Minimal models for chaotic quantum dynamics in spatially extended many-body systems

John Chalker

Physics Department, Oxford University

Joint work with Amos Chan and Andrea De Luca

Phys Rev X 8 and Phys Rev Lett 121

Studies of 'generic' quantum systems

Nuclear physics

Mesoscopic conductors

Low-D systems

Spatially extended many-body systems

Characterising spectra

Evolution operator W(t), eigenvalues $e^{i\theta_n t}$

Spectral form factor $K(t) = \left< \sum_{nm} e^{i(\theta_n - \theta_m)t} \right>$

Characterising spectra

Evolution operator W(t), eigenvalues $e^{i\theta_n t}$

Spectral form factor
$$K(t) = \left< \sum_{nm} e^{i(heta_n - heta_m)t} \right>$$

Unitary $N \times N$ random matrices

Characterising spectra

Evolution operator W(t), eigenvalues $e^{i\theta_n t}$

Spectral form factor
$$K(t) = \left< \sum_{nm} e^{i(heta_n - heta_m)t} \right>$$

Mesoscopic conductor: Thouless time

Characterising dynamics

Hydrodynamics & conserved densities

Dynamics of quantum information

Equilibration under unitary dynamics

Speed limits without relativity

Lieb-Robinson bound (1972)

Max propagation speed v for disturbances in short-range lattice models

For local observables at x and y

[O(y,t),O(x)]

small outside lightcone

Speed limits without relativity

Lieb-Robinson bound (1972)

Max propagation speed v for disturbances in short-range lattice models

For local observables at x and y

[O(y,t),O(x)]

small outside lightcone

Out-of-time-order correlator (OTOC)

$$C(x, y; t) \equiv [O(y, t)O(x)O(y, t)O(x)]_{av}$$

E.g. with $\operatorname{Tr}O(x) = 0$
and $O(x)^2 = 1$
& likewise for $O(y)$

Entanglement dynamics

Quantifying 'equilibration' under unitary dynamics

Density matrix $ho(t) = |\Psi(t)\rangle \langle \Psi(t)|$ for full system

- pure state preserved under time evolution

Entanglement dynamics

Quantifying 'equilibration' under unitary dynamics

Density matrix $ho(t) = |\Psi(t)
angle \langle \Psi(t)|$ for full system

- pure state preserved under time evolution

Reduced density matrix $\rho_A(t) = \text{Tr}_B \rho(t)$

Entropy of sub-system may grow with time & saturate at long times

Simple physics: Eliminate conserved densities \Rightarrow time-dept evolution operator Simple solution: Random matrices & spatial structure

Simple physics: Eliminate conserved densities \Rightarrow time-dept evolution operator Simple solution: Random matrices & spatial structure

Inspiration: Random unitary circuits

Nahum, Ruhman, Vijay and Haah, PRX (2017) Nahum, Vijay and Haah, PRX (2018) von Keyserlingk et al, PRX (2018)

Simple physics: Fixed evolution operator w/o conserved densities \Rightarrow Floquet Simple solution: Random matrices & spatial structure

Simple physics: Fixed evolution operator w/o conserved densities \Rightarrow Floquet Simple solution: Random matrices & spatial structure

Minimal model

L-site lattice of q-state 'spins'

Floquet operator W is $q^L \times q^L$ unitary matrix

Each $q^2 \times q^2$ unitary $U_{n,n+1}$ independently Haar-distributed

Solve for $q
ightarrow \infty$

Behaviour of Floquet model

Is behaviour consistent with ergodic phase?

Relaxation of local observables

Dynamics of quantum information?

Out-of-time-order correlator

Entanglement growth

Spectral correlations?

'Thouless time' in many-body system

Local operator in *q*-state Hilbert space at site: O(x)with $\operatorname{Tr} O(x) = 0$ and $O(x)^2 = \mathbb{1}_q$.

Define

$$O(x,t) = W(t)O(x)W^{\dagger}(t) \qquad [\ldots]_{\mathrm{av}} \equiv q^{-L}\mathrm{Tr}\ldots$$

Want $[O(x, t)O(x)]_{av}$

Local operator in *q*-state Hilbert space at site: O(x)with TrO(x) = 0 and $O(x)^2 = \mathbb{1}_q$.

Define

$$O(x,t) = W(t)O(x)W^{\dagger}(t) \qquad [\ldots]_{\mathrm{av}} \equiv q^{-L}\mathrm{Tr}\ldots$$

Want $[O(x,t)O(x)]_{av}$

Expect $\lim_{t\to\infty} [O(x,t)O(x)]_{av} \sim [O(x,t)]_{av}[O(x)]_{av} = 0$

Local operator in *q*-state Hilbert space at site: O(x)with TrO(x) = 0 and $O(x)^2 = \mathbb{1}_q$.

Define

$$O(x,t) = W(t)O(x)W^{\dagger}(t) \qquad [\ldots]_{\mathrm{av}} \equiv q^{-L}\mathrm{Tr}\ldots$$

Want $[O(x, t)O(x)]_{av}$

Expect $\lim_{t\to\infty} [O(x,t)O(x)]_{av} \sim [O(x,t)]_{av}[O(x)]_{av} = 0$

Find for
$$q \to \infty$$
 $[O(x, t)O(x)]_{\mathrm{av}} = \begin{cases} 1 & t = 0 \\ 0 & t > 0 \end{cases}$

Local operator in *q*-state Hilbert space at site: O(x)with TrO(x) = 0 and $O(x)^2 = \mathbb{1}_q$.

Define

$$O(x,t) = W(t)O(x)W^{\dagger}(t) \qquad [\ldots]_{\mathrm{av}} \equiv q^{-L}\mathrm{Tr}\ldots$$

Want $[O(x,t)O(x)]_{av}$

Expect $\lim_{t\to\infty} [O(x,t)O(x)]_{av} \sim [O(x,t)]_{av}[O(x)]_{av} = 0$

Short times and finite q: $[O(x,t)O(x)]_{av} = \begin{cases} 1 & t=0\\ 0 & t=1\\ q^{-7} & t=2\\ 16q^{-11} & t=3 \end{cases}$

Out-of-time-order correlator

Find for $q \to \infty$

Butterfly velocity v = 2

Entanglement growth in Floquet model

Initial state $|\psi\rangle$ – product state in site basis Reduced density matrix $\rho_A(t) = \text{Tr}_B W(t) |\psi\rangle \langle \psi | W^{\dagger}(t)$

Réyni entropies $e^{-(\alpha-1)S_{\alpha}(t)} = \operatorname{Tr}_{A}[\rho_{A}(t)^{\alpha}]$

Entanglement growth in Floquet model

Initial state $|\psi\rangle$ – product state in site basis Reduced density matrix $\rho_A(t) = \text{Tr}_B W(t) |\psi\rangle \langle \psi | W^{\dagger}(t)$

Réyni entropies $e^{-(\alpha-1)S_{\alpha}(t)} = \operatorname{Tr}_{A}[\rho_{A}(t)^{\alpha}]$

with $\alpha = 2$ or 3 and q large Find $\langle e^{-(\alpha-1)S_{\alpha}(t)} \rangle = \begin{cases} f_{\alpha}(t)q^{-2(\alpha-1)t} & t \leq L/4 \\ \\ K_{\alpha}q^{-(\alpha-1)L/2} & t > L/4 \end{cases}$

Entanglement growth in Floquet model

Initial state $|\psi\rangle$ – product state in site basis **Reduced density matrix** $\rho_A(t) = \text{Tr}_B W(t) |\psi\rangle \langle \psi | W^{\dagger}(t)$

Réyni entropies $e^{-(\alpha-1)S_{\alpha}(t)} = \operatorname{Tr}_{A}[\rho_{A}(t)^{\alpha}]$

with
$$\alpha = 2$$
 or 3 and q large
Find $\langle e^{-(\alpha-1)S_{\alpha}(t)} \rangle = \begin{cases} f_{\alpha}(t)q^{-2(\alpha-1)t} & t \leq L/4 \\ \\ K_{\alpha}q^{-(\alpha-1)L/2} & t > L/4 \end{cases}$

Interpretation:

Entanglement at time t has range 2t $\Rightarrow \rho_A(t)$ has q^{2t} non-zero eigenvalues, each $\mathcal{O}(q^{-2t})$

Entanglement spreads at speed v = 2

Entanglement growth after quench in integrable systems

— from quasiparticle dynamics

Cardy and Calabrese

Entanglement growth in quantum circuits

What is lost in $q \rightarrow \infty$ limit?

What is lost in $q \rightarrow \infty$ limit?

OTOC: Front is sharp, not diffuse

What is lost in $q \rightarrow \infty$ limit?

OTOC: Front is sharp, not diffuse

Velocities: 'Naive' value for all speeds (butterfly, entanglement spreading ...)

Spectral form factor

Evolution operator W(t) with eigenvalues $\{e^{i\theta_n}\}$

Spectral form factor
$$K(t) = \sum_{m,n} e^{i(heta_m - heta_n)t}$$

Large $q \Rightarrow$ random matrix behaviour in Floquet model

$$K(t) = t$$
 for $0 < t \ll q^L$

Spectral form factor

Evolution operator W(t) with eigenvalues $\{e^{i\theta_n}\}$

Spectral form factor
$${\cal K}(t)=\sum_{m,n}e^{i(heta_m- heta_n)t}$$

Large $q \Rightarrow$ random matrix behaviour in Floquet model

$$K(t) = t$$
 for $0 < t \ll q^L$

- consequence of coupling

Without W_2 find instead

$$K(t) = t^{L/2}$$

Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths (diagonal approximation \sim diffusons)

Spectral form factor

$$\mathcal{K}(t) = \left\langle \sum_{nm} e^{i(heta_n - heta_m)t}
ight
angle = \left\langle \operatorname{Tr}[\mathcal{W}(t)] \operatorname{Tr}[\mathcal{W}^{\dagger}(t)]
ight
angle$$

$$\operatorname{Tr}[W(t)] \equiv \sum_{a_1 \dots a_t} W_{a_1 a_2} W_{a_2 a_3} \dots W_{a_t a_1}$$

Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths (diagonal approximation \sim diffusons)

Spectral form factor

$$K(t) = \left\langle \sum_{nm} e^{i(\theta_n - \theta_m)t} \right\rangle = \left\langle \operatorname{Tr}[W(t)] \operatorname{Tr}[W^{\dagger}(t)] \right\rangle$$

$$\operatorname{Tr}[W(t)] \equiv \sum_{a_1 \dots a_t} W_{a_1 a_2} W_{a_2 a_3} \dots W_{a_t a_1}$$

$$\operatorname{Tr}[W^{\dagger}(t)] \equiv \sum_{b_1 \dots b_t} W^{\dagger}_{b_1 b_2} W^{\dagger}_{b_2 b_3} \dots W^{\dagger}_{b_t b_1}$$

Constructive interference if path $b_1b_2...b_t$ though Fock space is reversed copy of path $a_1a_2...a_t$

Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths (diagonal approximation \sim diffusons)

Spectral form factor

$$\mathcal{K}(t) = \left\langle \sum_{nm} e^{i(heta_n - heta_m)t}
ight
angle = \left\langle \operatorname{Tr}[\mathcal{W}(t)] \operatorname{Tr}[\mathcal{W}^{\dagger}(t)]
ight
angle$$

Pictorially:

t possible pairings

New possibilities in many-body systems?

Spatial domains with distinct pairings between time-reversed paths

New possibilities in many-body systems?

Spatial domains with distinct pairings between time-reversed paths

Equivalence to *t*-state Potts model:

t pairings in each domain

& statistical cost for domain walls

Model of weakly-coupled chaotic grains

L-site lattice of q-state 'spins'

Floquet operator $W \equiv W_2 \cdot W_1$ is $q^L \times q^L$ unitary matrix

Model of weakly-coupled chaotic grains

L-site lattice of q-state 'spins'

Floquet operator $W \equiv W_2 \cdot W_1$ is $q^L \times q^L$ unitary matrix

Each $q \times q$ unitary U_n independently Haar-distributed $W_1 = U_1 \otimes U_2 \otimes \ldots \otimes U_L$

Model of weakly-coupled chaotic grains

L-site lattice of q-state 'spins'

Floquet operator $W \equiv W_2 \cdot W_1$ is $q^L \times q^L$ unitary matrix

Each $q \times q$ unitary U_n independently Haar-distributed $W_1 = U_1 \otimes U_2 \otimes \ldots \otimes U_L$ W_2 diagonal in site basis $|a_1, a_2, \ldots a_L\rangle$ with phase $\sum_{n=1}^{L} \varphi_{a_n, a_{n+1}}$ $\{\varphi_{a_n, a_{n+1}}\}$ indept Gaussian random variables, zero mean

Coupling strength $\langle [\varphi_{a_n,a_{n+1}}]^2 \rangle \equiv \varepsilon$

- Small $t \Rightarrow L$ uncoupled sites $\Rightarrow K(t) = t^L$
- $\text{Large } t \ \Rightarrow \ \text{all sites coupled} \ \Rightarrow \ \mathcal{K}(t) = t$

Small $t \Rightarrow L$ uncoupled sites $\Rightarrow K(t) = t^L$

 $\text{Large } t \hspace{.1in} \Rightarrow \hspace{.1in} \text{all sites coupled} \hspace{.1in} \Rightarrow \hspace{.1in} \mathcal{K}(t) = t$

Exact mapping to *t*-state Potts ferromagnet

Potts coupling $\beta J \equiv \varepsilon t \Rightarrow K(t) = Z_{\text{Potts}}$

Small $t \Rightarrow L$ uncoupled sites $\Rightarrow K(t) = t^L$

 $\text{Large } t \hspace{.1in} \Rightarrow \hspace{.1in} \text{all sites coupled} \hspace{.1in} \Rightarrow \hspace{.1in} \mathcal{K}(t) = t$

Exact mapping to *t*-state Potts ferromagnet

Potts coupling $\beta J \equiv \varepsilon t \Rightarrow K(t) = Z_{\text{Potts}}$

K(t) vs t for $q \to \infty$

Small $t \Rightarrow L$ uncoupled sites $\Rightarrow K(t) = t^L$

 $\text{Large } t \hspace{.1in} \Rightarrow \hspace{.1in} \text{all sites coupled} \hspace{.1in} \Rightarrow \hspace{.1in} \mathcal{K}(t) = t$

Exact mapping to *t*-state Potts ferromagnet

Potts coupling $\beta J \equiv \varepsilon t \Rightarrow K(t) = Z_{\text{Potts}}$

K(t) vs t for $q \to \infty$

K(t) vs t for q = 3, L = 4 - 10

Summary

Floquet models at large q give solvable ergodic phase

Systematic calculations for $q ightarrow \infty$

Rapid local relaxation

Light cone in OTOC

Ballistic growth of entanglement

Many-body Thouless time

Crossover between uncoupled sites and single RMT behaviour

Consider $\operatorname{Tr}_{A}[\rho_{A}(t)]^{2}$ with $\rho_{A} = \operatorname{Tr}_{B}[W(t)|\psi\rangle\langle\psi|W^{\dagger}(t)]$

 $W(t)|\psi
angle$

Consider $\operatorname{Tr}_{A}[\rho_{A}(t)]^{2}$ with $\rho_{A} = \operatorname{Tr}_{B}[W(t)|\psi\rangle\langle\psi|W^{\dagger}(t)]$

 $\rho_A(t)$

Consider $\operatorname{Tr}_{\mathcal{A}}[\rho_{\mathcal{A}}(t)]^2$ with $\rho_{\mathcal{A}} = \operatorname{Tr}_{\mathcal{B}}[W(t)|\psi\rangle\langle\psi|W^{\dagger}(t)]$

 ${\rm Tr}[\rho_A(t)]^2$

Consider $\operatorname{Tr}_{A}[\rho_{A}(t)]^{2}$ with $\rho_{A} = \operatorname{Tr}_{B}[W(t)|\psi\rangle\langle\psi|W^{\dagger}(t)]$

Alternatively draw as

Consider $\operatorname{Tr}_{A}[\rho_{A}(t)]^{2}$ with $\rho_{A} = \operatorname{Tr}_{B}[W(t)|\psi\rangle\langle\psi|W^{\dagger}(t)]$

Represent contributions after averaging via domains for different pairings

Consider
$${
m Tr}_{\cal A}[
ho_{\cal A}(t)]^2$$
 with $ho_{\cal A}={
m Tr}_{\cal B}[W(t)|\psi
angle\langle\psi|W^{\dagger}(t)]$

Represent contributions after averaging via domains for different pairings

$$\mathrm{Tr}_{A}[\rho_{A}(t)]^{2}=4^{t}q^{-2t}$$

 4^t no. of directed paths of length t

$$q^{-2}$$
 statistical cost of path per step

Summary

Floquet models at large q give solvable ergodic phase

Systematic calculations for $q ightarrow \infty$

Rapid local relaxation

Light cone in OTOC

Ballistic growth of entanglement

Many-body Thouless time

Crossover between uncoupled sites and single RMT behaviour

Essentials of calculation: avges of unitary matrices

Floquet operator W is $q^L \times q^L$ unitary matrix

Each $q^2 imes q^2$ unitary $U_{n,n+1}$ independently Haar-distributed Need

$$\langle [U]_{\boldsymbol{a}_1, \boldsymbol{b}_1} \dots [U]_{\boldsymbol{a}_t, \boldsymbol{b}_t} \times [U^{\dagger}]_{\alpha_1, \beta_1} \dots [U^{\dagger}]_{\alpha_t, \beta_t} \rangle = V_{P, P'} \prod_{j=1}^t \delta_{\boldsymbol{a}_j, \alpha_{P(j)}} \delta_{\boldsymbol{b}_j, \beta_{P'(j)}}$$

Essentials of calculation: avges of unitary matrices

Floquet operator W is $q^L \times q^L$ unitary matrix

Each $q^2 \times q^2$ unitary $U_{n,n+1}$ independently Haar-distributed

Need

$$\langle [U]_{a_1,b_1}\dots [U]_{a_t,b_t}\times [U^{\dagger}]_{\alpha_1,\beta_1}\dots [U^{\dagger}]_{\alpha_t,\beta_t}\rangle = V_{P,P'}\prod_{j=1}^t \delta_{a_j,\alpha_{P(j)}}\delta_{b_j,\beta_{P'(j)}}$$

Large q: P = P' dominates ([U]_{ab} almost independent Gaussian variables)

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)

 $\mathcal{K}(t) = \langle [\operatorname{Tr} W(t)] \cdot [\operatorname{Tr} W^{\dagger}(t)] \rangle$ notation: $W(t) \equiv [W]^{t}$

Need
$$\langle [U_n]_{a_1,a_2}[U_n]_{a_2,a_3}\dots [U_n]_{a_t,a_1} \times [U_n^{\dagger}]_{b_1,b_2}\dots [U_n^{\dagger}]_{b_t,b_1} \rangle$$

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)

 $\mathcal{K}(t) = \langle [\operatorname{Tr} W(t)] \cdot [\operatorname{Tr} W^{\dagger}(t)] \rangle$ notation: $W(t) \equiv [W]^{t}$

Need
$$\langle [U_n]_{a_1,a_2}[U_n]_{a_2,a_3}\dots [U_n]_{a_t,a_1} \times [U_n^{\dagger}]_{b_1,b_2}\dots [U_n^{\dagger}]_{b_t,b_1} \rangle$$

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)

Leading terms for large q:

 $b_r = a_{r+s}$ for $r, r+s = 1 \dots t \mod t$ t contributions of this form. for $s = 1 \dots t$

 $\mathcal{K}(t) = \langle [\operatorname{Tr} W(t)] \cdot [\operatorname{Tr} W^{\dagger}(t)] \rangle$ notation: $W(t) \equiv [W]^{t}$

Need
$$\langle [U_n]_{a_1,a_2}[U_n]_{a_2,a_3}\dots [U_n]_{a_t,a_1} \times [U_n^{\dagger}]_{b_1,b_2}\dots [U_n^{\dagger}]_{b_t,b_1} \rangle$$

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)

Leading terms for large q: $b_r = a_{r+s}$ for $r, r+s = 1 \dots t \mod t$ t contributions of this form. for $s = 1 \dots t$

Many sites: contributions labelled by s_n at each site n

 $\mathcal{K}(t) = \langle [\operatorname{Tr} \mathcal{W}(t)] \cdot [\operatorname{Tr} \mathcal{W}^{\dagger}(t)] \rangle$ notation: $\mathcal{W}(t) \equiv [\mathcal{W}]^{t}$

Need
$$\langle [U_n]_{a_1,a_2}[U_n]_{a_2,a_3}\dots [U_n]_{a_t,a_1}\times [U_n^{\dagger}]_{b_1,b_2}\dots [U_n^{\dagger}]_{b_t,b_1}\rangle$$

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)

Leading terms for large q: $b_r = a_{r+s}$ for $r, r+s = 1 \dots t \mod t$ t contributions of this form, for $s = 1 \dots t$

Many sites: contributions labelled by s_n at each site n

Avge on
$$W_2$$
 gives factors $\left\{ egin{array}{cc} 1 & s_n = s_{n+1} \\ e^{-arepsilon t} & s_n
eq s_{n+1} \end{array}
ight.$

 $\mathcal{K}(t) = \langle [\operatorname{Tr} W(t)] \cdot [\operatorname{Tr} W^{\dagger}(t)] \rangle$ notation: $W(t) \equiv [W]^{t}$

Need
$$\langle [U_n]_{a_1,a_2}[U_n]_{a_2,a_3}\dots [U_n]_{a_t,a_1} \times [U_n^{\dagger}]_{b_1,b_2}\dots [U_n^{\dagger}]_{b_t,b_1} \rangle$$

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)

Leading terms for large q: $b_r = a_{r+s}$ for $r, r+s = 1 \dots t \mod t$ t contributions of this form, for $s = 1 \dots t$

Avge on W_2 gives factors $\begin{cases} 1 & s_n = s_{n+1} \\ e^{-\varepsilon t} & s_n \neq s_{n+1} \end{cases}$

Many sites: contributions labelled by s_n at each site n

t-state Potts model