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1 Introduction

The aim of this course is to introduce reaction-diffusion systems. These are
non-equilibrium systems of diffusing classical particles, which undergo reac-
tions such as pairwise annihilation. The system is governed by a master equa-
tion, but this may be expressed equivalently as a many-body quantum Hamil-
tonian. This allows perturbative solutions to correlation functions, including
the mean number of particles in the system and density-density correlation
functions. We will see that these systems, although non-equilibrium sys-
tems, have much in common with equilibrium systems governed by Langevin
equations.

2 Brownian motion

As our first example of an equilibrium system, let us consider Brownian
motion, which describes the motion of a mesoscopic particle, such as a grain
of pollen, immersed in a bath of much smaller particles. We will work in
one dimension for simplicity and set the mass of the particle to 1. Newton’s
equation is

v̇ = −Γv + ξ(t) + Fext , (1)

in which v is the velocity of the particle, Γ is the strength of the Stokes
friction, ξ is a random stochastic term drawn from a distribution with zero
mean and Fext is an external force. This stochastic equation is an example of
a Langevin equation. We will examine more general Langevin type equations
later. Note that the friction term may also be written as the derivative of
the Hamiltonian, H.

−Γv = −Γ
∂

∂v
(H = v2/2) . (2)

The stochastic noise is characterised by its expectation values

〈ξ(t)〉 = 0 (3)

〈ξ(t)ξ(t′)〉 = f(t− t′) ∼ e−|t−t′|/τ , (4)

with τ the typical collision time, which is assumed short compared to all
other time scales in the problem. A small particle may collide with the
pollen, but will then have its velocity randomised by interactions with other
small particles. Hence, later collisions are essentially uncorrelated. Since we
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are interested in the behaviour on much longer time scales, we will take a
delta function form for the second moment of the noise

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′) . (5)

Note that ξ(t) is not a differentiable function, so the machinery of stochastic
calculus shoulde be used to interpret equation (1), but as we will always be
integrating ξ over small times, we will sidestep this technicality.

2.1 The Einstein relation

Let us take Fext = 0, then the system will come into thermal equilibrium
with the heat bath at temperature T . A result of the equipartition theorem
is 〈v2〉 = kBT , which may be used to derive a relation between Γ and D.
Starting from equation 1,

v(t+ δt) = (1 − Γδt)v(t) +

∫ t+δt

t

ξ(t′)dt′ +O(δt2) (6)

〈v(t+ δt)2〉 = (1 − 2Γδt)〈v(t)2〉 + 2

∫ t+δt

t

〈v(t)ξ(t′)〉dt′

+

∫ t+δt

t

∫ t+δt

t

〈ξ(t′)ξ(t′′)〉dt′dt′′ +O(δt2) . (7)

The expectation value 〈v(t)ξ(t′)〉 vanishes by causality, since the noise should
be independent of the velocity at an earlier time. We may then substitute in
equation (5) and use the equilibrium condition 〈v(t+ δt)2〉 = 〈v(t)2〉 = kBT
to find

kBT = (1 − 2Γδt)kBT + 2Dδt+O(δt2) . (8)

Equating terms of order δt yields the Einstein relation for systems in equi-
librium,

ΓkBT = D . (9)

2.2 Correlation function

We may also calculate the velocity two-point correlation function from equa-
tion 1. Let us continue to take Fext = 0. The Fourier transform is

−iωṽ(ω) = −Γṽ(ω) + ξ̃(ω) . (10)
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Hence

〈ṽ(ω)ṽ(ω′)〉 =
1

−iω + Γ

1

−iω′ + Γ
〈ξ̃(ω)ξ̃(ω′)〉 . (11)

The Fourier transform of equation 5 is

〈ξ̃(ω)ξ̃(ω′)〉 = 2Dδ(ω + ω′) . (12)

Substituting this result into equation 11

〈ṽ(ω)ṽ(ω′)〉 =
1

ω2 + Γ2
δ(ω + ω′) . (13)

We may Fourier transform back to time

〈v(t)v(t′)〉 =

∫ ∞

−∞

dω

2π

2De−iω(t−t′)

ω2 + Γ2
= kBTe

−Γ|t−t′| , (14)

which shows that the velocity fluctuations are correlated over the relaxation
time 1/Γ.

2.3 Response function

Let us add a term −f(t)v(t) to the energy, corresponding to a linear coupling
to the variable v(t) and examine how this affects the expectation value of v(t).
In ω space, equation 1 now takes the form

−iω〈ṽ(ω)〉 = −Γ〈ṽ(ω)〉 + Γf̃(ω) . (15)

Solving for 〈ṽ(ω)〉,

〈ṽ(ω)〉 =
f(ω)

−iω/Γ + 1
= G(ω)f(ω) . (16)

This defines the response function G(ω). In t space this is a convolution

〈v(t)〉 =

∫ ∞

−∞

G(t− t′)f(t′)dt′ . (17)

Hence this is equivalent to the definition in terms of the functional derivative
of 〈v(t)〉.

G(t− t′) =
δ〈v(t)〉

δf(t′)

∣

∣

∣

f=0
. (18)

For Brownian motion, therefore, the correlation and response functions are
related by

C(ω) =
2kBT

ω
Im[G(ω)] . (19)

This is an example of the fluctuation-dissipation relation (FDT). We will
derive the FDT for a more general Langevin equation in the next section.
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3 More general Langevin equations

We have examined Brownian motion as an example of a stochastic process
governed by a Langevin equation. We will now derive the correlation and
response functions for a more general stochastic process with a single degree
of freedom, labelled φ(t). The Langevin equation takes the form

d

dt
φ(t) = −Γ

∂H(φ(t))

∂φ(t)
+ ξ(t) , (20)

where ξ(t) is again a random term with zero time average and two-point
correlation function

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′) . (21)

Equation 20 is equivalent to

φ(t+ δt) = φ(t) − Γ
∂H(φ(t))

∂φ(t)
δt+

∫ t+δt

t

ξ(t′)dt′ . (22)

Assuming that the system will relax to equilibrium in the presence of the
noise, take the square of the above equation and average with respect to the
Gibbs measure e−H(φ)/kBT to find

〈φ(t+ δt)2〉 − 〈φ(t)2〉 = −2Γ〈φ(t)
dH(φ(t))

dφ(t)
〉δt+ 2Dδt+O(δt2) . (23)

The term 〈φ(t)H ′(φ(t))〉 may be integrated by parts and shown to be equal
to kBT , so equating terms of order δt, again leads to the Einstein relation

D = ΓkBT . (24)

3.1 The response function formalism

Expectation values of quantities such as φ(t1)φ(t2) may be formally evaluated
using a functional integral

〈φ(t1)φ(t2)〉 = 〈

∫

φ(t1)φ(t2)δ[φ(t) = solution]Dφ(t)〉ξ(t) , (25)

where the delta function ensures that φ(t) is solution to the Langevin equa-
tion 20 and the average on the right hand side is now with respect to reali-
sations of the noise ξ(t). The delta function may be rewritten as

δ[φ(t) = solution] = δ[
d

dt
φ(t) + Γ

∂H(φ(t))

∂φ(t)
− ξ(t)] × Jacobian , (26)
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with the Jacobian equal to unity, as equation 20 is being interpreted as an Itô
stochastic equation, the Jacobian is the determinant of an upper triangular
matrix with 1 on the diagonal. The delta function may be expressed as a
functional integral.

δ[
d

dt
φ+ Γ

dH(φ)

dφ
− ξ] =

∫

e−
R

φ̃(t)[ d

dt
φ(t)+ΓH′(φ(t))−ξ(t)]dtDφ̃(t) . (27)

The integral is over the field φ̃(t), which is known as the response field. In
this form, the average over realisations of the noise may be taken using

〈e
R

φ̃(t)ξ(t)dt〉ξ = e
1

2

R R
dt′dt′′φ̃(t′)φ̃(t′′)〈ξ(t′)ξ(t′′)〉 = eD

R
φ̃(t)2dt . (28)

Putting all this together, correlation functions, such as those in equation 25,
may be expressed as

〈φ(t1)φ(t2)〉 =

∫ ∫

φ(t1)φ(t2)e
−S[φ̃(t),φ(t)]DφDφ̃ , (29)

where the effective action, S, is

S =

∫

[

φ̃(t)[
d

dt
φ(t) + ΓH ′(φ(t))] −Dφ̃(t)2

]

dt . (30)

This is the response function formalism. Response functions may be obtained
in this formalism by adding a linear coupling to φ in the Hamiltonian, H →
H − f(t)φ(t). Then S → S − Γ

∫

f(t)φ̃(t)dt and

〈φ(t1)〉 =

∫ ∫

e−S[φ(t),φ̃(t)]+Γ
R

f(t)φ̃(t)dtDφ(t)Dφ̃(t) . (31)

From the derivative of this equation follows the response function.

G(t2 − t1) =
∂〈φ(t1)〉

∂f(t2)

∣

∣

∣

f=0

= Γ

∫ ∫

φ(t1)φ̃(t2)e
−S[φ(t),φ̃(t)]Dφ(t)Dφ̃(t) . (32)

Alternatively completing the square in φ̃(t) in equation 31 and shifting inte-
gration variables φ̃(t) → φ̃(t) + Γf(t)/2D, the response function is

G(t1 − t2) =
−Γ

2D
〈φ(t1)[

d

dt
φ(t2) + ΓH ′(φ(t2)]〉

=
Γ

2D
Ċ(t1 − t2) −

Γ2

2D
〈φ(t1)H

′(φ(t2))〉 . (33)
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Let us consider the symmetries of the above equation under time reversal.
The response function is zero for t1 < t2 by causality. The derivative of
the correlation function is odd with respect to time. The term involving
the Hamiltonian is even under exchange of the times t1 and t2, since the
equilibrium average is time reversal invariant. We therefore conclude that
for t1 > t2

G(t1 − t2) =
Γ

D
Ċ(t1 − t2) = kBTĊ(t1 − t2) . (34)

This is the fluctuation-dissipation relation again. In Fourier space, the FDT
takes the form

C̃(ω) =
2kBT

ω
Im[G̃(ω)] . (35)

3.2 The master equation

The master equation is a first order linear equation expressing the rate at
which a system moves between states labelled by {α}. At time t, let the
system be in state α with probability P (α, t) and consider the time derivative
of P (α, t). The change in P is due to transitions into and out of the state
α. We will denote the rates of these processes by Rα→β. Then the master
equation is

dP (α, t)

dt
=

∑

β

Rβ→αP (β, t) −Rα→βP (α, t)

≡ −
∑

β

HαβP (β, t) . (36)

The conservation of probability requires that

0 =
d

dt

∑

α

P (α) =
∑

β,α

Rβ→αP (β, t) −Rα→βP (α, t) . (37)

In terms of Hαβ, this is
∑

α

Hαβ = 0 , (38)

so H has a zero eigenvalue.
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3.3 Detailed balance

The equilibrium distribution P (α) ∝ e−H(α)/kBT is stationary so ∂tP = 0.
Therefore,

∑

β

Rβ→αP (β, t) −Rα→βP (α, t) = 0 . (39)

The system satisfies detailed balance if this relation is valid term by term, ie

Rβ→α

Rα→β

=
e−H(α)/kBT

e−H(β)/kBT
. (40)

This is the case for the Metropolis algorithm used in numerical simulations
of equilibrium systems. For this example,

H̃αβ = e+H(α)/kBTHαβe
−H(β)/kBT (41)

is symmetric (H̃αβ = H̃βα), so has real eigenvalues. For the non-equilibrium
particle systems we shall study, detailed balance is not valid.

4 Stochastic particle systems

We shall now turn our attention to non-equilibrium systems, in particular
reaction-diffusion problems. These are classical systems with particles lo-
calised in space. These particles may be molecules, biological entities, fluctu-
ating commodities in a market etc. There may be several species of particles
in a given model, which will be labelled A,B,C and which reside on a lattice
Zd, labelled by site labels {j}. They undergo diffusion with characteristic
diffusion constants DA, DB and react with rates λ, µ when inhabit the same
lattice site. An example of such a reaction is represented by the equation

A+B → C . (42)

The first example we shall consider contains a single particle species, A,
undergoing two particle annihilation, A + A → 0. The steady state is not
interesting; it is a single particle or zero particles, depending on whether the
initial state of the system has an odd or an even number of particles. The
interest in this model is the approach to the steady state. The starting point
is the master equation. The states of the system are defined by the number
of particles at each lattice site {nj} and the rates in the master equation are
related to the reaction rate λ.
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Although the system is a classical system, it may be re-expressed as a many-
body quantum problem. The machinery associated with quantum mechanics
then allows perturbative solutions to the correlation and response functions.
The Fock space is composed of a vacuum state with zero particles, along with
linear particle creation operators at each site a†j. A general state is

|{nj}〉 =
∏

j

a
†nj

j |0〉 . (43)

There are also particle annihilation operators, which are the Hermitian con-
jugates of the creation operators and remove particles at site j. The algebra
satisfied by the operators is

[aj, a
†
k] = δj,k (44)

[a†j, a
†
k] = [aj, ak] = 0 . (45)

Using this, it may be shown that the states are eigenstates of the particle
number operators {nj} = {a†jaj} with eigenvalue equal to the number of
particles at site j. We can associate a state in the Fock space with a set of
probabilities at time t

|ψ(t)〉 =
∞

∑

{nj}=(0,0...)

p({nj}, t)
∏

j

a
†nj

j |0〉 . (46)

With this definition, the master equation may be rewritten as a Schrodinger-
type equation

d

dt
|ψ(t)〉 = −H({a}, {a†})|ψ(t)〉 . (47)

Note that there are some differences from many-body quantum mechanics.
The Schrodinger equation is real, so this is like Euclidean quantum mechan-
ics. Our Hamiltonian is not (necessarily) hermitian. It may be shown that
Hamiltonians coming from systems which satisfy detailed balance may be
made symmetric and real by a similarity transformation. Also, the states are
linear functions of the probabilities, rather than linear functions of the prob-
ability amplitudes as in quantum mechanics. We will return to this when
we consider expectation values of observables, but first let us look at some
examples of master equations and derive the associated Hamiltonians.
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4.1 Particles hopping on a lattice

Consider a lattice consisting of two sites, 1 and 2. Particles hop from site 1
to site 2 only, with a rate D. The master equation is

dP (n1, n2, t)

dt
= D(n1 + 1)P (n1 + 1, n2 − 1, t) −Dn1P (n1, n2, t) . (48)

We may multiply the above equation by a†n1

1 a†n2

2 |0〉 and sum over all values
of n1, n2. With the definition of the state |ψ(t)〉

|ψ(t)〉 =
∑

n1,n2

p(n1, n2, t)a
†n1

1 a†n2

2 |0〉 , (49)

we may rewrite the equation obtained as

d|ψ(t)〉

dt
= D

∑

n1,n2

[

p(n1 +1, n2−1, t)(n1 +1)−p(n1, n2)n1

]

a†n1

1 a†n2

2 |0〉 . (50)

Subsituting the ladder operators for the number operators and using their
commutation relations, we obtain

d|ψ(t)〉

dt
= D

∑

n1,n2

p(n1 + 1, n2 − 1, t)a†2a1a
†n1+1
1 a†n2−1

2 |0〉

−D
∑

n1,n2

p(n1, n2, t)a
†
1a1a

†n1

1 a†n2

2 |0〉 . (51)

With a relabelling of indices in the first sum we have arrived at the desired
formula, of the form of equation 47, with

H = −D(a†2 − a†1)a1 . (52)

Had we also allowed hopping from site 2 to site 1 at the same rate, we would
have obtained

H = D(a†2 − a†1)(a2 − a1) . (53)

4.2 Two particle annihilation

As a second example, consider two particle annihilation A + A → 0 on a
single lattice site. The master equation is

dP (n)

dt
= λ(n+ 2)(n+ 1)P (n+ 2) − λn(n− 1)P (n) . (54)
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In terms of |ψ(t)〉, this is

d|ψ(t)〉

dt
= λ

∑

n

(n+ 2)(n+ 1)P (n+ 2, t)a†n|0〉 − λ
∑

n

n(n− 1)P (n, t)a†n|0〉

= λ
∑

n

P (n+ 2)a2a†n+2|0〉 − λ
∑

n

P (n)a† 2a2a†n|0〉 . (55)

Hence, we obtain a Schrodinger-type equation with

H = −λ(1 − a† 2)a2 . (56)

Combining the two equations above, we find the Hamiltonian for the lattice
annihilation model

H = D
∑

〈ij〉

(a†i − a†j)(ai − aj) − λ
∑

i

(1 − a† 2
i )a2

i , (57)

where the first sum is over pairs of nearest neighbour sites.

4.3 Averages of observables in the many-body formal-

ism

For a given master equation, we have shown how to derive a Schrodinger-
like equation for the evolution of the state of the system in the form of
equation 47. This may be integrated as usual to find

|ψ(t)〉 = e−Ht|ψ(0)〉 . (58)

A convenient choice for the initial probability distribution is an independent
Poisson distribution at each site

P ({ni}, t = 0) =
∏

j

e−ρ0
ρ

nj

0

nj!
, (59)

since this corresponds to the initial state of the system being a coherent state

|ψ(0)〉 =
∏

j

e−ρ0eρ0a†
j |0〉 . (60)

The average value of an observable A({nj}) is defined as

A =
∑

{nj}

A({nj})p({nj}, t) . (61)
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Using the identity 〈0|eaa†n|0〉 = 1, this may be rewritten as

A = 〈0|
∏

j

eajA({nj})|ψ(t)〉 . (62)

As an example, let us calculate the expectation value of the identity operator:

1 = 〈0|
∏

j

eaje−H({aj ,a†
j})t|ψ(0)〉 . (63)

This can only be satisfied for all t if 〈0|
∏

j e
ajH({aj, a

†
j}) = 0. Using

〈0|eaa† = 〈0|ea, we see that the Hamiltonian must satisfy

H({aj}, {a
†
j = 1}) = 0 . (64)

This is an expression of the conservation of probability.

4.4 The Doi shift

The term
∏

j e
aj may be commuted through to the right in equation 62, by

making use of the identity

eaf(a†) = f(a† + 1)ea . (65)

Note that this is simply a consequence of the commutation relations for the
ladder operators. The resulting form of the expectation value of observables
is

〈0|A({a†j + 1}, {aj})e
−H({a†

j+1},{aj})te
P

j aj |ψ(0)〉 . (66)

With the choice of a coherent state for the initial wavefunction, the ket takes
the simple form

e
P

j aj |ψ(0)〉 = e
P

j ρ0a†
j |0〉 . (67)

The Hamiltonian with {a†j} → {a†j + 1} is known as the Doi shifted Hamil-
tonian. For our example of particles hopping on the lattice and pairwise
annihilating, the shifted Hamiltonian takes the form

Hshifted = D
∑

〈ij〉

(a†i − a†i )(ai − aj) + λ
∑

j

2a†ja
2
j + a† 2

j a
2
j . (68)

Note that this Hamiltonian is normal ordered, with the consequence that its
vacuum expectation value is zero.
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4.5 Path integral representation

From the many-body description, we may use perturbation theory to calcu-
late expectation values of observables. First it is convenient to re-express
expectation values in terms of path integrals. Split a given time interval t
into small increments δt and recall the identity

e−Ht = lim
δt→0

(1 − δtH)t/δt . (69)

A complete set of coherent states

1 =

∫

dφdφ∗

π
e−φ∗φeφa†

|0〉〈0|eφ∗a , (70)

may be inserted into equation 62 at each time step. Thus, the expectation
value is a product of terms like

〈0|eφ∗(t+δt)a[1 − δtH(a†, a)]eφ(t)a†

|0〉 . (71)

The exponentials may be commuted to the other side of the square bracket
using equation 65 and the conjugate expression to obtain

〈0|1 − δtH(a† + φ∗, a+ φ)|0〉eφ∗(t+δt)φ(t) . (72)

As the Hamiltonian is normal ordered, this is equivalent to

〈0|1 − δtH(φ∗, φ)|0〉eφ∗(t+δt)φ(t) . (73)

Re-exponentiating the product of terms involving the Hamiltonian and taking
the continuum time limit, we see that averages of observables are integrals
over a pair of fields on the discrete lattice, with an effective action

∏

j

[

∫ ∫

dφj(t)dφ
∗
j(t)

π

]

e−S[φ∗,φ] (74)

S[φ∗, φ] =

∫

dt
∑

j

φ∗
j∂tφj +H({φ∗

j}, {φj}) , (75)

where the time dependence of φ and φ∗ has been omitted. The action for
A+ A→ 0 is

S =

∫

dt
∑

j

φ∗
j∂tφj +D

∑

〈ij〉

(φ∗
i −φ∗

j)(φi −φj)+λ
∑

j

(2φ∗
jφ

2
j +φ∗2

j φ
2
j) . (76)
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Just as in the Hamiltonian, a† operators in the observables are replaced by
φ∗ fields and a operators by φ. We can now take a naive continuum limit,
converting the product of integrals into functional integrals over the fields
φ(t) and φ∗(t) and recasting S for our example in the form

S =

∫

dt

∫

ddx
[

φ∗∂tφ+D∇φ∗∇φ+ λ(2φ∗φ2 + φ∗2φ2)
]

. (77)

Originally, φ∗ was taken to be the complex conjugate of φ, but we may now
treat them as independent variables, relabelling φ∗ as φ̃. After an integration
by parts on the gradient terms, we obtain for our Lagrangian

φ̃[∂tφ−D∇2φ+ 2λφ̃φ2] + λφ̃2φ2 . (78)

This is the same form as the Langrangian we would obtain from an equilib-
rium problem with the Langevin equation

∂tφ = D∇2φ− 2λφ2 + ξ . (79)

In the next subsection we will show that 〈φ(t)〉 = n̄(t), the expected num-
ber of particles at time t. Taking expectation values of the above equation
therefore yields

dn

dt
= D∇2n− 2λn(2) , (80)

where n(2) = 〈φ(t)2〉 is the probability of finding 2 particles at the same site
at time t. If we approximate n(2) = n2, we obtain the rate equation. Since
a diffusion process starting from a Poisson distribution in the absence of
noise remains a Poisson distribution at later times, we deduce that the noise
describes deviations from a Poissonian distribution. This noise is not white
noise, however. Recall from section 3.1 that starting from white noise with
the correlation function 〈ξ(x, t)ξ(x′, t′)〉 = 2Dδ(x′ − x)δ(t′ − t), we obtain a
term in the Lagrangian of the form −Dφ̃2. Here, however, the Lagrangian
contains a term λφ̃2, so the correlations of the noise are

〈ξ(x, t)ξ(x′, t′)〉 = −2λφ2δ(x′ − x)δ(t′ − t) . (81)

Hence, the noise is complex. If we start with a real field φ, it too becomes
complex. There is a physical reason why we cannot simply have real white
noise in this problem. A given particle, which hasn’t annihilated, will have
swept out an area around it without any particles contained inside. So, parti-
cles must be anti-correlated. For the connected part of 〈φ(x1, t1)φ(x2, t2)〉 to
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be negative, we require negatively correlated noise since the response function
is positive

〈φ(x1, t1)φ(x2, t2)〉c =
∫ ∫

G(t1 − t′, x1 − x′)G(t2 − t′′, x2 − x′′)〈ξ(x′, t′)ξ(x′′, t′′)〉dt′dx′dt′′dx′′ .

(82)

The explanation for this result is that φ, as a fluctuating quantity is not the
same as the density. It is the expectation values of the two which are equal.
One of the problems is to show that

n̄2 = 〈φ2〉 + 〈φ〉 , (83)

from which it is clear that n 6= φ. The vanishing of 〈φ2〉− 〈φ〉2 would simply
result in n̄ having a Poissonian distribution.

4.6 The expected number of particles and the expec-

tation value of φ

In this short subsection, we will show that, on average, φ is the same as n,
the number of particles.

n = 〈0|eaa†ae−Ht|ψ(0)〉

= 〈0|eaae−Ht|ψ(0)〉, . (84)

In the path integral picture

〈0|eaae−Ht|ψ(0)〉 =

∫ ∫

DφDφ̃φe−S

∫ ∫

DφDφ̃e−S
= 〈φ〉 . (85)

So n = 〈φ〉.

5 Feynman diagrams and the renormalization

group

The form of the Lagrangian allows us to write down the propagator and
vertex diagrams and so to formulate pertubative solutions to the correlation
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functions of the theory. We will not proceed in this way, but instead start
from the stochastic equation

∂tφ(x, t) = D∇2φ(x, t) − 2λφ(x, t)2 + ξ(x, t) + ρoδ(t) , (86)

with the following correlation function for the noise

〈ξ(x, t)ξ(x′, t′)〉 = −2λφ(x, t)2δ(t− t′)δ(x− x′) . (87)

Note that the term ρoδ(t) comes from the Doi shifted initial Poissonian (co-
herent) state. We find the formal solution to this differential equation

φ(x, t) =

∫

G0(x− x′, t− t′)[−2λφ(x′, t′) + ξ(x′, t′) + ρ0δ(t)] , (88)

where the Green’s function, G0(x, t), satisfies the equation

(∂t −D∇2)G0(x, t) = δ(x)δ(t) . (89)

Equation 88 permits an iterative solution, which is most easily described
pictorially in terms of the Feynman diagrams in Fig 1. Time increases from
right to left, starting from t = 0 at the right hand side.

φ = +

ξ + ρ0δ(t)

ξ + ρ0δ(t)

ξ + ρ0δ(t)

−2λ

+ . . .

Figure 1: Feynman diagrams contributing to φ.

So, φ is seen to be a sum of tree diagrams. If we switch off the noise, ξ → 0,
we obtain the diagrams in Fig 2.

These diagrams may be expressed alternatively as a recursive relation, de-
scribed pictorially in Fig 3. Algebraically, these diagrams represent

φ(t) =

∫

ddxG0(t, x)ρ0 − 2λG0 ◦ φ
2 , (90)

where ◦ denotes a convolution. This can be readily converted back to a
differential equation

∂tφ = D∇2φ− 2λφ2 + ρ0δ(t) , (91)
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φ = +

−2λ

+ . . .

ρ0δ(t)

ρ0δ(t)

ρ0δ(t)

Figure 2: Feynman diagrams contributing to φ in the absence of noise.

= +

−2λ

ρ0δ(t)

Figure 3: The recursive definition of φ.

which is just the rate equation and shows that our results are consistent. If
we assume spatial homogeneity, the rate equation has a simple solution

φ =
ρ0

1 + 2ρ0λt
, (92)

which has the long time behaviour

φ(t→ ∞) =
1

2λt
. (93)

Note that this long time solution is independent of ρ0. Now let us reinstate
the noise and examine the average of φ, using

〈ξ(x, t)〉 = 0 (94)

〈ξ(x, t)ξ(x′, t′)〉 = −2λφ(t)2δ(x− x′)δ(t− t′) (95)

〈ξ4〉 =
∑

pairs

〈ξ2〉〈ξ2〉 . (96)

The last identity follows from ξ having a Gaussian distribution. It is equiv-
alent to Wick’s theorem in quantum field theory. Averaging leads to the
pairwise contraction of ξ insertions, leading to diagrams with loops like those
in Fig 4.

Each diagram is constructed from the set of components in Fig 5. Those
familiar with quantum field theory would have been able to identify these
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=

++

+

−2λ−2λ−2λ−2λ

−2λ

+ . . .

ρ0δ(t)

ρ0δ(t)

ρ0δ(t)

ρ0δ(t)

ρ0δ(t)

ρ0δ(t)

ρ0δ(t)

ρ0δ(t)〈φ〉

Figure 4: The average over noise of φ.

−2λ

−2λ

ρ0δ(t)G0

Figure 5: The propagators and vertices in 〈φ〉.

directly from the action. The set of all diagrams may be decomposed into the
skeleton diagrams shown in Fig 6. The loops do not affect the propagators,
but lead to corrections to the vertices. In fact, both vertices are renormalized
in the same way. This is a consequence of probability conservation ensur-
ing that there is only one coupling constant, λ. To calculate the Feynman
diagrams, it is easier to consider the Green’s functions in Fourier space.

G0(x, t) =

∫ ∞

0

ds

2πi

∫ ∞

−∞

ddk

(2π)d

est+ik·x

s+Dk2
. (97)

In order to perform the vertex renormalizations, it is necessary to calculate
the loop diagram in Fig 7:

∫ ∞

0

ds′

2πi

∫ ∞

−∞

ddk′

(2π)d

1

s′ +Dk′2
1

s− s′ +D(k − k′)2
. (98)
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=

=

=

+

+

+

+

−2λ−2λ−2λ

−2λ−2λ−2λ

−2λ −2λ−2λ

−2λ −2λ−2λ

+ . . .

+ . . .

+ . . .

so the propagator doesn’t get renormalised.

Figure 6: The full propagator and vertex diagrams

Integrating over s′ and taking k = 0

=

∫ ∞

−∞

ddk′

(2π)d

1

s+ 2Dk′2
. (99)

The integral appears to diverge at large k′ for d > 2, but this is a consequence
of discarding the lattice cut-off, which restricts the upper limit on k′. The
divergence at s = 0 for d < 2 is more interesting. Above two dimensions,
the integral is an analytic function of s. For d ≥ 2, the loop corrections to
the density give non-leading terms and simply renormalize ρ0 and λ. We
see then that the rate equation is (qualitatively) asymptotically correct for
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s′, k′

s− s′, k − k′

s, k

Figure 7: One loop diagram

d ≥ 2. The loop diagram may be thought of as a correction due to annihi-
lations between particles which have survived occupying the same site at an
earlier time without annihilating. The dimensionality of the system is impor-
tant because it determines the dimensionality of the random walk in relative
particle coordinates. For d = 1, a random walk returns with almost certain
probability to a point in space in finite time. For d > 2, the random walk
almost certainly does not return in finite time, so corrections corresponding
to the loop diagram above are irrelevant. dc = 2 is known as the critical
dimension of the theory. The renormalization group is a way of resumming
series which are divergent in the limit s → 0, such as those with loops in
figure 6. Define λR(s) as the sum of diagrams contributing to the full three
point propagator in figure 6 with total outgoing frequency s. We see that
the diagrams are convolutions in (t, x) space, so are geometric series in (s, q)
space. Using equation 99 and doing the integral over k′:

λR(s) =
λ0

1 + kd

ǫ
λ0s−ǫ/2

D1−ǫ/2

, (100)

where ǫ = 2 − d and kd is finite for d = 2. It is defined as

kd =
2ǫ

(8π)d/2
Γ(1 − d/2) . (101)

It is easiest to work with a dimensionless coupling constant. Looking at the
denominator of equation 100, a suitable choice is

gR(s) = λRs
−ǫ/2Dǫ/2−1 . (102)

The expected number of particles may be expressed as a function of the bare
coupling constant, or alternatively as a function of the renormalized coupling
constant and the scale s. This scale was introduced arbitrarily, though, so
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at fixed λ0 the expected number of particles should not depend on s.

s
d

ds

∣

∣

∣

λ0

n(t, gR, s) = 0 , (103)

where we have assumed that the asymptotic form of n does not depend on
the initial density n0. This assumption is not necessary for this derivation,
but shortens the calculation. gR is a function of s, so this may be rewritten
as

(s
∂

∂s
+ β(gR)

∂

∂gR

)n(t, gR, s) = 0 , (104)

where the derivative with respect to s acts only on the explicit s dependence
of n and the beta function is defined by

β(gR) ≡ s
∂

∂s
gR(s)

∣

∣

∣

λ
. (105)

For our example, from equation 102

β(gR) =
−ǫ

2
gR +

kd

2
g2

R . (106)

Dimensional analysis determines the form of n

n(t, gR, s) ∼ (t)−d/2f(st, gR) , (107)

where f is some function of its dimensionless parameters. This shows that

s
∂

∂s
n(t, gR, s) =

(

t
∂

∂t
+
d

2

)

n(t, gR, s) . (108)

We have obtained the following partial differential equation for n, known as
the Callan-Symanzik equation:

(

t
∂

∂t
+ β(gR)

∂

∂gR

+
d

2

)

n(t, gR, s) = 0 . (109)

The solution to this partial differential equation is obtained via the method
of characteristics

n(t, gR, s) = (ts)−d/2n(t = s−1, g̃(t), s) , (110)

where g̃(t) is known as the running coupling and satisfies the equation

t
d

dt
g̃(t) = −β(g̃(t)) . (111)
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For d > 2, ǫ is negative

t
d

dt
g̃(t) = −(−

ǫ

2
)g̃(t) , (112)

so the running coupling flows to zero as t → ∞. In this case, we are not
justified in neglecting the long time dependence of n on n0. For d < 2, g̃(t)
flows to the zero of the beta function g∗ = ǫ/kd. We may evaluate n in the
right hand side of equation 110 for small s, since this corresponds to late
times. Therefore, we may use the long time solution of the rate equation 93
to find

n(t) ∼ (st)−d/2 1

2λs−1

∼ (t)−d/2 1

2D1−ǫ/2g∗

∼ (Dt)−d/2A(ǫ) . (113)

A(ǫ) is known as a universal amplitude, since it depends only on the dimen-
sionality of the system. We have shown here that A = (1/4πǫ)

(

1 + O(ǫ)
)

.
To find the higher order terms, we need to evaluate the higher loop diagrams
in perturbation theory.

5.1 The critical dimension

At dc = 2, the equation for the running coupling constant 111

t
dg̃(t)

dt
=

−k2

2
g̃(t)2 (114)

has solution

g̃(t) =
4π

ln t
. (115)

Hence, substituting this into the solution for n, we obtain

n(t) ∼
1

8π

ln t

Dt
. (116)

The coefficient 1/8π is exact and universal and we see the well-known loga-
rithmic corrections in the critical dimension.
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6 Other reaction-diffusion processes

The methods we have learnt are applicable to a range of other reaction-
diffusion processes. The general strategy is to write down a Hamiltonian,
formulate a field theory and renormalize this field theory. We will examine
two examples for which this method fails however, due to conservation laws.
These laws lead to different types of fluctuations and slow dynamics.

6.1 A+B → 0

The first example has two species, labelled A and B. For convenience, they
will have identical properties, except their labels. They react via A+B → 0
with rate λ. This reaction is realised in electrodynamics by the annihilation
of oppositely charged particles. Note that the reaction conserves na − nb

locally, since the reactions are local. From the master equation, the following
Hamiltonian may be derived

H = Hhopping − λ
∑

j

(ajbj − a†jb
†
jajbj) . (117)

The path integral representation therefore has an effective action

S =

∫

dt

∫

ddx
[

a∗∂ta+b
∗∂tb+D∇a∗∇a+D∇b∗∇b−λ(ab−a∗b∗ab)

]

. (118)

S must be dimensionless, since it appears as the argument of an exponential
function in the functional integral. In terms of units of wavenumber, k, the
fields have the following dimensions

[aa∗] = [bb∗] = kd (119)

[λ] = 2 − d . (120)

Hence, the upper critical dimension for the theory is dc = 2. However, it
turns out that in certain circumstances fluctuations are still important for
d > 2. We would like to investigate the evolution of the system from a
spatially homogeneous initial state, such as when the distribution of A and
B particles is an independent Poisson distribution at each site. For d > 2 we
can use the inhomogeneous rate equations

∂ta = D∇2a− λab (121)

∂tb = D∇2b− λab , (122)
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where a = na, etc. Subtract the above equations to see that 〈χ〉 = 〈a − b〉
satisfies a simple diffusion equation, with formal solution

χ(x, t) =

∫

ddx′G0(t, x− x′)χ(x′, 0) . (123)

χ(x′, 0) is a random variable with mean zero. However, χ(x, 0) is a fluctuating
quantity. Assuming

〈χ(x′, 0)χ(x′′, 0)〉 = ∆δ(x′ − x′′) , (124)

where ∆ ∝ ρ0, it follows that

〈χ(x, t)2〉 = ∆

∫

ddx′G(t, x− x′)2 ∼
∆

td/2
. (125)

Define also φ ≡ a+ b, which satisfies the equation

∂tφ = D∇2φ− λφ2 + λχ2 + noise . (126)

Considering average values,

∂t〈φ〉 = D∇2〈φ〉 − λ〈φ2〉 + λ〈χ2〉 . (127)

For solutions with translational invariance, the ∇2 term vanishes. We may
replace 〈φ2〉 with 〈φ〉2 to find an upper bound for our solution. Thus,

∂t〈φ〉 = −λ〈φ〉2 +
λ∆

td/2
. (128)

On setting ∆ = 0, we see that φ ∼ 1/λt. This is asymptotically correct for
d > 4 if ∆ 6= 0 by dimensional analysis. If d < 4, the two terms on the right
hand side balance asymptotically, so that

〈φ〉 ∼

√

∆

td/2
∼

1

td/4
. (129)

Hence, the critical dimension is 4 and so three dimensions displays interesting
non-mean field behaviour. Locally φ2 ≈ χ2, so a+b = |a−b|. This means that
either a ≫ b or a ≪ b. Therefore, most parts of the system are dominated
by one particle type separated by relatively narrow reaction zones. This is
known as segregation.
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6.2 A+ A→ C

Consider now the process A+A ⇀↽ C, where the reaction proceeds from left
to right at rate λ and from right to left at rate µ. The quantity na + 2nc is
conserved by the reaction and this conservation law again leads to interesting
dynamics. The rate equations are

∂ta = −2λa2 + 2µc

∂tb = λa2 − µc , (130)

with the constraint that
∂t(a+ 2c) = 0 . (131)

The steady state solution is

λa2
∞ = µc∞ , (132)

with
a∞ + 2c∞ = a0 + 2c0 . (133)

Expanding the rate equations in terms of c = c∞ + δc and a = a∞ + δa, we
find an exponentially fast approach to the steady state δa, δc ∼ e−t/t0 , but
this is not what actually happens; fluctuations play an important role. The
Hamiltonian is

H = Hdiff − λ(c†a2 − a† 2a2) − µ(a† 2c− c†c) . (134)

The Doi shifts c† → c† + 1 and a† → a† + 1 lead to the following form for the
shifted Hamiltonian:

Hshifted = Hdiff + λ(a† 2 + 2a† − c†)a2 − µ(a† 2 + 2a† − c†c) . (135)

The effective Lagrangian is equivalent to the rate equations

∂ta = D∇2a− 2λa2 + 2µc+ ξ (136)

∂tb = D∇2b+ λa2 − µc , (137)

There is no noise term in equation 137, since the Lagrangian does not contain
a c† 2 term. The noise in equation 136 satisfies

〈ξ(x, t)ξ(x′, t′)〉 = (µc− λa2)δ(x− x′)δ(t− t′) . (138)

Note that the noise vanishes in the equilibrium steady state. This is not to
say there are no fluctuations, but instead that the density distribution is a
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product of local Poisson distributions. The stochastic equation for χ = a+2c
is

∂tχ = D∇2χ+ ξ . (139)

This may be solved for a given realisation of the noise

χ = χ0 +

∫

ddx′
∫

dtG0(x− x′, t− t′)ξ(x′, t′) . (140)

χ0 is the conserved piece so that 〈χ〉 = χ0. Let us look at the two point
correlation function for χ

〈χ(t)2〉 − 〈χ(t)〉2 =

∫

ddx′
∫

dt′G0(x− x′, t− t′)2〈µc(x′, t′) − λa2(x′, t′)〉 .

(141)
The expectation value is equivalent to −∂t′〈c(t

′)〉 which is supposed to be
independent of x′. Thus the spatial integral may be performed to find

〈χ(t)2〉 − 〈χ(t)〉2 = −

∫

dt′
1

(t− t′)d/2

∂

∂t′
〈c(t′)〉 . (142)

For large times, this integral is dominated by t′ ≪ t and we obtain

〈χ(t)2〉 − 〈χ(t)〉2 =
c0 − c∞
td/2

. (143)

We conclude that particles become correlated or anti-correlated depending
on whether the initial density of C particles is larger than the equilibrium
density or smaller than the equilibrium density. The asymptotic solution to
the stochastic differential equations can be found systematically, but a faster
route to the solution is to assume local equilibrium λa2 = µc. We also have
that

a+ 2c = a0 + 2c0 + δχ . (144)

Solving these equations locally gives

a =
−µ+

√

µ2 + 8µλ(a0 + 2c0 + δχ)

4λ
. (145)

The fluctuations in δχ affect the approach to equilibrium of a since a = f(δχ)
so that

〈a〉 = 〈f(δχ)〉

= f(0) +
1

2
f ′′(0)〈δχ2〉 . (146)

As the fluctuations in δχ scale as t−d/2, so does the approach to equilibrium
of a

〈a〉 = a∞ + Ct−d/2 , (147)

where C is a calculable constant.
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