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Studies of ‘generic’ quantum systems

Nuclear physics

Low-D systems

Mesoscopic conductors

Spatially extended
many-body systems



Characterising spectra

Evolution operator W (t), eigenvalues e iθnt

Spectral form factor K (t) =
〈∑

nm e i(θn−θm)t
〉
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Characterising spectra

Evolution operator W (t), eigenvalues e iθnt

Spectral form factor K (t) =
〈∑

nm e i(θn−θm)t
〉

Mesoscopic conductor: Thouless time
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Characterising dynamics

Hydrodynamics & conserved densities

Dynamics of quantum information x
=
v
t

x

t

Equilibration under unitary dynamics



Speed limits without relativity

Lieb-Robinson bound (1972)

Max propagation speed v for disturbances in short-range lattice models

For local observables at x and y

[O(y , t),O(x)]

small outside lightcone

t

x

y

|x
−
y
|=

v
t

Out-of-time-order correlator (OTOC)

C (x , y ; t) ≡ [O(y , t)O(x)O(y , t)O(x)]av

E.g. with TrO(x) = 0
and O(x)2 = 1
& likewise for O(y)

C(x,y;t)

t

t=v|x−y|
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Entanglement dynamics

Quantifying ‘equilibration’ under unitary dynamics

Density matrix ρ(t) = |Ψ(t)〉〈Ψ(t)| for full system

— pure state preserved under time evolution

Reduced density matrix ρA(t) = TrBρ(t)

BA

Entropy of sub-system may grow with time & saturate at long times
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Aim: solvable models for ergodic phase

Simple physics: Eliminate conserved densities ⇒ time-dept evolution operator

Simple solution: Random matrices & spatial structure

Inspiration: Random unitary circuits
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Nahum, Vijay and Haah, PRX (2018)
von Keyserlingk et al, PRX (2018)
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Aim: solvable models for ergodic phase

Simple physics: Fixed evolution operator w/o conserved densities ⇒ Floquet

Simple solution: Random matrices & spatial structure

Minimal model

L-site lattice of q-state ‘spins’

Floquet operator W is qL × qL unitary matrix

t=0

t=1

n+1nn−1

W

W

1

2 U
n,n+1

Each q2 × q2 unitary Un,n+1 independently Haar-distributed

Solve for q →∞
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Behaviour of Floquet model

Is behaviour consistent with ergodic phase?

Relaxation of local observables

Dynamics of quantum information?

Out-of-time-order correlator

Entanglement growth

Spectral correlations?

‘Thouless time’ in many-body system



Relaxation of local observables

Local operator in q-state Hilbert space at site: O(x)

with TrO(x) = 0 and O(x)2 = 1q.

Define

O(x , t) = W (t)O(x)W †(t) [. . .]av ≡ q−LTr . . .

Want [O(x , t)O(x)]av

Expect limt→∞[O(x , t)O(x)]av ∼ [O(x , t)]av[O(x)]av = 0

Find for q →∞ [O(x , t)O(x)]av =

{
1 t = 0
0 t > 0
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Relaxation of local observables

Local operator in q-state Hilbert space at site: O(x)

with TrO(x) = 0 and O(x)2 = 1q.

Define

O(x , t) = W (t)O(x)W †(t) [. . .]av ≡ q−LTr . . .

Want [O(x , t)O(x)]av

Expect limt→∞[O(x , t)O(x)]av ∼ [O(x , t)]av[O(x)]av = 0

Short times and finite q: [O(x , t)O(x)]av =


1 t = 0
0 t = 1
q−7 t = 2
16q−11 t = 3



Out-of-time-order correlator

Find for q →∞

[O(y , t)O(x)O(y , t)O(x)]av =


1 |t| < |x − y |/2

0 |t| ≥ |x − y |/2

Butterfly velocity v = 2



Entanglement growth in Floquet model

Initial state |ψ〉 – product state in site basis

Reduced density matrix ρA(t) = TrBW (t)|ψ〉〈ψ|W †(t)

Réyni entropies e−(α−1)Sα(t) = TrA[ρA(t)α]

with α = 2 or 3 and q large

Find 〈e−(α−1)Sα(t)〉 =


fα(t)q−2(α−1)t t ≤ L/4

Kαq
−(α−1)L/2 t > L/4

Interpretation:

Entanglement at time t has range 2t
⇒ ρA(t) has q2t non-zero eigenvalues, each O(q−2t)

Entanglement spreads at speed v = 2
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Réyni entropies e−(α−1)Sα(t) = TrA[ρA(t)α]

with α = 2 or 3 and q large

Find 〈e−(α−1)Sα(t)〉 =


fα(t)q−2(α−1)t t ≤ L/4

Kαq
−(α−1)L/2 t > L/4

Interpretation:

Entanglement at time t has range 2t
⇒ ρA(t) has q2t non-zero eigenvalues, each O(q−2t)

Entanglement spreads at speed v = 2



Entanglement growth in Floquet model

Initial state |ψ〉 – product state in site basis

Reduced density matrix ρA(t) = TrBW (t)|ψ〉〈ψ|W †(t)
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Entanglement growth after quench in integrable
systems

— from quasiparticle dynamics
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Entanglement growth in quantum circuits
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What is lost in q →∞ limit?

OTOC: Front is sharp, not diffuse

t

expected at finite q

C(x,y;t)

large q limit

Velocities: ‘Naive’ value for all speeds
(butterfly, entanglement spreading . . .)
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Spectral form factor

Evolution operator W (t) with eigenvalues {e iθn}

Spectral form factor K (t) =
∑

m,n e
i(θm−θn)t

Large q ⇒ random matrix behaviour in Floquet model

K (t) = t for 0 < t � qL

— consequence of coupling

W

t=0

t=1

W1

2

Without W2 find instead

K (t) = tL/2
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Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths
(diagonal approximation ∼ diffusons)

Spectral form factor

K (t) =
〈∑

nm e i(θn−θm)t
〉

=
〈
Tr[W (t)]Tr[W †(t)]

〉
Tr[W (t)] ≡

∑
a1...at

Wa1a2Wa2a3 . . .Wata1

3
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Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths
(diagonal approximation ∼ diffusons)

Spectral form factor

K (t) =
〈∑

nm e i(θn−θm)t
〉

=
〈
Tr[W (t)]Tr[W †(t)]

〉
Tr[W (t)] ≡

∑
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Tr[W †(t)] ≡
∑

b1...bt
W †b1b2W

†
b2b3

. . .W †btb1

Constructive interference if path b1b2 . . . bt though Fock space
is reversed copy of path a1a2 . . . at



Origin of RMT behaviour?
Constructive interference of diagonal terms in double sum on paths

(diagonal approximation ∼ diffusons)

Spectral form factor

K (t) =
〈∑

nm e i(θn−θm)t
〉

=
〈
Tr[W (t)]Tr[W †(t)]

〉
Pictorially:

t possible pairings



New possibilities in many-body systems?

Spatial domains with distinct pairings between time-reversed paths
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pairing Bpairing A

Equivalence to t-state Potts model:

t pairings in each domain

& statistical cost for domain walls
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Model of weakly-coupled chaotic grains

L-site lattice of q-state ‘spins’

Floquet operator W ≡W2 ·W1 is qL × qL unitary matrix

n−1 n+1

W
1

W
2

t=1

n

t=0

Un

Each q × q unitary Un independently Haar-distributed

W1 = U1 ⊗ U2 ⊗ . . .⊗ UL

W2 diagonal in site basis |a1, a2, . . . aL〉 with phase
∑L

n=1 ϕan,an+1

{ϕan,an+1} indept Gaussian random variables, zero mean

Coupling strength 〈[ϕan,an+1 ]2〉 ≡ ε
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Many-body ‘Thouless time’

Small t ⇒ L uncoupled sites ⇒ K (t) = tL

Large t ⇒ all sites coupled ⇒ K (t) = t

Exact mapping to t-state Potts ferromagnet

Potts coupling βJ ≡ εt ⇒ K (t) = ZPotts
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Summary

Floquet models at large q give solvable ergodic phase

Systematic calculations for q →∞
Rapid local relaxation

Light cone in OTOC

Ballistic growth of entanglement

Many-body Thouless time

Crossover between uncoupled sites and single RMT behaviour



Calculation of entanglement in Floquet model

Consider TrA[ρA(t)]2 with ρA = TrB [W (t)|ψ〉〈ψ|W †(t)]
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Calculation of entanglement in Floquet model

Consider TrA[ρA(t)]2 with ρA = TrB [W (t)|ψ〉〈ψ|W †(t)]

Represent contributions after averaging

via domains for different pairings

BA
TrA[ρA(t)]2 = 4tq−2t

4t no. of directed paths of length t

q−2 statistical cost of path per step
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Floquet models at large q give solvable ergodic phase

Systematic calculations for q →∞
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Many-body Thouless time
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Essentials of calculation: avges of unitary matrices

Floquet operator W is qL × qL unitary matrix

t=0

t=1

n+1nn−1

W

W

1

2 U
n,n+1

Each q2 × q2 unitary Un,n+1 independently Haar-distributed

Need

〈[U]a1,b1 . . . [U]at ,bt × [U†]α1,β1 . . . [U
†]αt ,βt 〉 = VP,P′

t∏
j=1

δaj ,αP(j)
δbj ,βP′(j)

Large q: P = P ′ dominates

([U]ab almost independent Gaussian variables)

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)
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Calculating K (t) in Floquet model at q →∞

K (t) = 〈[TrW (t)] · [TrW †(t)]〉 notation: W (t) ≡ [W ]t

Avge on W1

n−1 n+1

W
1

W
2

t=1

n

t=0

Un

Need 〈[Un]a1,a2 [Un]a2,a3 . . . [Un]at ,a1 × [U†n]b1,b2 . . . [U
†
n]bt ,b1〉

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)

Leading terms for large q:

br = ar+s for r , r + s = 1 . . . t mod t

t contributions of this form, for s = 1 . . . t

Many sites: contributions

labelled by sn at each site n

Avge on W2 gives factors

{
1 sn = sn+1

e−εt sn 6= sn+1
t-state Potts model
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