Minimal models for chaotic quantum dynamics in spatially extended many-body systems

John Chalker

Physics Department, Oxford University

Joint work with Amos Chan and Andrea De Luca

Phys Rev X 8 and Phys Rev Lett 121

Studies of 'generic' quantum systems

Nuclear physics
䯧

Low-D systems

Mesoscopic conductors

Spatially extended many-body systems

Characterising spectra

Evolution operator $W(t)$, eigenvalues $e^{i \theta_{n} t}$
Spectral form factor $K(t)=\left\langle\sum_{n m} e^{i\left(\theta_{n}-\theta_{m}\right) t}\right\rangle$

Characterising spectra

Evolution operator $W(t)$, eigenvalues $e^{i \theta_{n} t}$
Spectral form factor $K(t)=\left\langle\sum_{n m} e^{i\left(\theta_{n}-\theta_{m}\right) t}\right\rangle$
Unitary $N \times N$ random matrices

Characterising spectra

Evolution operator $W(t)$, eigenvalues $e^{i \theta_{n} t}$
Spectral form factor $K(t)=\left\langle\sum_{n m} e^{i\left(\theta_{n}-\theta_{m}\right) t}\right\rangle$
Mesoscopic conductor: Thouless time

Characterising dynamics

Hydrodynamics \& conserved densities

Dynamics of quantum information

Equilibration under unitary dynamics

Speed limits without relativity

Lieb-Robinson bound (1972)

Max propagation speed v for disturbances in short-range lattice models

For local observables at x and y

$$
[O(y, t), O(x)]
$$

small outside lightcone

Speed limits without relativity

Lieb-Robinson bound (1972)

Max propagation speed v for disturbances in short-range lattice models

For local observables at x and y

$$
[O(y, t), O(x)]
$$

small outside lightcone

Out-of-time-order correlator (OTOC)

$$
C(x, y ; t) \equiv[O(y, t) O(x) O(y, t) O(x)]_{\mathrm{av}}
$$

E.g. with $\operatorname{Tr} O(x)=0$ and $\quad O(x)^{2}=\mathbb{1}$ \& likewise for $O(y)$

Entanglement dynamics

Quantifying ‘equilibration' under unitary dynamics
Density matrix $\rho(t)=|\Psi(t)\rangle\langle\Psi(t)|$ for full system

- pure state preserved under time evolution

Entanglement dynamics

Quantifying ‘equilibration' under unitary dynamics
Density matrix $\rho(t)=|\Psi(t)\rangle\langle\Psi(t)|$ for full system

- pure state preserved under time evolution

Reduced density matrix $\rho_{A}(t)=\operatorname{Tr}_{B} \rho(t)$

Entropy of sub-system may grow with time \& saturate at long times

Aim: solvable models for ergodic phase

Simple physics: Eliminate conserved densities \Rightarrow time-dept evolution operator Simple solution: Random matrices \& spatial structure

Aim: solvable models for ergodic phase

Simple physics: Eliminate conserved densities \Rightarrow time-dept evolution operator Simple solution: Random matrices \& spatial structure

Inspiration: Random unitary circuits

Nahum, Ruhman, Vijay and Haah, PRX (2017)
Nahum, Vijay and Haah, PRX (2018) von Keyserlingk et al, PRX (2018)

Aim: solvable models for ergodic phase

Simple physics: Fixed evolution operator w/o conserved densities \Rightarrow Floquet
Simple solution: Random matrices \& spatial structure

Aim: solvable models for ergodic phase

Simple physics: Fixed evolution operator w/o conserved densities \Rightarrow Floquet Simple solution: Random matrices \& spatial structure

Minimal model

L-site lattice of q-state 'spins'
Floquet operator W is $q^{L} \times q^{L}$ unitary matrix

Each $q^{2} \times q^{2}$ unitary $U_{n, n+1}$ independently Haar-distributed

Behaviour of Floquet model

Is behaviour consistent with ergodic phase?
Relaxation of local observables

Dynamics of quantum information?
Out-of-time-order correlator
Entanglement growth

Spectral correlations?
'Thouless time' in many-body system

Relaxation of local observables

Local operator in q-state Hilbert space at site: $O(x)$ with $\operatorname{Tr} O(x)=0$ and $O(x)^{2}=\mathbb{1}_{q}$.

Define

$$
O(x, t)=W(t) O(x) W^{\dagger}(t) \quad[\ldots]_{\mathrm{av}} \equiv q^{-L} \operatorname{Tr} \ldots
$$

Want $\quad[O(x, t) O(x)]_{\text {av }}$

Relaxation of local observables

Local operator in q-state Hilbert space at site: $O(x)$ with $\operatorname{Tr} O(x)=0$ and $O(x)^{2}=\mathbb{1}_{q}$.

Define

$$
O(x, t)=W(t) O(x) W^{\dagger}(t) \quad[\ldots]_{\mathrm{av}} \equiv q^{-L} \operatorname{Tr} \ldots
$$

Want $\quad[O(x, t) O(x)]_{\text {av }}$
Expect $\lim _{t \rightarrow \infty}[O(x, t) O(x)]_{\mathrm{av}} \sim[O(x, t)]_{\mathrm{av}}[O(x)]_{\mathrm{av}}=0$

Relaxation of local observables

Local operator in q-state Hilbert space at site: $O(x)$ with $\operatorname{Tr} O(x)=0$ and $O(x)^{2}=\mathbb{1}_{q}$.

Define

$$
O(x, t)=W(t) O(x) W^{\dagger}(t) \quad[\ldots]_{\mathrm{av}} \equiv q^{-L} \operatorname{Tr} \ldots
$$

Want $\quad[O(x, t) O(x)]_{\text {av }}$
Expect $\lim _{t \rightarrow \infty}[O(x, t) O(x)]_{\mathrm{av}} \sim[O(x, t)]_{\mathrm{av}}[O(x)]_{\mathrm{av}}=0$

Find for $q \rightarrow \infty$

$$
[O(x, t) O(x)]_{\mathrm{av}}= \begin{cases}1 & t=0 \\ 0 & t>0\end{cases}
$$

Relaxation of local observables

Local operator in q-state Hilbert space at site: $O(x)$ with $\operatorname{Tr} O(x)=0$ and $O(x)^{2}=\mathbb{1}_{q}$.

Define

$$
O(x, t)=W(t) O(x) W^{\dagger}(t) \quad[\ldots]_{\mathrm{av}} \equiv q^{-L} \operatorname{Tr} \ldots
$$

Want $\quad[O(x, t) O(x)]_{\text {av }}$
Expect $\lim _{t \rightarrow \infty}[O(x, t) O(x)]_{\mathrm{av}} \sim[O(x, t)]_{\mathrm{av}}[O(x)]_{\mathrm{av}}=0$
Short times and finite $q: \quad[O(x, t) O(x)]_{\mathrm{av}}= \begin{cases}1 & t=0 \\ 0 & t=1 \\ q^{-7} & t=2 \\ 16 q^{-11} & t=3\end{cases}$

Out-of-time-order correlator

Find for $q \rightarrow \infty$

$$
[O(y, t) O(x) O(y, t) O(x)]_{\mathrm{av}}= \begin{cases}1 & |t|<|x-y| / 2 \\ 0 & |t| \geq|x-y| / 2\end{cases}
$$

Butterfly velocity $v=2$

Entanglement growth in Floquet model

Initial state $|\psi\rangle$ - product state in site basis
Reduced density matrix $\rho_{A}(t)=\operatorname{Tr}_{B} W(t)|\psi\rangle\langle\psi| W^{\dagger}(t)$
Réyni entropies $e^{-(\alpha-1) S_{\alpha}(t)}=\operatorname{Tr}_{A}\left[\rho_{A}(t)^{\alpha}\right]$

Entanglement growth in Floquet model

Initial state $|\psi\rangle$ - product state in site basis
Reduced density matrix $\rho_{A}(t)=\operatorname{Tr}_{B} W(t)|\psi\rangle\langle\psi| W^{\dagger}(t)$
Réyni entropies $e^{-(\alpha-1) S_{\alpha}(t)}=\operatorname{Tr}_{A}\left[\rho_{A}(t)^{\alpha}\right]$
with $\alpha=2$ or 3 and q large
Find $\quad\left\langle e^{-(\alpha-1) S_{\alpha}(t)}\right\rangle= \begin{cases}f_{\alpha}(t) q^{-2(\alpha-1) t} & t \leq L / 4 \\ K_{\alpha} q^{-(\alpha-1) L / 2} & t>L / 4\end{cases}$

Entanglement growth in Floquet model

Initial state $|\psi\rangle$ - product state in site basis
Reduced density matrix $\rho_{A}(t)=\operatorname{Tr}_{B} W(t)|\psi\rangle\langle\psi| W^{\dagger}(t)$
Réyni entropies $e^{-(\alpha-1) S_{\alpha}(t)}=\operatorname{Tr}_{A}\left[\rho_{A}(t)^{\alpha}\right]$
with $\alpha=2$ or 3 and q large

$$
\left\langle e^{-(\alpha-1) S_{\alpha}(t)}\right\rangle= \begin{cases}f_{\alpha}(t) q^{-2(\alpha-1) t} & t \leq L / 4 \\ K_{\alpha} q^{-(\alpha-1) L / 2} & t>L / 4\end{cases}
$$

Interpretation:
Entanglement at time t has range $2 t$
$\Rightarrow \rho_{A}(t)$ has $q^{2 t}$ non-zero eigenvalues, each $\mathcal{O}\left(q^{-2 t}\right)$
Entanglement spreads at speed $v=2$

Entanglement growth after quench in integrable systems

- from quasiparticle dynamics

Entanglement growth in quantum circuits

What is lost in $q \rightarrow \infty$ limit?

What is lost in $q \rightarrow \infty$ limit?

OTOC: Front is sharp, not diffuse

What is lost in $q \rightarrow \infty$ limit?

OTOC: Front is sharp, not diffuse

Velocities: 'Naive' value for all speeds (butterfly, entanglement spreading ...)

Spectral form factor

Evolution operator $W(t)$ with eigenvalues $\left\{e^{i \theta_{n}}\right\}$

$$
\text { Spectral form factor } K(t)=\sum_{m, n} e^{i\left(\theta_{m}-\theta_{n}\right) t}
$$

Large $q \Rightarrow$ random matrix behaviour in Floquet model

$$
K(t)=t \quad \text { for } 0<t \ll q^{L}
$$

Spectral form factor

Evolution operator $W(t)$ with eigenvalues $\left\{e^{i \theta_{n}}\right\}$
Spectral form factor $K(t)=\sum_{m, n} e^{i\left(\theta_{m}-\theta_{n}\right) t}$

Large $q \Rightarrow$ random matrix behaviour in Floquet model

$$
K(t)=t \quad \text { for } 0<t \ll q^{L}
$$

- consequence of coupling

Without W_{2} find instead

$$
K(t)=t^{L / 2}
$$

Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths (diagonal approximation \sim diffusons)

Spectral form factor

$$
K(t)=\left\langle\sum_{n m} e^{i\left(\theta_{n}-\theta_{m}\right) t}\right\rangle=\left\langle\operatorname{Tr}[W(t)] \operatorname{Tr}\left[W^{\dagger}(t)\right]\right\rangle
$$

$$
\operatorname{Tr}[W(t)] \equiv \sum_{a_{1} \ldots a_{t}} W_{a_{1} a_{2}} W_{a_{2} a_{3}} \ldots W_{a_{t} a_{1}}
$$

Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths (diagonal approximation \sim diffusons)

Spectral form factor
$K(t)=\left\langle\sum_{n m} e^{i\left(\theta_{n}-\theta_{m}\right) t}\right\rangle=\left\langle\operatorname{Tr}[W(t)] \operatorname{Tr}\left[W^{\dagger}(t)\right]\right\rangle$

$$
\begin{aligned}
& \operatorname{Tr}[W(t)] \equiv \sum_{a_{1} \ldots a_{t}} W_{a_{1} a_{2}} W_{a_{2} a_{3}} \ldots W_{a_{t a_{1}}} \\
& \operatorname{Tr}\left[W^{\dagger}(t)\right] \equiv \sum_{b_{1} \ldots b_{t}} W_{b_{1} b_{2}}^{\dagger} W_{b_{2} b_{3}}^{\dagger} \ldots W_{b_{t} b_{1}}^{\dagger}
\end{aligned}
$$

Constructive interference if path $b_{1} b_{2} \ldots b_{t}$ though Fock space is reversed copy of path $a_{1} a_{2} \ldots a_{t}$

Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths (diagonal approximation \sim diffusons)

Spectral form factor
$K(t)=\left\langle\sum_{n m} e^{i\left(\theta_{n}-\theta_{m}\right) t}\right\rangle=\left\langle\operatorname{Tr}[W(t)] \operatorname{Tr}\left[W^{\dagger}(t)\right]\right\rangle$

Pictorially:

t possible pairings

New possibilities in many-body systems?

Spatial domains with distinct pairings between time-reversed paths

space

New possibilities in many-body systems?

Spatial domains with distinct pairings between time-reversed paths

Equivalence to t-state Potts model:
t pairings in each domain
\& statistical cost for domain walls

Model of weakly-coupled chaotic grains

L-site lattice of q-state 'spins'
Floquet operator $W \equiv W_{2} \cdot W_{1}$ is $q^{L} \times q^{L}$ unitary matrix

Model of weakly-coupled chaotic grains

L-site lattice of q-state 'spins'
Floquet operator $W \equiv W_{2} \cdot W_{1}$ is $q^{L} \times q^{L}$ unitary matrix

Each $q \times q$ unitary U_{n} independently Haar-distributed $W_{1}=U_{1} \otimes U_{2} \otimes \ldots \otimes U_{L}$

Model of weakly-coupled chaotic grains

L-site lattice of q-state 'spins'
Floquet operator $W \equiv W_{2} \cdot W_{1}$ is $q^{L} \times q^{L}$ unitary matrix

Each $q \times q$ unitary U_{n} independently Haar-distributed $W_{1}=U_{1} \otimes U_{2} \otimes \ldots \otimes U_{L}$
W_{2} diagonal in site basis $\left|a_{1}, a_{2}, \ldots a_{L}\right\rangle$ with phase $\sum_{n=1}^{L} \varphi_{a_{n}, a_{n+1}}$
$\left\{\varphi_{a_{n}, a_{n+1}}\right\}$ indept Gaussian random variables, zero mean

$$
\text { Coupling strength }\left\langle\left[\varphi_{a_{n}, a_{n+1}}\right]^{2}\right\rangle \equiv \varepsilon
$$

Many-body 'Thouless time’

Small $t \Rightarrow L$ uncoupled sites $\Rightarrow K(t)=t^{L}$
Large $t \Rightarrow$ all sites coupled $\Rightarrow K(t)=t$

Many-body 'Thouless time’

Small $t \Rightarrow L$ uncoupled sites $\Rightarrow K(t)=t^{L}$
Large $t \Rightarrow$ all sites coupled $\Rightarrow K(t)=t$
Exact mapping to t-state Potts ferromagnet
Potts coupling $\beta J \equiv \varepsilon t \quad \Rightarrow \quad K(t)=Z_{\text {Potts }}$

Many-body 'Thouless time’

Small $t \Rightarrow L$ uncoupled sites $\Rightarrow K(t)=t^{L}$
Large $t \Rightarrow$ all sites coupled $\Rightarrow K(t)=t$
Exact mapping to t-state Potts ferromagnet
Potts coupling $\beta J \equiv \varepsilon t \quad \Rightarrow \quad K(t)=Z_{\text {Potts }}$

$K(t)$ vs t for $q \rightarrow \infty$

Many-body 'Thouless time’

Small $t \Rightarrow L$ uncoupled sites $\Rightarrow K(t)=t^{L}$
Large $t \Rightarrow$ all sites coupled $\Rightarrow K(t)=t$
Exact mapping to t-state Potts ferromagnet
Potts coupling $\beta J \equiv \varepsilon t \quad \Rightarrow \quad K(t)=Z_{\text {Potts }}$

$K(t)$ vs t for $q \rightarrow \infty$

$\mathrm{K}(\mathrm{t})$ vs t for $q=3, L=4-10$

Summary

Floquet models at large q give solvable ergodic phase
Systematic calculations for $q \rightarrow \infty$
Rapid local relaxation
Light cone in OTOC
Ballistic growth of entanglement

Many-body Thouless time
Crossover between uncoupled sites and single RMT behaviour

Calculation of entanglement in Floquet model

Calculation of entanglement in Floquet model

Consider $\operatorname{Tr}_{A}\left[\rho_{A}(t)\right]^{2}$ with $\rho_{A}=\operatorname{Tr}_{B}\left[W(t)|\psi\rangle\langle\psi| W^{\dagger}(t)\right]$

$$
W(t)|\psi\rangle
$$

Calculation of entanglement in Floquet model

Consider $\operatorname{Tr}_{A}\left[\rho_{A}(t)\right]^{2}$ with $\rho_{A}=\operatorname{Tr}_{B}\left[W(t)|\psi\rangle\langle\psi| W^{\dagger}(t)\right]$

$$
\rho_{A}(t)
$$

Calculation of entanglement in Floquet model

Consider $\operatorname{Tr}_{A}\left[\rho_{A}(t)\right]^{2}$ with $\rho_{A}=\operatorname{Tr}_{B}\left[W(t)|\psi\rangle\langle\psi| W^{\dagger}(t)\right]$

$\operatorname{Tr}\left[\rho_{A}(t)\right]^{2}$

Calculation of entanglement in Floquet model

Consider $\operatorname{Tr}_{A}\left[\rho_{A}(t)\right]^{2}$ with $\rho_{A}=\operatorname{Tr}_{B}\left[W(t)|\psi\rangle\langle\psi| W^{\dagger}(t)\right]$

Alternatively draw as

Calculation of entanglement in Floquet model

Consider $\operatorname{Tr}_{A}\left[\rho_{A}(t)\right]^{2}$ with $\rho_{A}=\operatorname{Tr}_{B}\left[W(t)|\psi\rangle\langle\psi| W^{\dagger}(t)\right]$

Represent contributions after averaging via domains for different pairings

Calculation of entanglement in Floquet model

Consider $\operatorname{Tr}_{A}\left[\rho_{A}(t)\right]^{2}$ with $\rho_{A}=\operatorname{Tr}_{B}\left[W(t)|\psi\rangle\langle\psi| W^{\dagger}(t)\right]$

Represent contributions after averaging via domains for different pairings

$$
\operatorname{Tr}_{A}\left[\rho_{A}(t)\right]^{2}=4^{t} q^{-2 t}
$$

4^{t} no. of directed paths of length t
q^{-2} statistical cost of path per step

Summary

Floquet models at large q give solvable ergodic phase
Systematic calculations for $q \rightarrow \infty$
Rapid local relaxation
Light cone in OTOC
Ballistic growth of entanglement

Many-body Thouless time
Crossover between uncoupled sites and single RMT behaviour

Essentials of calculation: avges of unitary matrices

Floquet operator W is $q^{L} \times q^{L}$ unitary matrix

Each $q^{2} \times q^{2}$ unitary $U_{n, n+1}$ independently Haar-distributed
Need

$$
\left\langle[U]_{a_{1}, b_{1}} \ldots[U]_{a_{t}, b_{t}} \times\left[U^{\dagger}\right]_{\alpha_{1}, \beta_{1}} \ldots\left[U^{\dagger}\right]_{\alpha_{t}, \beta_{t}}\right\rangle=V_{P, P^{\prime}} \prod_{j=1}^{t} \delta_{\left.a_{j}, \alpha_{P()}\right)} \delta_{b_{j}, \beta_{P^{\prime}(i)}}
$$

Essentials of calculation: avges of unitary matrices

Floquet operator W is $q^{L} \times q^{L}$ unitary matrix

Each $q^{2} \times q^{2}$ unitary $U_{n, n+1}$ independently Haar-distributed
Need

$$
\left\langle[U]_{a_{1}, b_{1}} \ldots[U]_{a_{t}, b_{t}} \times\left[U^{\dagger}\right]_{\alpha_{1}, \beta_{1}} \ldots\left[U^{\dagger}\right]_{\alpha_{t}, \beta_{t}}\right\rangle=V_{P, P^{\prime}} \prod_{j=1}^{t} \delta_{a_{j}, \alpha_{P(j)}} \delta_{b_{j}, \beta_{P^{\prime}(j)}}
$$

Large $q: P=P^{\prime}$ dominates
($[U]_{a b}$ almost independent Gaussian variables)

Calculating $K(t)$ in Floquet model at $q \rightarrow \infty$

$K(t)=\left\langle[\operatorname{Tr} W(t)] \cdot\left[\operatorname{Tr} W^{\dagger}(t)\right]\right\rangle \quad$ notation: $W(t) \equiv[W]^{t}$

Avge on W_{1}

Need

$$
\left\langle\left[U_{n}\right]_{a_{1}, a_{2}}\left[U_{n}\right]_{a_{2}, a_{3}} \ldots\left[U_{n}\right]_{a_{t}, a_{1}} \times\left[U_{n}^{\dagger}\right]_{b_{1}, b_{2}} \ldots\left[U_{n}^{\dagger}\right]_{b_{t}, b_{1}}\right\rangle
$$

Calculating $K(t)$ in Floquet model at $q \rightarrow \infty$

$K(t)=\left\langle[\operatorname{Tr} W(t)] \cdot\left[\operatorname{Tr} W^{\dagger}(t)\right]\right\rangle \quad$ notation: $W(t) \equiv[W]^{t}$

Avge on W_{1}

Need

$$
\left\langle\left[U_{n}\right]_{a_{1}, a_{2}}\left[U_{n}\right]_{a_{2}, a_{3}} \ldots\left[U_{n}\right]_{a_{t}, a_{1}} \times\left[U_{n}^{\dagger}\right]_{b_{1}, b_{2}} \ldots\left[U_{n}^{\dagger}\right]_{b_{t}, b_{1}}\right\rangle
$$

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)
Leading terms for large q :

$$
b_{r}=a_{r+s} \text { for } r, r+s=1 \ldots t \bmod t
$$

t contributions of this form, for $s=1 \ldots t$

Calculating $K(t)$ in Floquet model at $q \rightarrow \infty$

$K(t)=\left\langle[\operatorname{Tr} W(t)] \cdot\left[\operatorname{Tr} W^{\dagger}(t)\right]\right\rangle \quad$ notation: $W(t) \equiv[W]^{t}$

Avge on W_{1}

Need

$$
\left\langle\left[U_{n}\right]_{a_{1}, a_{2}}\left[U_{n}\right]_{a_{2}, a_{3}} \ldots\left[U_{n}\right]_{a_{t}, a_{1}} \times\left[U_{n}^{\dagger}\right]_{b_{1}, b_{2}} \ldots\left[U_{n}^{\dagger}\right]_{b_{t}, b_{1}}\right\rangle
$$

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)

Leading terms for large q :

$$
b_{r}=a_{r+s} \text { for } r, r+s=1 \ldots t \bmod t
$$

t contributions of this form, for $s=1 \ldots t$

Many sites: contributions labelled by s_{n} at each site n

Calculating $K(t)$ in Floquet model at $q \rightarrow \infty$

$K(t)=\left\langle[\operatorname{Tr} W(t)] \cdot\left[\operatorname{Tr} W^{\dagger}(t)\right]\right\rangle \quad$ notation: $W(t) \equiv[W]^{t}$

Avge on W_{1}

Need

$$
\left\langle\left[U_{n}\right]_{a_{1}, a_{2}}\left[U_{n}\right]_{a_{2}, a_{3}} \ldots\left[U_{n}\right]_{a_{t}, a_{1}} \times\left[U_{n}^{\dagger}\right]_{b_{1}, b_{2}} \ldots\left[U_{n}^{\dagger}\right]_{b_{t}, b_{1}}\right\rangle
$$

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)
Leading terms for large q :

$$
b_{r}=a_{r+s} \text { for } r, r+s=1 \ldots t \bmod t
$$

t contributions of this form, for $s=1 \ldots t$

Many sites: contributions labelled by s_{n} at each site n

Avge on W_{2} gives factors $\begin{cases}1 & s_{n}=s_{n+1} \\ e^{-\varepsilon t} & s_{n} \neq s_{n+1}\end{cases}$

Calculating $K(t)$ in Floquet model at $q \rightarrow \infty$

$K(t)=\left\langle[\operatorname{Tr} W(t)] \cdot\left[\operatorname{Tr} W^{\dagger}(t)\right]\right\rangle \quad$ notation: $W(t) \equiv[W]^{t}$

Avge on W_{1}

Need

$$
\left\langle\left[U_{n}\right]_{a_{1}, a_{2}}\left[U_{n}\right]_{a_{2}, a_{3}} \ldots\left[U_{n}\right]_{a_{t}, a_{1}} \times\left[U_{n}^{\dagger}\right]_{b_{1}, b_{2}} \ldots\left[U_{n}^{\dagger}\right]_{b_{t}, b_{1}}\right\rangle
$$

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)
Leading terms for large q :

$$
b_{r}=a_{r+s} \text { for } r, r+s=1 \ldots t \bmod t
$$

t contributions of this form, for $s=1 \ldots t$

Many sites: contributions labelled by s_{n} at each site n

Avge on W_{2} gives factors $\begin{cases}1 & s_{n}=s_{n+1} \\ e^{-\varepsilon t} & s_{n} \neq s_{n+1}\end{cases}$

