SECOND-QUANTISED APPROACH to REACTION-DIFFUSION SYSTEMS

John Cardy Theoretical Physics & All Souls College, Oxford

Outline.

- 1. Review of 2nd-quantised formalism [Doi, Peliti]
- 2. Langevin equation
- 3. Example: $A + A \rightleftharpoons C$ [P-A Rey, JC]

Second-quantised formalism

Master equation:

$$(d/dt)p(\alpha;t) = \sum_{\beta} R(\alpha \leftarrow \beta)p(\beta) - \sum_{\beta} R(\beta \leftarrow \alpha)p(\alpha)$$

Reaction-diffusion system: particles of species $j = A, B, \ldots$ diffuse on a lattice $\{\mathbf{r}\}$ and undergo single-site reactions. $\{\alpha\} = \{n_j(r)\}.$

Similarities to relativistic QFT:

- time-evolution equation is linear (like Schrödinger equation)
- particle number is not conserved

Suggests second-quantised formalism:

- operators $[\hat{a}_j(\mathbf{r}), \hat{a}_{j'}^{\dagger}(\mathbf{r'})] = \delta_{jj'}\delta_{\mathbf{r},\mathbf{r'}}$
- 'vacuum' $\hat{a}_j(\mathbf{r})|0\rangle = 0$
- many-particle state

$$|\Psi(t)\rangle \equiv \sum_{\{n_j(\mathbf{r})\}} p(\{n_j(\mathbf{r})\};t) \prod_j \prod_{\mathbf{r}} (\hat{a}_j^{\dagger}(\mathbf{r}))^{n_j(\mathbf{r})} |0\rangle$$

Then master equation \Leftrightarrow

$$(d/dt)|\Psi\rangle = -\hat{H}|\Psi\rangle$$

where $\hat{H} = \hat{H}(\{\hat{a}_j(\mathbf{r}); \hat{a}_j^{\dagger}(\mathbf{r})\}).$

Example: $A + A \stackrel{\lambda}{\rightarrow} \emptyset$

$$\hat{H} = \hat{H}_{\text{diff}} + \hat{H}_{\text{react}} \text{ where}$$

$$\hat{H}_{\text{diff}} \propto \sum_{\text{n.n.}} \left(\hat{a}^{\dagger}(\mathbf{r}') \hat{a}(\mathbf{r}) - \hat{a}^{\dagger}(\mathbf{r}) \hat{a}(\mathbf{r}) \right) \to D \int (\nabla \hat{a}^{\dagger} \cdot \nabla \hat{a}) d^d r$$

$$\hat{H}_{\text{react}} = \lambda \int (\hat{a}^2 - \hat{a}^{\dagger 2} \hat{a}^2) d^d r$$

Differences from many-body quantum mechanics:

- \bullet no i
- expectation values given by

$$\begin{split} \overline{\mathcal{O}} &= \sum_{\{n(\mathbf{r})\}} p(\{n(\mathbf{r})\}; t) \mathcal{O}(\{n(\mathbf{r})\}) \\ &= \langle 0|e^{\sum_{\mathbf{r}} \hat{a}(\mathbf{r})} \hat{\mathcal{O}} | \Psi(t) \rangle \\ &\neq \langle \Psi(t)| \hat{\mathcal{O}} | \Psi(t) \rangle \end{split}$$

- move
$$e^{\sum_{\mathbf{r}} \hat{a}(\mathbf{r})}$$
 to right \Leftrightarrow shift $\hat{a}^{\dagger}(\mathbf{r}) \to \hat{a}^{\dagger}(\mathbf{r}) + 1$
$$\hat{H}_{\text{react}} \to -\lambda \int (2\hat{a}^{\dagger}\hat{a}^2 + \hat{a}^{\dagger 2}\hat{a}^2)d^dr$$

Path integral formulation: $(\hat{a}^{\dagger}(\mathbf{r}), \hat{a}(\mathbf{r})) \rightarrow (\bar{a}(\mathbf{r}, t), a(\mathbf{r}, t))$ and

$$\langle 0|\dots|0\rangle = \int \mathcal{D}\bar{a}\mathcal{D}a\dots e^{-S}$$

where

$$S = \int (\bar{a}\partial_t a + D\nabla \bar{a}\nabla a + \lambda(2\bar{a}a^2 + \bar{a}^2a^2))dtd^dr + S_{t=0}$$

- starting point for Feynman diagram expansion and RG analysis [Lee]
- *OR*...

Langevin equation

 $e^{-\lambda \bar{a}^2 a^2} = \langle e^{\eta \bar{a}} \rangle_{\eta}$ where $\langle \eta \rangle = 0$, $\langle \eta^2 \rangle = -2\lambda a^2 = -2\lambda \langle a^2 \rangle$;

$$\int e^{(\text{expression})\bar{a}} d\bar{a} = \delta(\text{expression})$$

Langevin-type equation:

$$\partial_t a = D\nabla^2 a - 2\lambda a^2 + \eta(\mathbf{r}, t)$$

where

$$\langle \eta(\mathbf{r}, t) \eta(\mathbf{r}', t') \rangle = -2\lambda \langle a(\mathbf{r}, t)^2 \rangle \delta(\mathbf{r} - \mathbf{r}') \delta(t - t')$$

- rate equation + noise, but if a > 0, noise is pure imaginary!
- necessary because $\overline{\delta\rho(\mathbf{r})\delta\rho(\mathbf{r}')} < 0$ if $\mathbf{r} \neq \mathbf{r}'$
- possible because $a(\mathbf{r}, t) \neq \rho(\mathbf{r}, t)$:

$$\overline{\rho(\mathbf{r},t)} = \langle a(\mathbf{r},t) \rangle$$
 but $\overline{\rho(\mathbf{r},t)^2} \neq \langle a(\mathbf{r},t)^2 \rangle$

Application to $A + A \xrightarrow{\lambda} C$, $C \xrightarrow{\mu} A + A$

Rate equations:

$$\partial_t \rho_a = -2\lambda \rho_a^2 + 2\mu \rho_c$$

$$\partial_t \rho_c = \lambda \rho_a^2 - \mu \rho_c$$

 $\Rightarrow (\rho_a(t), \rho_c(t)) \rightarrow (\rho_a(\infty), \rho_c(\infty))$ exponentially fast.

- this cannot be right, because $\rho_a + 2\rho_c$ is conserved, and any initial fluctuations should decay slowly, like $t^{-d/2}$.
- attempts to patch up the rate equations, by
 - adding diffusion terms $D\nabla^2\rho$ and assuming random initial conditions, and/or
 - adding real noise

give unphysical results.

Second-quantised approach:

$$S_{\text{react}} = \lambda(\bar{c}a^2 - \bar{a}^2a^2) + \mu(\bar{a}^2c - \bar{c}c)$$

shift $\rightarrow (\bar{c} - 2\bar{a})(\lambda a^2 - \mu c) - \bar{a}^2(\lambda a^2 - \mu c)$

 \Rightarrow Langevin-type equations

$$\partial_t a = D\nabla^2 a - 2\lambda a^2 + 2\mu c + \eta$$
$$\partial_t c = D\nabla^2 c + \lambda a^2 - \mu c$$

where

$$\langle \eta(\mathbf{r}, t) \eta(\mathbf{r}', t') \rangle = \underbrace{2\langle \mu c - \lambda a^2 \rangle}_{-2\langle \partial_t c \rangle} \delta(\mathbf{r} - \mathbf{r}') \delta(t - t')$$

• noise $\to 0$ as $t \to \infty \Rightarrow (a(\mathbf{r}, t), c(\mathbf{r}, t)) \to (a_{\infty}, c_{\infty})$ where

$$\lambda a_{\infty}^2 = \mu c_{\infty}^2$$
 and $a_{\infty} + 2c_{\infty} = a_0 + 2c_0$

• $\chi \equiv a + 2c$ is not strictly conserved:

$$\partial_t \chi = D\nabla^2 \chi + \eta$$

Solution:

$$\chi(\mathbf{r},t) = \int_0^t dt' \int d^d r \, G_0(\mathbf{r} - \mathbf{r}'; t - t') \eta(\mathbf{r}', t') + \chi(t = 0)$$
so $\langle \chi(\mathbf{r},t) \rangle = \chi(t = 0) = a_0 + 2c_0$, and
$$\langle (\delta \chi)^2 \rangle = -2 \int_0^t dt' (8\pi D(t - t'))^{-d/2} \partial_{t'} \langle c(t') \rangle$$

$$\sim -2(8\pi Dt)^{-d/2} \int_0^\infty dt' \partial_{t'} \langle c(t') \rangle$$

$$= 2(c_0 - c_\infty)(8\pi Dt)^{-d/2}$$

and higher cumulants vanish.

• now eliminate $a = \chi - 2c$ in the c-equation:

$$\partial_t c = D\nabla^2 c + \lambda(\chi - 2c)^2 - \mu c$$

and solve for $\langle c \rangle$ in terms of $\langle (\delta \chi)^n \rangle$.

• leading term same as assuming *local* equilibrium:

$$\lambda a(\mathbf{r}, t)^2 \approx \mu c(\mathbf{r}, t)$$

 $a(\mathbf{r}, t) + 2c(\mathbf{r}, t) = \chi(\mathbf{r}, t)$

SO

$$a \approx (-\mu + \sqrt{\mu^2 + 8\mu\lambda\chi})/(2\lambda)$$

hence

$$\langle a \rangle = a_{\infty} + \text{const.} \langle (\delta \chi)^2 \rangle + \cdots$$

Final result:

$$\langle c(t) \rangle - c_{\infty} \sim \frac{2\lambda\mu^2}{(4\lambda a_{\infty} + \mu)^2} (c_0 - c_{\infty})(8\pi Dt)^{-d/2}$$

Comments

- decay towards equilibrium is monotonic;
- correlations $\langle c(\mathbf{r}, t)c(\mathbf{r}', t)\rangle$ can be treated similarly;
- unequal diffusivities $D_a \neq D_c$ also treatable but more difficult
- method generalises to more species when there are conservation laws

Summary

- general method gives a *systematic* way of computing the effects of fluctuations in reaction-diffusion systems, either by
 - renormalisation group, or
 - direct solution of the corresponding Langevin equation.
- complex noise is peculiar but leads to physical results.