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Second-quantised formalism

Master equation:
(d/dt)p(e;t) = % Rla < f)p(B) = % R(B < a)p(a)

Reaction-diffusion system: particles of species 7 =
A, B, ... diffuse on a lattice {r} and undergo single-
site reactions. {a} = {n;(r)}.

Simalarities to relativistic QFT:

e time-evolution equation is linear (like Schrodinger
equation)

e particle number is not conserved
Suggests second-quantised formalism:
e operators [a,(r), AT( N = 6;p0py
e ‘vacuum’ a;(r)|0) =0

e many-particle state

= n at ()
Y= T pn 6 0o

Then master equation <
(d/dt)|¥) = —H|)
where H = H({a(r); a(r)}).



Example : AL ASDQ

H = Hdiﬂ‘ + ]:[react where
Hag oc ¥ (a'(r')a(r) — al(r)a(r)) — D [(Val.Va)d'h
Heoner = A (2% — at2a%)d%

Differences from many-body quantum mechanics:
® 10 ¢

e cxpectation values given by

0 = {n%)}p({n(r)};t)O({n(P)})

— (0l IO (1)
7 (P()]O]P(1))
~ move =) to right < shift af(r) — a'(r) + 1
Hyeoet — — X [(207a% 4 a™a%)d



Path integral formulation: (a'(r), a(r)) — (a(r,t), a(r,t))
and

(0]...|0) = [DaDa...e™®
where
S = [(@6,a + DVaVa + \(2aa” + @*a®))dtdr + S
e starting point for Feynman diagram expansion and
RG analysis [Lee]
o OR...

Langevin equation

6—/\Zz2a2 _ <€na>n

where (n) = 0, (n*) = —2Xa®> = —2\{(a*):

]
[ elexpression)i g — §(expression)
Langevin-type equation:
Oya = DV*a — 2Xa” + n(r, t)
where
(n(r, n(x',¢)) = =2Xa(r, 1)7)d(r — v)o(t — ')
e rate equation + noise, but if @ > 0, noise is pure

imaginary!

e necessary because dp(r)dp(r’) < 0 if r # ¢’

e possible because a(r,t) # p(r, t):
p(r,t) = (a(r,t))  but  p(r, 1) # (a(r,1)’)



Application to A+ A 2 C. CHA+A

Rate equations:
Orpa = —2Mp; + 2up
Ohpe = )‘pczz — HPe
= (pa(t), pe(t)) = (pa(00), pe(00)) exponentially fast.

e this cannot be right, because p, + 2p. is conserved,

and any initial fluctuations should decay slowly, like
t=d2.

e attempts to patch up the rate equations, by

— adding diffusion terms DV?p and assuming ran-
dom initial conditions, and/or

— adding real noise

give unphysical results.



Second-quantised approach:

Seeact = Aca® — a*a®) + p(a’c — éc)

shift — (¢ — 2a)(\a* — puc) — a*(Aa* — uc)
= Langevin-type equations
Oia = DV?a — 2X\a* + 2uc + 1
Oic = DV*c+ Xa* — pc
where

(n(r,)n(x', 1)) = 2{uc — Xa”) 6(r — x')6(t — ¢
—2(0yc)

e noise = Dast — oo = (a(r, ), c(r,t)) = (oo, Coo)
where

AaZ = pct. and G 4 20a = ag + 2cg

® Y = a + 2c is not strictly conserved:

oy = DV?y +1n



Solution:
x(r /Odt/d Go(r —r':t —t"n(x', t") +x(t =0)
SO (X(r, t)) = x(t =0) = ay + 2¢p, and

(6x)%) = =2y dt'(StD(t — ')~ du(c(t'))
~ —2(8xDt)~? - dt' Oy (c(t))
= 2(cy — ¢x0) (87 D)2

and higher cumulants vanish.
e now climinate a = x — 2c¢ in the c-equation:
Oc = DV?c + Ay — 2¢)* — pic
and solve for {c) in terms of {(dx)").

e [cading term same as assuming local equilibrium:

Aa(r,t)? = pe(r,t)
a(r,t) + 2¢(r,t) = x(r,t)

SO

(= 2+ 8puAx)/(2X)
hence

(a) = as + const.{(6x)*) +



Final result:

N2
(4Na + )2

(e(t)) — e ~ (co — ¢o0)(8mDt)™?

Comments

e decay towards equilibrium is monotonic;
e correlations (c(r, t)c(r', t)) can be treated similarly;

e unequal diffusivities D, # D, also treatable but
more difficult

e method generalises to more species when there are
conservation laws

Summary

e ocneral method gives a systematic way of comput-
ing the effects of fluctuations in reaction-diffusion
systems. either by

— renormalisation group, or

— direct solution of the corresponding Langevin equa-
tion.

e complex noise is peculiar but leads to physical re-
sults.



