitry Kovrizhin, Cambridge

Phys Rev Lett to appear, arXiv:1308.4336

Outline

Spin liquids

- characteristics and candidates
- dynamics: ordered vs. fractionalised magnets

Kitaev's honeycomb lattice model

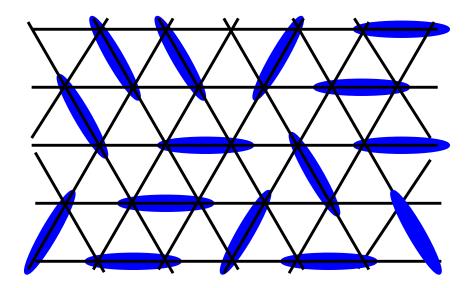
— from spins to fluxes and free fermions

Dynamics in the Kitaev model

- signatures of emergent excitations in $S(Q,\omega)$
- relation to quantum quench and x-ray edge problems

Spin liquids

- Many types
 - e.g. gapped vs gapless
- Unusual quasiparticles
 - e.g. gauge fields
 - & fractionalised excitations
- Absence of spin order
 - poor diagnostic

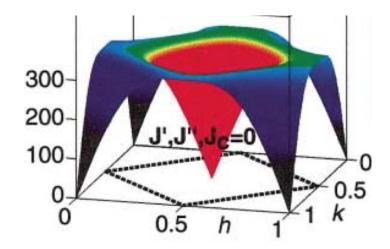


RVB state — Anderson (1973)

Dynamics: ordered vs. fractionalised magnets

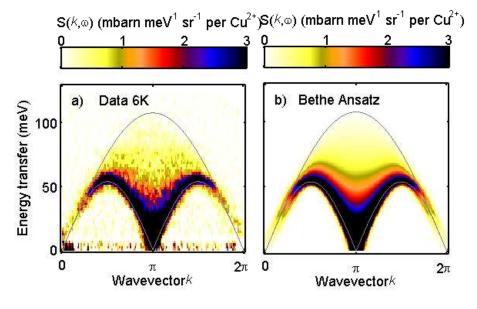
Compare dynamic structure factors

Magnon dispersion in Néel state



undoped cuprate, Coldea et al. (2001)

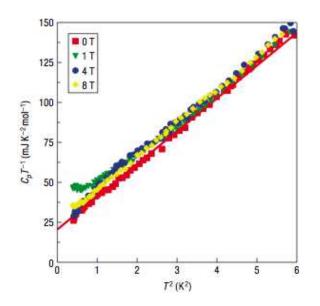
Spinon continuum in Heisenberg chain



KCuF₃, Caux et al. & Lake et al. (2013)

2D spin liquid candidates

κ -(ET) $_2$ Cu $_2$ (CN) $_3$

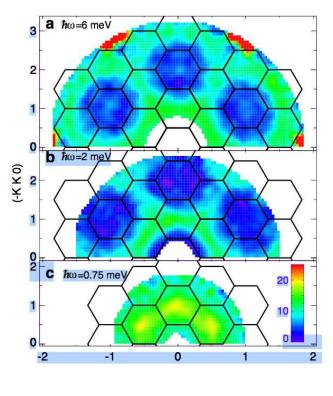


Heat capacity $\sim aT + bT^3$

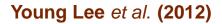
Kanoda et al. (2008)

Herbertsmithite

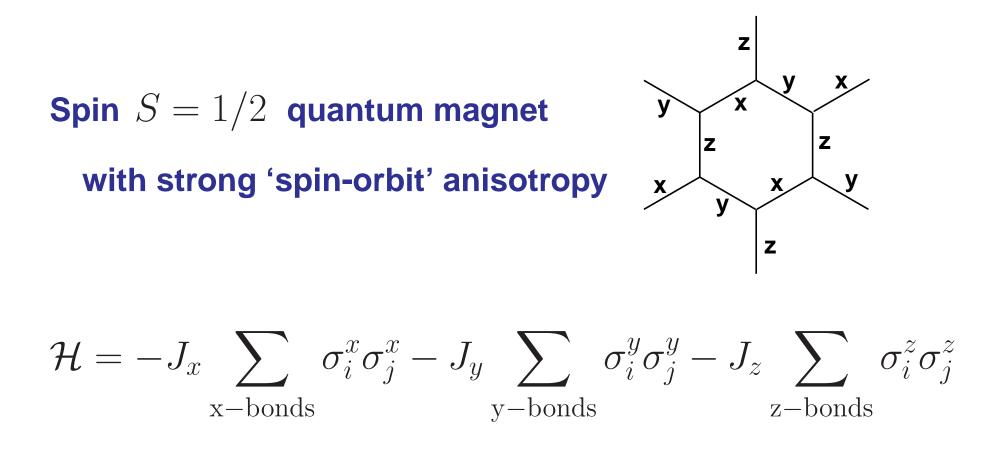
$ZnCu_3(OH)_6Cl_2$



 $S(Q,\omega)$ broad



Kitaev's honeycomb model

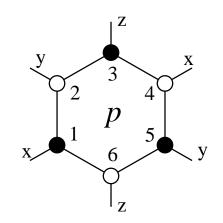


A. Kitaev, Ann. Phys. 321, 2 (2006)

Suggested realisation: G. Jackeli and G. Khaliullin, PRL 102, 017205 (2009)

Emergent degrees of freedom

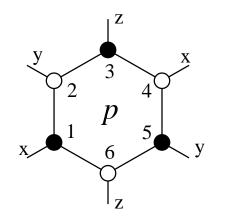
Static fluxes



$$W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$$
$$[W_p, H] = 0$$
$$[W_p, W_q] = 0$$

Emergent degrees of freedom

Static fluxes ... and ... free fermions



$$W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$$

$$[W_p, H] = 0$$
$$[W_p, W_q] = 0$$

Tight binding model

hopping magnitudes J_x , J_y & J_z signs set by Z_2 fluxes

Spin correlations ultra-short-range: $\langle \sigma_j^{\alpha} \sigma_k^{\alpha} \rangle = 0$ for $|\mathbf{r}_j - \mathbf{r}_k| > 1$

Baskaran et al. (2007)

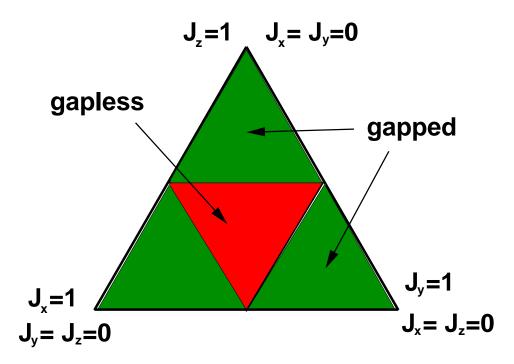
Ground state phase diagram

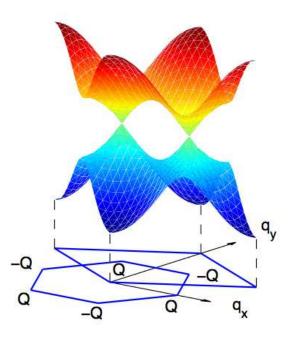
• Gapped liquid phases for $J_z \gg J_x, \ J_y$ and permutations

Weakly coupled dimers – both sectors gapped

• Gapless liquid phase around $J_x = J_y = J_z \equiv J$

Dirac cones in fermion spectrum – flux sector gapped





From spins to fermions

- sketch of Kitaev's solution

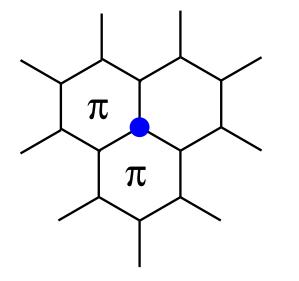
Represent each spin using 4 Majorana fermions $(bc = -cb, c^{\dagger} = c)$ $\vec{\sigma} \rightarrow \{c, b^x, b^y, b^z\}$ with $\sigma_k^{\alpha} = i b_k^{\alpha} c_k$ so $\sigma_j^{\alpha} \sigma_k^{\alpha} = b_j^{\alpha} b_k^{\alpha} c_j c_k$ • Resulting \mathcal{H} is quadratic in c_k 's • $[\mathcal{H}, \hat{u}_{jk}] = 0$ with $\hat{u}_{jk} = \mathrm{i} b_j^{\alpha_{jk}} b_k^{\alpha_{jk}}$ $\mathcal{H} = \frac{i}{4} \sum_{ik} \hat{A}_{ik} c_i c_k$ $\hat{A}_{jk} = \begin{cases} 2J_{\alpha_{jk}}\hat{u}_{jk} & j, k \text{ neighbours} \\ 0 & \text{otherwise} \end{cases}$ bb С - honeycomb tight binding model

Project to get physical states

Computing the dynamic response

$$S^{\alpha\beta}(\mathbf{r},t) = \langle 0|e^{i\mathcal{H}t}\sigma_{\mathbf{r}}^{\alpha}e^{-i\mathcal{H}t}\sigma_{0}^{\beta}|0\rangle$$

 $\sigma_0^eta \equiv i c_0 b_0^eta$ adds two fluxes and fermion to |0
angle



'just' free fermion time evolution in presence of added fluxes

Baskaran et al. (2007)

Gross features of $S(Q,\omega)$

- Fractionalisation

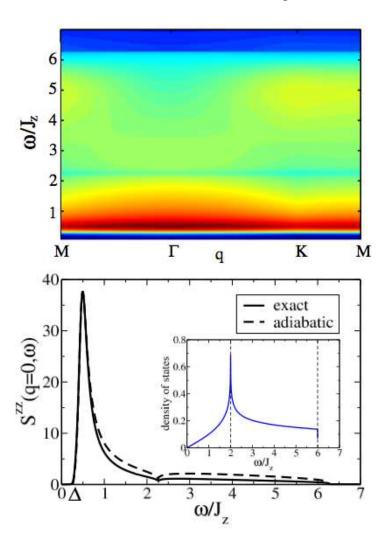
 ⇒ broad response
 correlations short range

 Energy cost for flux addition

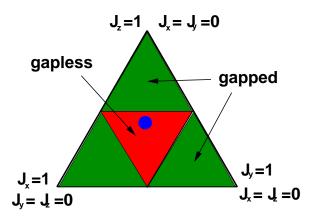
 ⇒ gapped response
- $S(Q, \omega)$ is imperfect image of fermion density of states
 - influence of fluxes on dynamics

but \sim 98% of wt single pcle

Gapless phase: $J_x = J_y = J_z$



Adding spatial anisotropy

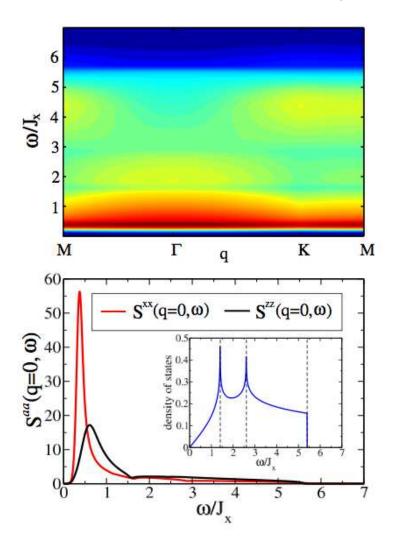


• Lower symmetry

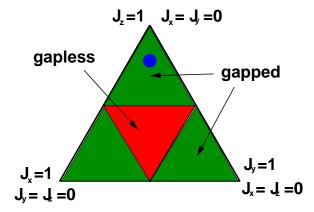
distinct responses $S^{xx}(Q,\omega) \text{ and } S^{zz}(Q,\omega)$

• Smaller flux gap

Gapless phase: $J_z/2 < J_x, J_y < J_z$

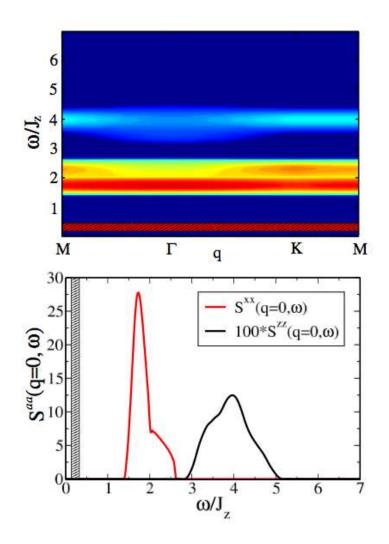


Gapped phase



- Small flux gap but large fermion gap flux gap $\Delta \propto (J_x/J_z)^4$
- δ -function response at flux gap appears at dynamical transition

$$J_x = J_y < J_z/2$$

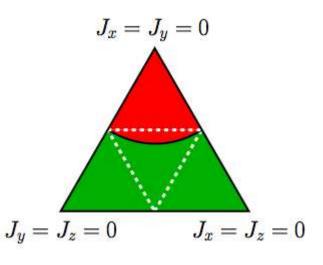


Dynamical transition

onset of sharp response at flux gap

- Matter fermion Hamiltonian includes
 - pair creation & annihilation terms
 - but fermion parity well-defined
- **Use Lehmann representation**
 - $S(\mathbf{r},\omega) = \sum_{n} \langle 0|\sigma_{\mathbf{r}}|n\rangle \langle n|\sigma_{0}|0\rangle \delta([E_{n} E_{0}] \omega)$
 - |0
 angle is ground state (flux-free)
 - σ_0 adds two fluxes & fermion
 - |n
 angle are eigenstates in presence of flux pair

Dynamical phase diagram



Relative parity of ground states in two flux sectors matters:

 $|n\rangle$'s restricted — *either* to odd *or* to even fermion excitation numbers

Sharp response from ground-state to ground state contribution

Relation to quantum quench and x-ray edge

Dynamic response $S(\mathbf{r}, t_{\rm f} - t_{\rm i}) = \langle 0 | \sigma_{\mathbf{r}}(t_{\rm f}) \sigma_0(t_{\rm i}) | 0 \rangle$

Equivalent quench protocol

add fluxes at $t_{
m i} \Rightarrow$ evolve \Rightarrow remove fluxes at $t_{
m f}$

Cf x-ray edge problem

evolve Fermi sea in presence of core hole

Anderson orthogonality catastrophe?

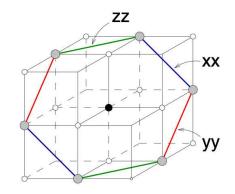
Distinctive features of Kitaev problem:

- Dirac/gapped DoS
- Dynamical transition & parity effects

Away from integrability

Search for a realisation

Materials: spin-orbit coupling



— layered iridates? Jackeli & Khalliulin (2009)

Cold atoms: quantum simulator — optical lattice + spin-dept tunnelling Duan, Demler & Lukin (2003) Consequences of departures from Kitaev

- E.g. Heisenberg exchange
 - fluxes acquire dynamics
 - further neighbour correlns develop
 - sharp response broadened
 - response gap softened

Spin liquid has window of stability

— evolution of response smooth inside window

Summary

Exact calculation of dynamic structure factor

- in gapped & gapless phases
- signatures of emergent fluxes and fermions

Unusual features

- response gap in gapless phase
- sharp response despite fractionalisation

X-ray edge & quantum quench

- no orthogonality catastrophe