Quantum Theory of Condensed Matter: Problem Set 2

Qu.1 In this question you are invited to demonstrate your understanding of Landau theory
for Fermi liquids by deriving the relation (which follows from Galilean invariance)
m* Iy

—14 L
m +3

between the bare mass, m, the effective mass, m*, and the Landau parameter, F}.

First, recall some definitions. Quasiparticle states are labelled by their momentum p and
spin 0. Let dnp, be the change in quasiparticle occupation of the state p, o relative to its
occupation number in the ground state. The Landau expansion for the resulting change
0F in free energy is
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The effective mass is defined by p/m* = de(p)/dp at p = pp, the Fermi momentum. The
Landau parameters are separated into spin-symmetric and antisymmetric parts according
to
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(where momentum labels have been suppressed). They are also separated into spherical
harmonics according to

a = 2_ Jili(cos(0))

(where spin labels have been suppressed), in which p - q = p% cos(#) and P,(cos(f)) is the
[th Legendre polynomial. Finally, they are expressed in dimensionless form by

(in which both spin and momentum labels have been suppressed), where v is the density
of states in energy at the Fermi surface.

Now consider the energy change that results when the system is set in uniform motion with
a momentum per particle of magnitude p, for p < pr. On elementary grounds, for a system

of N particles this is
o
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Use the Landau expansion to calculate the same quantity.

(i) Show that the change in quasiparticle number (induced when the system is set in motion)
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where 6 is the angle between p and the direction of the uniform motion, and the integral
is over momenta in the radial direction.

(ii) Show that the resulting change in energy is
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and that v = 3Nm*/p%. Hence derive the relation given between m, m* and FJ.

Qu.2 The BCS Hamiltonian is

/
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where ¢} and ¢, denote fermion creation and annihilation operators for states labelled by
wavevector, k, and spin, ¢ =1, ]. The second summation, Z;aq’ is restricted to wavevectors
k,q of states lying within the Debye energy, hwp, of the chemical potential, p: |e(k) —
|, le(q) — p| < hwp. The BCS wavefunction is

|BC'S) = I, (uy, + UkCLTCim”O) ;

where |0) is the vacuum state and {uy, v;} are variational parameters, with |ug|*+ |vg|? = 1.
The number operator is
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(i) Calculate the mean particle number, (BC'S|N|BC'S), and its variance,
(BCS|N* BCS) — (BCS|N|BCS)?

in the BCS wavefunction.

(ii) Show that the free energy of the system in the BCS state is

IAF
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where
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(iii) By minimising this free energy with respect to the variational parameters, u and vy,
derive the zero-temperature gap equation
V< 1
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(iv) Show that, in the weak-coupling limit in which |A| < hwp, the gap equation has the
solution

|A| = 2hwp exp(—1/vV)
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where v is the density of states at the chemical potential.

Qu.3 A one-dimensional model for localisation, which is exactly solvable, is defined as
follows. The system consists of a chain of sites labelled by n. Waves propagate along this
chain in both directions. The amplitudes of the left- and right going probability currents
at the site n are given by the complex numbers w,, and z, respectively. Scattering of these
waves by disorder is represented in the model by a 2 x 2 transfer matrix, 7;, associated with
each link between successive sites, [ and [ 4+ 1. This transfer matrix can be written as

T (eio‘l 0 ) . (cosh(@) sinh(@)) _ (ezﬂl 0 )
L0 et sinh(6) cosh(f) 0 e

where the two phases, o; and f;, and backscattering strength, 6, are all real. The amplitudes
obey
(wn+1) _ Tn (wn) )
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(i) Verify that scattering is unitary, showing that the net current along the chain is conserved
by proving

W1 |* = [znsa[* = Jwal® = |2a]”
for any w,,, z,. Show also that, if w, = 2, then w,4; = 2, and obtain an expression in
this case for

(ii) Consider an ensemble of systems in which the scattering parameter, 6, is fixed, but
the phases, o; and f;, are random variables, independently chosen for each link from a
distribution uniform between 0 and 27. Denoting the ensemble average by (...), show that,
it w,, = 2z, then

o ([znia /20 = o [ dblog(e? co(9) + ¢~ sin?(6)) = 2 log(cosh(6))

(iii) Explain why this shows that states are localised in this model, with a localisation

length

1
&= log(cosh(6))

Qu.4 This question is about wavefunctions in the lowest Landau level. Let x and y be
the two position coordinates in the plane, and define the complex coordinate z = x + iy.
Take the magnetic length to be the unit of length. Then, ignoring spin, single-particle
basis functions in the lowest Landau level are 1,(z) = (2" 'wn!)~1/22" exp(—|z|?/4) with
n=0,1,2....

Consider the N-particle wavefunction

N
Wo(z1, 2, -, 2v) = N [ (21 = 25) exp(— Z‘ZH /4)

1<j
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where NV is a normalisation factor.
(i) Explain how this may be re-written as a Slater determinant.

(ii) The number density operator is p(z) = Sh_, (2 — 2;). Describe the behaviour of
(Wo|p(2)| W) as a function of z for N > 1.

(iii) Consider the N-particle wavefunction for a state with a quasi-hole at zy:
N
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where N is a further normalisation factor. Calculate (¥q]p(z)|¥;) in the limit N — oo
(consider zy = 0 first, and then use translational invariance).

(iv) Now introduce spin. A trial wavefunction for a system with a skyrmion of radius |\

at the origin is
(= 22 ZN
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(),

denotes a spinor for the [-th particle in the usual way. The spin density operator is

where

6(2’) = 5(21—2)51@12@1]\[
+ 5(22-2)11@52...®1N

-+ 5(2]\[—2)11@12@5:]\[

where 7; is the vector of Pauli matrices acting in the space of the I-th particle spinor, and
1; is the unit matrix acting in the same space. With the same notation, the number density
operator is now p(z) = S0 8(z — )11 ® ... @ 1y.

Calculate
(Wo|d(2)[P2)
(Wa|p(2)|¥2)

and discuss how your results match what you expect for the behaviour of spin polarisation
in the presence of a skyrmion.

Use the relation

1
log(|Wa(z1, ... 28 Zlog (Jz + [AP) + 2 log |z — 2| — 52 | 2%|* 4 constant
k

1<j

and Laughlin’s plasma analogy to discuss the behaviour of (Ws|p(2)|Ws).



