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Stefan’s Law1

Energy density of black body ra-
diation u = (4π/c)σT4 where
σ ≈ 5.67× 10−8Js−1m−2K−4

1J. Stefan, Über die Beziehung zwischen der Wärmestrahlung und der
Temperatur, Wiener Berichte, 79, 391, 1879.



Stefan’s Law

Energy density of black body ra-
diation u = (4π/c)σT4 where
σ ≈ 5.67× 10−8Js−1m−2K−4

I based on experimental
measurements by
J. Tyndall1

1better known in some circles as an Alpine mountaineer!



Boltzmann’s Derivation2

I imagine a piston is moved by radiation pressure P = u/3

TdS = d(uV) + PdV

= u′(T)VdT + 4
3 udV
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u(T) ∝ T4

I “A true pearl of theoretical physics” [Lorentz, 1907]
2L. Boltzmann, Ableitung des Stefan’schen Gesetzes. . ., Wiedemann’s

Annalen, 22, 291, 1884.



Why Boltzmann was lucky

I this is a quantum phenomenon (σ = π4k4/60~3c2) yet
P = u/3 was a result of classical electrodynamics

I in modern terms, it relies on the assumption that the
energy-momentum tensor Tµν is traceless, so

u = 〈T00〉 =
3∑

j=1

〈Tjj〉 = 3P

I however there are plenty of field theories where Tµ
µ = 0

classically but not at the quantum level!
I quantum electrodynamics with vacuum polarization effects
I non-Abelian gauge theories



I in general Tµ
µ ∝ β(g) – it vanishes at RG fixed points

I we expect the generalised Stefan-Boltzmann law to hold at
quantum critical points with z = 1, i.e. ω ∼ v|k|

I for d = 1 (e.g. free fermions at finite density, Luttinger
liquids, quantum Hall edge states, and many critical
quantum spin chains)

u =
πc
6~v

(kT)2

where

c =





1 : single free boson
N : N free bosons
1
2 : a spinless fermion

I in general c is fractional: the conformal anomaly number of
the corresponding conformal field theory (CFT)



Why is the conformal anomaly anomalous?
I go to 2-dimensional euclidean space: quantum criticality in

d = 1 ⇔ classical criticality in d = 2
I use ‘complex co-ordinates’

z = x1 + ix2, z̄ = x1 − ix2

I e.g. free boson, action

S =
∫

(∇φ)2d2x ∝
∫

(∂zφ)(∂z̄φ)d2z

I classically, the only non-zero components of the stress
tensor are

T(z) = (∂zφ(z, z̄))2 T = (∂z̄φ(z, z̄))2

I classically, under a conformal transformation z → f (z)

S → S and T(z) = f ′(z)2 T(f (z))



I but, taking into account the fluctuations, this definition of T
is divergent: instead define

T(z) = lim
δ→0

[
∂zφ(z + δ

2)∂zφ(z− δ
2)− 1

2δ2

]

I this subtraction does not commute with the conformal
transformation: instead

T(z) = f ′(z)2 T(f (z))− c
12
{f , z} (∗)

where {f , z} = (f ′′′f ′ − 3
2 f ′′2)/f ′2, and in this case c = 1

I more generally this is the only possible form for the
anomaly

I from (∗) emerge the different physical manifestations of c



Stefan-Boltzmann law in 1+1 dimensions3

β

I finite temperature density matrix e−Ĥ/kT ⇔ euclidean path
integral on cylinder circumference β = ~/kT

I conformal mapping plane → cylinder: f (z) = (β/2π) log z

〈T(z)〉plane = 0 = f ′(z)2 〈T(f (z))〉cylinder − c
12
{f , z}

giving
u = 〈T00〉cylinder =

πc
6~

(kT)2

3Blöte, JC, Nightingale 1986; Affleck 1986



The conformal periodic table4

I in the operator formulation of CFT, moments
Ln =

∮
zn+1T(z)dz satisfy the Virasoro algebra

[Ln, Lm] = (n− m)Ln+m + 1
12 c n(n2 − 1)δn,−m

I the scaling fields fall into highest weight representations of
this algebra with the eigenvalue of L0 giving the scaling
dimensions x (→ critical exponents, by scaling)

I for c < 1 there is a countable list of possibilities
c = 1− 6/m(m + 1), m = 3, 4, 5, . . . and for each m only
1
2 m(m− 1) possible values for the scaling dimensions x:

4Belavin, Polyakov, Zamolodchikov 1984; Friedan, Qiu, Shenker 1984



c Scaling dimensions Universality class
1
2 0, 1

8 , 1 Critical Ising
7
10 0, 3

80 , 1
10 , 7

16 , 3
5 , 3

2 Tricritical Ising
4
5 0, 1

40 , 1
15 , 1

8 , 2
5 , 21

40 , 2
3 , 7

5 , 13
8 , 3 Tetracritical Ising

4
5 0, 1

15 × 2, 2
5 , 2

3 × 2, 7
5 , 3 Critical 3-state Potts

...
...

...
I these correspond to well-known universality classes
I demanding the consistency of the CFT on the torus

(modular invariance5) dictates exactly which scaling
dimensions appear in a given CFT

I this partially realises (at least in d = 2) the RG programme
of enumerating all universality classes

5JC 1986



c and Entanglement Entropy6

I c also quantifies the degree of quantum entanglement in
the ground state of 1+1-dimensional systems near a
quantum critical point.

I simplest scenario: a 1d infinite system in divided in two
halves A and B

I A’s reduced density matrix

ρA = TrB |0〉〈0|

I Rényi entropies SA
(n) = (1− n)−1 log TrAρA

n measure the
degree of entanglement between A and B

6Holzhey, Larsen, Wilczek 1994; Calabrese, JC 2004



Path integral representation

TrA ρA
n =

Zn

Zn
1

where Zn is the path integral (partition function in 2d) on an
n-sheeted surface Rn:
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n = 2

A



I Rn is related to a single sheet by the conformal mapping
f (z) = z1/n: using (*)

〈T〉Rn =
c(1− n−2)

12z2

I this means that the branch point behaves like a scaling
field of dimension xn = (c/12)(n− n−1)

I close to the critical point

S(n)
A ∼ (1− n)−1 log

(
ξ−xn

)
=

c
12

(1 + n−1) log ξ

I just the the tip of the iceberg of results of this nature!



Other appearances of c

I if we put a CFT on a manifold of Euler character χ and
linear size L, free energy

F ∼ AL2 + BL− 1
6 cχ log L + · · ·

I Zamolodchikov’s c theorem7: “There exists a function C(g)
which is decreasing along RG flows and is stationary at
RG fixed points, where it equals c”

I the c-theorem sum rule8: e.g. in a magnetic field at Tc

c = 3π2
(

δ

δ + 1
H

kBTc

)2

χ′′(q)
∣∣
q=0

where χ(q) is the q-dependent susceptibility

7A B Zamolodchikov 1986
8JC 1986



. . . at least in 2 (or 1+1) dimensions

is everywhere!


