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Stefan’s Law’

Energy density of black body ra-
diation u = (4n/c)oT* where
0~567x108]sIm 2K~

'J. Stefan, Uber die Beziehung zwischen der Warmestrahlung und der
Temperatur, Wiener Berichte, 79, 391, 1879.



Stefan’s Law

Energy density of black body ra-
diation u = (4n/c)oT* where
0~567x108Js7Im2K~*

» based on experimental
measurements by
J. Tyndall’

better known in some circles as an Alpine mountaineer!



Boltzmann’s Derivation?

» imagine a piston is moved by radiation pressure P = u/3

TdS = d(uV)+ Pdv
= W/(T)VdT + 3udV

v (7)) = o ()

u'(T)  du
T T2
w(T) o T*

» “A true pearl of theoretical physics” [Lorentz, 1907]

2L. Boltzmann, Ableitung des Stefan’schen Gesetzes. . ., Wiedemann’s
Annalen, 22, 291, 1884.




Why Boltzmann was lucky

» this is a quantum phenomenon (o = ©*k*/60%°c?) yet
P = u/3 was a result of classical electrodynamics

» in modern terms, it relies on the assumption that the
energy-momentum tensor T,,, is traceless, so

u= (Ty) = Z ) =3P

j=1

(98]

» however there are plenty of field theories where T}, = 0
classically but not at the quantum level!
» quantum electrodynamics with vacuum polarization effects
» non-Abelian gauge theories



» in general T}, < ((g) — it vanishes at RG fixed points

» we expect the generalised Stefan-Boltzmann law to hold at
quantum critical points with z =1, i.e. w ~ v|k|

» ford =1 (e.g. free fermions at finite density, Luttinger

liquids, quantum Hall edge states, and many critical
quantum spin chains)

e
= —(kT)?
u= g T)
where
1 single free boson
c=< N : N free bosons
1 aspinless fermion

» in general c is fractional: the conformal anomaly number of
the corresponding conformal field theory (CFT)



Why is the conformal anomaly anomalous?

» go to 2-dimensional euclidean space: quantum criticality in
d = 1 < classical criticality ind = 2
» use ‘complex co-ordinates’

7z =x1 + ixy, Z=Xx1 —ixp

» e.g. free boson, action

5= / (V6 o / (0:6) (0:0)dP

» classically, the only non-zero components of the stress
tensor are

T(z) = (0:6(2,2))* T =(0%:0(22))

» classically, under a conformal transformation z — f(z)
S—S and T(z) =f(2)*T(f(z))



but, taking into account the fluctuations, this definition of T
is divergent. instead define

1

T(z) = lim |0:6(z + 5)0:0(2 — 3) = 5

this subtraction does not commute with the conformal
transformation: instead

Q) =f @’ T¢@) - 5103 0

where {f,z} = (f"'f' — %f”z)/f’z, and in this case c = 1

more generally this is the only possible form for the
anomaly

from (x) emerge the different physical manifestations of ¢



Stefan-Boltzmann law in 1+1 dimensions®

( i

» finite temperature density matrix e~H/KT o eyclidean path
integral on cylinder circumference g = h/kT

» conformal mapping plane — cylinder: f(z) = (8/2n)logz

(T(2))ptane = 0 = f'(2)* (T(f (2))tinaer = 15172}

giving
7T_C

o (kT)?

u = (To0)cylinder =

3BIste, JC, Nightingale 1986; Affleck 1986



The conformal periodic table*

» in the operator formulation of CFT, moments
L, = ¢ 7"71T(z)dz satisfy the Virasoro algebra

Ly, L) = (n — m)Lyym + ﬁc n(n* — 1)0y —m

» the scaling fields fall into highest weight representations of
this algebra with the eigenvalue of Ly giving the scaling
dimensions x (— critical exponents, by scaling)

» for ¢ < 1 there is a countable list of possibilities

c=1—-6/m(m+1),m=3,4,5,... and for each m only
%m( — 1) possible values for the scaling dimensions x:

“Belavin, Polyakov, Zamolodchikov 1984; Friedan, Qiu, Shenker 1984



¢ | Scaling dimensions | Universality class |
5 |o, é, 1 Critical Ising

o102 - 15, 116, i3 Tricritical Ising

210, 4 3 = 3 5; %, %, %, L1, B3 | Tetracritical Ising

: 0, = x2,22x2,13 Critical 3-state Potts

» these correspond to well-known universality classes

» demanding the consistency of the CFT on the torus
(modular invariance®) dictates exactly which scaling
dimensions appear in a given CFT

» this partially realises (at least in d = 2) the RG programme
of enumerating all universality classes

5JC 1986



¢ and Entanglement Entropy®

» ¢ also quantifies the degree of quantum entanglement in
the ground state of 1+1-dimensional systems near a
quantum critical point.

» simplest scenario: a 1d infinite system in divided in two
halves A and B

» A’s reduced density matrix

pa = Try [0)(0]

» Rényientropies §4™ = (1 — n)~'log Tryps" measure the
degree of entanglement between A and B

8Holzhey, Larsen, Wilczek 1994; Calabrese, JC 2004



Path integral representation

Zn

Try pa" = =~
A

where Z, is the path integral (partition function in 2d) on an

n-sheeted surface R,,:
A B /
— ST

n=2



» R, is related to a single sheet by the conformal mapping
f(z) =Z'/": using (*)

(1 —n2
(T)wr, = (112Z2 )

» this means that the branch point behaves like a scaling
field of dimension x, = (¢/12)(n —n~1)
» close to the critical point

c

S(+n7!) loge

Sfln) ~(1- n)_1 log (f_x")

» just the the tip of the iceberg of results of this nature!



Other appearances of ¢

» if we put a CFT on a manifold of Euler character x and
linear size L, free energy

F~AL*+BL— lexlogL+ -

» Zamolodchikov’s ¢ theorem’: “There exists a function C(g)
which is decreasing along RG flows and is stationary at
RG fixed points, where it equals ¢”

» the c-theorem sum rule®: e.g. in a magnetic field at 7.

s H\?
_ 2 "
c=3r <—6+1kBTc) X"(@)] g

where x(q) is the ¢g-dependent susceptibility

”A B Zamolodchikov 1986
8JC 1986



...atleastin 2 (or 1+1) dimensions

is everywhere!



